Instead of printing analysis debug information to stderr, annotate the IR. This makes it easier to understand decisions made by the analysis, especially in larger input IR. Differential Revision: https://reviews.llvm.org/D115575
813 lines
33 KiB
C++
813 lines
33 KiB
C++
//===- ModuleBufferization.cpp - Bufferization across Func. Boundaries ----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Linalg/ComprehensiveBufferize/ModuleBufferization.h"
|
|
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Linalg/ComprehensiveBufferize/BufferizableOpInterface.h"
|
|
#include "mlir/Dialect/Linalg/ComprehensiveBufferize/ComprehensiveBufferize.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/IR/Operation.h"
|
|
|
|
using namespace mlir;
|
|
using namespace linalg;
|
|
using namespace tensor;
|
|
using namespace comprehensive_bufferize;
|
|
|
|
namespace {
|
|
/// Extra bufferization state that is required for bufferization of function
|
|
/// boundaries.
|
|
struct ModuleBufferizationState : public DialectBufferizationState {
|
|
/// A map for looking up bufferized function types.
|
|
DenseMap<FuncOp, FunctionType> bufferizedFunctionTypes;
|
|
|
|
/// A mapping of ReturnOp OpOperand indices to equivalent FuncOp BBArg
|
|
/// indices.
|
|
DenseMap<FuncOp, DenseMap<int64_t, int64_t>> equivalentFuncArgs;
|
|
|
|
SmallVector<FuncOp> orderedFuncOps;
|
|
|
|
DenseMap<FuncOp, DenseSet<Operation *>> callerMap;
|
|
};
|
|
} // namespace
|
|
|
|
static ModuleBufferizationState &
|
|
getModuleBufferizationState(BufferizationState &state) {
|
|
return state.getDialectState<ModuleBufferizationState>(
|
|
StandardOpsDialect::getDialectNamespace());
|
|
}
|
|
|
|
/// Return the unique ReturnOp that terminates `funcOp`.
|
|
/// Return nullptr if there is no such unique ReturnOp.
|
|
static ReturnOp getAssumedUniqueReturnOp(FuncOp funcOp) {
|
|
ReturnOp returnOp;
|
|
for (Block &b : funcOp.body()) {
|
|
if (auto candidateOp = dyn_cast<ReturnOp>(b.getTerminator())) {
|
|
if (returnOp)
|
|
return nullptr;
|
|
returnOp = candidateOp;
|
|
}
|
|
}
|
|
return returnOp;
|
|
}
|
|
|
|
namespace {
|
|
/// Store function BlockArguments that are equivalent to a returned value in
|
|
/// ModuleBufferizationState.
|
|
struct EquivalentFuncOpBBArgsAnalysis : public PostAnalysisStep {
|
|
/// Annotate IR with the results of the analysis. For testing purposes only.
|
|
static void annotateReturnOp(OpOperand &returnVal, BlockArgument bbArg) {
|
|
const char *kEquivalentArgsAttr = "__equivalent_func_args__";
|
|
Operation *op = returnVal.getOwner();
|
|
|
|
SmallVector<int64_t> equivBbArgs;
|
|
if (op->hasAttr(kEquivalentArgsAttr)) {
|
|
auto attr = op->getAttr(kEquivalentArgsAttr).cast<ArrayAttr>();
|
|
equivBbArgs = llvm::to_vector<4>(llvm::map_range(attr, [](Attribute a) {
|
|
return a.cast<IntegerAttr>().getValue().getSExtValue();
|
|
}));
|
|
} else {
|
|
equivBbArgs.append(op->getNumOperands(), -1);
|
|
}
|
|
equivBbArgs[returnVal.getOperandNumber()] = bbArg.getArgNumber();
|
|
|
|
OpBuilder b(op->getContext());
|
|
op->setAttr(kEquivalentArgsAttr, b.getI64ArrayAttr(equivBbArgs));
|
|
}
|
|
|
|
LogicalResult run(Operation *op, BufferizationState &state,
|
|
BufferizationAliasInfo &aliasInfo,
|
|
SmallVector<Operation *> &newOps) override {
|
|
ModuleBufferizationState &moduleState = getModuleBufferizationState(state);
|
|
|
|
// Support only single return-terminated block in the function.
|
|
auto funcOp = cast<FuncOp>(op);
|
|
ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
|
|
assert(returnOp && "expected func with single return op");
|
|
|
|
for (OpOperand &returnVal : returnOp->getOpOperands())
|
|
if (returnVal.get().getType().isa<RankedTensorType>())
|
|
for (BlockArgument bbArg : funcOp.getArguments())
|
|
if (bbArg.getType().isa<RankedTensorType>())
|
|
if (aliasInfo.areEquivalentBufferizedValues(returnVal.get(),
|
|
bbArg)) {
|
|
moduleState
|
|
.equivalentFuncArgs[funcOp][returnVal.getOperandNumber()] =
|
|
bbArg.getArgNumber();
|
|
if (state.getOptions().testAnalysisOnly)
|
|
annotateReturnOp(returnVal, bbArg);
|
|
}
|
|
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
static bool isaTensor(Type t) { return t.isa<TensorType>(); }
|
|
|
|
/// If `value` is a memref::CastOp, return its source. Otherwise, return
|
|
/// `value` directly.
|
|
static Value getNonCastedValue(Value value) {
|
|
while (auto castOp = value.getDefiningOp<memref::CastOp>())
|
|
value = castOp.source();
|
|
return value;
|
|
}
|
|
|
|
/// Remove the attribute that triggers inplace bufferization on a FuncOp
|
|
/// argument `bbArg`.
|
|
static void removeBufferizationFuncArguments(BlockArgument bbArg) {
|
|
auto funcOp = cast<FuncOp>(bbArg.getOwner()->getParentOp());
|
|
funcOp.removeArgAttr(bbArg.getArgNumber(),
|
|
BufferizableOpInterface::kBufferLayoutAttrName);
|
|
funcOp.removeArgAttr(bbArg.getArgNumber(),
|
|
BufferizableOpInterface::kInplaceableAttrName);
|
|
}
|
|
|
|
/// Return the FuncOp called by `callOp`.
|
|
static FuncOp getCalledFunction(CallOpInterface callOp) {
|
|
SymbolRefAttr sym = callOp.getCallableForCallee().dyn_cast<SymbolRefAttr>();
|
|
if (!sym)
|
|
return nullptr;
|
|
return dyn_cast_or_null<FuncOp>(
|
|
SymbolTable::lookupNearestSymbolFrom(callOp, sym));
|
|
}
|
|
|
|
/// Return the FunctionType with `argumentTypes` and `resultTypes` where each
|
|
/// tensor is replaced by the corresponding buffer type.
|
|
/// In order for all the callers to agree, this *must* bufferize to the most
|
|
/// dynamic buffer type supported.
|
|
/// A later pass across all CallOps in the module can decide whether to simplify
|
|
/// the types of to version according to some cost model.
|
|
static FunctionType getBufferizedFunctionType(MLIRContext *ctx,
|
|
TypeRange argumentTypes,
|
|
TypeRange resultTypes) {
|
|
auto rewrite = [](Type t) -> Type {
|
|
// TODO: non-zero address space.
|
|
// TODO: layout information if relevant.
|
|
if (auto rankedTensorType = t.dyn_cast<RankedTensorType>())
|
|
return getDynamicMemRefType(rankedTensorType);
|
|
if (auto tensorType = t.dyn_cast<TensorType>())
|
|
return getContiguousOrUnrankedMemRefType(tensorType);
|
|
return t;
|
|
};
|
|
auto argTypes = llvm::to_vector<4>(llvm::map_range(argumentTypes, rewrite));
|
|
auto retTypes = llvm::to_vector<4>(llvm::map_range(resultTypes, rewrite));
|
|
return FunctionType::get(ctx, argTypes, retTypes);
|
|
}
|
|
|
|
/// If an entry for `funcOp` is available in `bufferizedFunctionTypes`, return
|
|
/// it. Otherwise, construct a new entry based on `argumentTypes` and
|
|
/// `resultTypes`.
|
|
// TODO: improve the layering.
|
|
static FunctionType getOrCreateBufferizedFunctionType(
|
|
FuncOp funcOp, TypeRange argumentTypes, TypeRange resultTypes,
|
|
DenseMap<FuncOp, FunctionType> &bufferizedFunctionTypes) {
|
|
auto it = bufferizedFunctionTypes.find(funcOp);
|
|
if (it != bufferizedFunctionTypes.end())
|
|
return it->second;
|
|
|
|
auto it2 = bufferizedFunctionTypes.try_emplace(
|
|
funcOp, getBufferizedFunctionType(funcOp.getContext(), argumentTypes,
|
|
resultTypes));
|
|
return it2.first->second;
|
|
}
|
|
|
|
/// Gather equivalence info of CallOps.
|
|
/// Note: This only adds new equivalence info if `funcOp` was already analyzed.
|
|
// TODO: This does not handle cyclic function call graphs etc.
|
|
static void equivalenceAnalysis(FuncOp funcOp,
|
|
BufferizationAliasInfo &aliasInfo,
|
|
ModuleBufferizationState &moduleState) {
|
|
funcOp->walk([&](CallOp callOp) {
|
|
FuncOp calledFunction = getCalledFunction(callOp);
|
|
assert(calledFunction && "could not retrieved called FuncOp");
|
|
|
|
// No equivalence info available for the called function.
|
|
if (!moduleState.equivalentFuncArgs.count(calledFunction))
|
|
return WalkResult::skip();
|
|
|
|
for (auto it : moduleState.equivalentFuncArgs[calledFunction]) {
|
|
int64_t returnIdx = it.first;
|
|
int64_t bbargIdx = it.second;
|
|
Value returnVal = callOp.getResult(returnIdx);
|
|
Value argVal = callOp->getOperand(bbargIdx);
|
|
aliasInfo.unionEquivalenceClasses(returnVal, argVal);
|
|
}
|
|
|
|
return WalkResult::advance();
|
|
});
|
|
}
|
|
|
|
/// Rewrite the `funcOp` arguments analysis return values and terminator into
|
|
/// buffer form (using the canonical memref layout for now), according to the
|
|
/// inPlace-bufferizable information of the function arguments.
|
|
///
|
|
/// This relies on a buffer equivalence analysis of each return operand. When a
|
|
/// result buffer is equivalent to a BlockArgument of `funcOp`, it can be
|
|
/// dropped from the return values and becomes inplaceable at all callers. This
|
|
/// assumes all CallOp perform the necessary work to clone operands so as to
|
|
/// make them inplaceable. Reliance on this logic will need to be relaxed in the
|
|
/// future.
|
|
///
|
|
/// Note: Returning a memref currently fails bufferization. If such memrefs
|
|
/// originate from an op with an Alloc effect, they could be hoisted in the
|
|
/// future.
|
|
static LogicalResult bufferizeFuncOpBoundary(FuncOp funcOp,
|
|
BufferizationState &state) {
|
|
ModuleBufferizationState &moduleState = getModuleBufferizationState(state);
|
|
|
|
// If nothing to do then we are done.
|
|
if (!llvm::any_of(funcOp.getType().getInputs(), isaTensor) &&
|
|
!llvm::any_of(funcOp.getType().getResults(), isaTensor))
|
|
return success();
|
|
|
|
// Get the bufferized FunctionType for funcOp or construct it if not yet
|
|
// available.
|
|
// TODO: Atm we have 3 cases:
|
|
// 1. if a function is called from within the Module, it must have bufferized
|
|
// to inplaceable tensor results.
|
|
// 2. if it is bodiless, it must have bufferized and is not allowed to have
|
|
// result tensors.
|
|
// 3. if it is not called internally, it still must bufferize to inplaceable
|
|
// tensor results and we construct it now (e.g. top-level function called
|
|
// externally).
|
|
// -> Figure out a better layering.
|
|
TypeRange resultTypes;
|
|
|
|
// Corner case: Bodiless FuncOp
|
|
// ============================
|
|
// The body of such functions is assumed opaque and we can't know the
|
|
// bufferization contract they want to enforce atm.
|
|
// As a consequence, only support functions that don't return any tensor atm.
|
|
if (funcOp.getBody().empty()) {
|
|
if (llvm::any_of(funcOp.getType().getResults(), isaTensor))
|
|
return funcOp->emitError() << "cannot bufferize bodiless function that "
|
|
<< "returns a tensor";
|
|
FunctionType bufferizedFuncType = getOrCreateBufferizedFunctionType(
|
|
funcOp, funcOp.getType().getInputs(), TypeRange{},
|
|
moduleState.bufferizedFunctionTypes);
|
|
funcOp.setType(bufferizedFuncType);
|
|
return success();
|
|
}
|
|
|
|
// Support only single return-terminated block in the function.
|
|
ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
|
|
assert(returnOp && "expected func with single return op");
|
|
|
|
// 1. For each FuncOp result, keep track of which inplace argument it reuses.
|
|
SmallVector<Value> returnValues;
|
|
for (OpOperand &returnOperand : returnOp->getOpOperands()) {
|
|
Value returnVal = returnOperand.get();
|
|
|
|
// If not a renturn tensor type just forward it.
|
|
if (!returnVal.getType().isa<RankedTensorType>()) {
|
|
returnValues.push_back(returnVal);
|
|
continue;
|
|
}
|
|
|
|
// If return operand is equivalent to some bbArg, no need to return it.
|
|
if (moduleState.equivalentFuncArgs[funcOp].count(
|
|
returnOperand.getOperandNumber()))
|
|
continue;
|
|
|
|
// Cast values at the call site if necessary.
|
|
returnValues.push_back(getNonCastedValue(state.lookupBuffer(returnVal)));
|
|
}
|
|
|
|
// 2. Rewrite the terminator without the inPlace bufferizable values.
|
|
ValueRange retValues{returnValues};
|
|
FunctionType bufferizedFuncType = getOrCreateBufferizedFunctionType(
|
|
funcOp, funcOp.getType().getInputs(), retValues.getTypes(),
|
|
moduleState.bufferizedFunctionTypes);
|
|
OpBuilder b(returnOp);
|
|
b.create<ReturnOp>(returnOp.getLoc(), returnValues);
|
|
returnOp->erase();
|
|
|
|
// 3. Rewrite the bbArgs.
|
|
// Iterate on the original `numArgs` and replace them in order.
|
|
// This guarantees the argument order still matches after the rewrite.
|
|
Block &frontBlock = funcOp.body().front();
|
|
unsigned numArgs = frontBlock.getNumArguments();
|
|
for (unsigned idx = 0; idx < numArgs; ++idx) {
|
|
auto bbArg = frontBlock.getArgument(0);
|
|
auto tensorType = bbArg.getType().dyn_cast<TensorType>();
|
|
// Non-tensor types are just forwarded.
|
|
if (!tensorType) {
|
|
frontBlock.addArgument(bbArg.getType());
|
|
bbArg.replaceAllUsesWith(frontBlock.getArguments().back());
|
|
frontBlock.eraseArgument(0);
|
|
continue;
|
|
}
|
|
|
|
// Get the buffer type from the bufferized function type.
|
|
Type memrefType = bufferizedFuncType.getInput(idx);
|
|
Value memref = frontBlock.addArgument(memrefType);
|
|
OpBuilder b(funcOp->getContext());
|
|
b.setInsertionPointToStart(&frontBlock);
|
|
// Replace all uses of bbArg through a ToMemRefOp by a memref::CastOp.
|
|
for (auto &use : llvm::make_early_inc_range(bbArg.getUses())) {
|
|
if (auto toMemrefOp =
|
|
dyn_cast<bufferization::ToMemrefOp>(use.getOwner())) {
|
|
auto castOp = b.create<memref::CastOp>(
|
|
funcOp.getLoc(), toMemrefOp.memref().getType(), memref);
|
|
toMemrefOp.memref().replaceAllUsesWith(castOp);
|
|
}
|
|
}
|
|
// Replace all remaining uses by a to_tensor.
|
|
if (!bbArg.use_empty()) {
|
|
auto toTensorOp =
|
|
b.create<bufferization::ToTensorOp>(funcOp.getLoc(), memref);
|
|
bbArg.replaceAllUsesWith(toTensorOp);
|
|
}
|
|
frontBlock.eraseArgument(0);
|
|
// TODO: add support to erase aliasInfo entries if deemed necessary.
|
|
}
|
|
|
|
// 4. Rewrite the FuncOp type to buffer form.
|
|
funcOp.setType(bufferizedFuncType);
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Store all functions of the `moduleOp` in `orderedFuncOps`, sorted by
|
|
/// callee-caller order (i.e. callees without callers first).
|
|
/// Store the map of FuncOp to all its callers in `callerMap`.
|
|
/// Return `failure()` if a cycle of calls is detected or if we are unable to
|
|
/// retrieve the called FuncOp from any CallOpInterface.
|
|
static LogicalResult
|
|
getFuncOpsOrderedByCalls(ModuleOp moduleOp,
|
|
SmallVectorImpl<FuncOp> &orderedFuncOps,
|
|
DenseMap<FuncOp, DenseSet<Operation *>> &callerMap) {
|
|
// For each FuncOp, the set of functions called by it (i.e. the union of
|
|
// symbols of all nested CallOpInterfaceOp).
|
|
DenseMap<FuncOp, DenseSet<FuncOp>> calledBy;
|
|
// For each FuncOp, the number of CallOpInterface it contains.
|
|
DenseMap<FuncOp, unsigned> numberCallOpsContainedInFuncOp;
|
|
WalkResult res = moduleOp.walk([&](FuncOp funcOp) -> WalkResult {
|
|
if (!funcOp.body().empty()) {
|
|
ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
|
|
if (!returnOp)
|
|
return funcOp->emitError()
|
|
<< "cannot bufferize a FuncOp with tensors and "
|
|
"without a unique ReturnOp";
|
|
}
|
|
|
|
numberCallOpsContainedInFuncOp[funcOp] = 0;
|
|
return funcOp.walk([&](CallOpInterface callOp) -> WalkResult {
|
|
// Only support CallOp for now.
|
|
if (!isa<CallOp>(callOp.getOperation()))
|
|
return callOp->emitError() << "expected a CallOp";
|
|
FuncOp calledFunction = getCalledFunction(callOp);
|
|
assert(calledFunction && "could not retrieved called FuncOp");
|
|
auto it = callerMap.try_emplace(calledFunction, DenseSet<Operation *>{});
|
|
it.first->getSecond().insert(callOp);
|
|
if (calledBy[calledFunction].count(funcOp) == 0) {
|
|
calledBy[calledFunction].insert(funcOp);
|
|
numberCallOpsContainedInFuncOp[funcOp]++;
|
|
}
|
|
return WalkResult::advance();
|
|
});
|
|
});
|
|
if (res.wasInterrupted())
|
|
return failure();
|
|
// Iteratively remove function operation that do not call any of the
|
|
// functions remaining in the callCounter map and add them to the worklist.
|
|
while (!numberCallOpsContainedInFuncOp.empty()) {
|
|
auto it = llvm::find_if(numberCallOpsContainedInFuncOp,
|
|
[](auto entry) { return entry.getSecond() == 0; });
|
|
if (it == numberCallOpsContainedInFuncOp.end())
|
|
return moduleOp.emitOpError(
|
|
"expected callgraph to be free of circular dependencies.");
|
|
orderedFuncOps.push_back(it->getFirst());
|
|
for (auto callee : calledBy[it->getFirst()])
|
|
numberCallOpsContainedInFuncOp[callee]--;
|
|
numberCallOpsContainedInFuncOp.erase(it);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
static void
|
|
foreachCaller(const DenseMap<FuncOp, DenseSet<Operation *>> &callerMap,
|
|
FuncOp callee, llvm::function_ref<void(Operation *)> doit) {
|
|
auto itCallers = callerMap.find(callee);
|
|
if (itCallers == callerMap.end())
|
|
return;
|
|
for (Operation *caller : itCallers->second)
|
|
doit(caller);
|
|
}
|
|
|
|
/// Postprocess the linalg.buffer_layout annotation across function boundaries.
|
|
/// This is a purely mechanical process that may later become part of a
|
|
/// separate pass with its own layout assignment heuristic.
|
|
static void layoutPostProcessing(ModuleOp moduleOp) {
|
|
SmallVector<FuncOp> orderedFuncOps;
|
|
DenseMap<FuncOp, DenseSet<Operation *>> callerMap;
|
|
auto res = getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps, callerMap);
|
|
(void)res;
|
|
assert(succeeded(res) && "unexpected getFuncOpsOrderedByCalls failure");
|
|
|
|
for (FuncOp funcOp : orderedFuncOps) {
|
|
DenseMap<Operation *, SmallVector<Value>> operandsPerCaller;
|
|
foreachCaller(callerMap, funcOp, [&](Operation *caller) {
|
|
operandsPerCaller.try_emplace(caller, SmallVector<Value>());
|
|
});
|
|
|
|
SmallVector<Type> argumentTypes;
|
|
// Iterate on each function argument and check it it was marked with a
|
|
// desired layout.
|
|
for (const auto &it : llvm::enumerate(funcOp.getType().getInputs())) {
|
|
int argNumber = it.index();
|
|
Type inputType = it.value();
|
|
auto memrefType = inputType.dyn_cast<MemRefType>();
|
|
auto layoutAttr = funcOp.getArgAttrOfType<AffineMapAttr>(
|
|
argNumber, BufferizableOpInterface::kBufferLayoutAttrName);
|
|
AffineMap desiredLayoutMap =
|
|
layoutAttr ? layoutAttr.getValue() : AffineMap();
|
|
AffineMap currentLayoutMap =
|
|
memrefType ? getStridedLinearLayoutMap(memrefType) : AffineMap();
|
|
if (!memrefType || !layoutAttr || desiredLayoutMap == currentLayoutMap) {
|
|
argumentTypes.push_back(inputType);
|
|
foreachCaller(callerMap, funcOp, [&](Operation *caller) {
|
|
operandsPerCaller.find(caller)->getSecond().push_back(
|
|
caller->getOperand(argNumber));
|
|
});
|
|
continue;
|
|
}
|
|
|
|
// Compute the buffer type with desired layout and add to input argument
|
|
// types.
|
|
MemRefType desiredMemrefType = MemRefType::get(
|
|
memrefType.getShape(), memrefType.getElementType(), desiredLayoutMap);
|
|
argumentTypes.push_back(desiredMemrefType);
|
|
|
|
// If funcOp's body is not empty, change the bbArg type and propagate.
|
|
if (!funcOp.body().empty()) {
|
|
BlockArgument bbArg = funcOp.getArgument(argNumber);
|
|
bbArg.setType(desiredMemrefType);
|
|
OpBuilder b(bbArg.getContext());
|
|
b.setInsertionPointToStart(bbArg.getOwner());
|
|
// Cast back to the original memrefType and let it canonicalize.
|
|
Value cast =
|
|
b.create<memref::CastOp>(funcOp.getLoc(), memrefType, bbArg);
|
|
bbArg.replaceAllUsesExcept(cast, cast.getDefiningOp());
|
|
}
|
|
|
|
// Cast to desired buffer type on all callers to `funcOp`.
|
|
// TODO: on the callee side, this may even have to trigger a copy to
|
|
// change the layout. For now let the memref::CastOp fail to verify in
|
|
// such cases.
|
|
auto castArg = [&](Operation *caller) {
|
|
OpBuilder b(caller);
|
|
Value newOperand = b.create<memref::CastOp>(
|
|
funcOp.getLoc(), desiredMemrefType, caller->getOperand(argNumber));
|
|
operandsPerCaller.find(caller)->getSecond().push_back(newOperand);
|
|
};
|
|
foreachCaller(callerMap, funcOp, castArg);
|
|
}
|
|
|
|
// Set operands with cast buffer on all callers to `funcOp`.
|
|
foreachCaller(callerMap, funcOp, [&](Operation *caller) {
|
|
caller->setOperands(operandsPerCaller.lookup(caller));
|
|
});
|
|
|
|
// Finally set the funcOp type to update the arguments.
|
|
auto newFuncType = FunctionType::get(moduleOp.getContext(), argumentTypes,
|
|
funcOp.getType().getResults());
|
|
funcOp.setType(newFuncType);
|
|
}
|
|
}
|
|
|
|
namespace mlir {
|
|
namespace linalg {
|
|
namespace comprehensive_bufferize {
|
|
namespace std_ext {
|
|
|
|
struct CallOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<CallOpInterface, CallOp> {
|
|
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand) const {
|
|
// CallOpInterface alone doesn't bufferize to a memory read, one of the uses
|
|
// of the matching bbArg may. It is the responsibility of the caller to
|
|
// inspect bbArgs. In the absence of a BufferizationAliasInfo, we need to be
|
|
// conservative.
|
|
return true;
|
|
}
|
|
|
|
OpResult getAliasingOpResult(Operation *op, OpOperand &opOperand) const {
|
|
// CallOpInterface is special, it needs to wait for the callee to be
|
|
// bufferized and needs to inspect the BufferAliasInfo object. It can't
|
|
// make a proper determination by itself and needs to be conservative.
|
|
return OpResult();
|
|
}
|
|
|
|
/// In a first approximation, all the function arguments of a FuncOp are
|
|
/// marked inplaceable. For now, it is the responsibility of the `callOp`
|
|
/// bufferization to allow FuncOp that are inplaceable to write inPlace.
|
|
LogicalResult bufferize(Operation *op, OpBuilder &b,
|
|
BufferizationState &state) const {
|
|
CallOp callOp = cast<CallOp>(op);
|
|
FuncOp funcOp = getCalledFunction(callOp);
|
|
assert(isa<CallOp>(callOp.getOperation()) && funcOp &&
|
|
"expected Callop to a FuncOp");
|
|
ModuleBufferizationState &moduleState = getModuleBufferizationState(state);
|
|
|
|
// 1. Filter return types:
|
|
// - if the callee is bodiless / external, we cannot inspect it and we
|
|
// cannot assume anything. We can just assert that it does not return a
|
|
// tensor as this would have to bufferize to "return a memref", whose
|
|
// semantics is ill-defined.
|
|
// - if the callee has a body, we perform inter-procedural equivalence
|
|
// analysis. When successful, a result folds onto an operand. When
|
|
// unsuccessful, additional work is needed (TODO) to either:
|
|
// * hoist a result into an inplaceable operand or
|
|
// * devise a better representation to truly return a buffer.
|
|
SmallVector<Type> resultTypes;
|
|
if (funcOp.body().empty()) {
|
|
if (llvm::any_of(funcOp.getType().getResults(), isaTensor))
|
|
return callOp->emitError()
|
|
<< "cannot bufferize bodiless function that returns a tensor";
|
|
} else {
|
|
ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
|
|
assert(returnOp && "expected func with single return op");
|
|
|
|
// For each FuncOp result, keep track of which inplace argument it reuses.
|
|
for (OpOperand &returnOperand : returnOp->getOpOperands()) {
|
|
Type returnType = returnOperand.get().getType();
|
|
if (!isaTensor(returnType)) {
|
|
resultTypes.push_back(returnType);
|
|
continue;
|
|
}
|
|
|
|
// If return operand is equivalent to some bbArg, no need to return it.
|
|
if (moduleState.equivalentFuncArgs[funcOp].count(
|
|
returnOperand.getOperandNumber())) {
|
|
int64_t idx =
|
|
moduleState
|
|
.equivalentFuncArgs[funcOp][returnOperand.getOperandNumber()];
|
|
Value oldRes = callOp->getResult(returnOperand.getOperandNumber());
|
|
Value buffer = state.lookupBuffer(callOp->getOperand(idx));
|
|
// Add CallOp operand/result equivalence: this is interprocedural
|
|
// info.
|
|
state.mapBuffer(oldRes, buffer);
|
|
// Add a ToTensorOp to kill all uses of the CallOp return.
|
|
// Replace all uses of the CallOp results so we can erase the CallOp.
|
|
// This ToTensorOp must fold/DCE away or bufferization should be
|
|
// considered failed.
|
|
Value toTensorOp =
|
|
b.create<bufferization::ToTensorOp>(callOp.getLoc(), buffer);
|
|
oldRes.replaceAllUsesWith(toTensorOp);
|
|
// Add new op equivalence info.
|
|
state.mapBuffer(toTensorOp, buffer);
|
|
continue;
|
|
}
|
|
|
|
resultTypes.push_back(returnType);
|
|
}
|
|
}
|
|
|
|
// 2. Compute bufferized FunctionType.
|
|
SmallVector<Type> argumentTypes{callOp->getOperandTypes()};
|
|
// Get the bufferized FunctionType for funcOp or construct it if not yet
|
|
// available.
|
|
FunctionType bufferizedFuncType =
|
|
getOrCreateBufferizedFunctionType(funcOp, argumentTypes, resultTypes,
|
|
moduleState.bufferizedFunctionTypes);
|
|
|
|
// 3. Rewrite tensor operands as memrefs based on `bufferizedFuncType`.
|
|
SmallVector<Value> newOperands;
|
|
newOperands.reserve(callOp->getNumOperands());
|
|
for (OpOperand &opOperand : callOp->getOpOperands()) {
|
|
Value tensorOperand = opOperand.get();
|
|
// Non-tensor operands are just copied.
|
|
if (!tensorOperand.getType().isa<TensorType>()) {
|
|
newOperands.push_back(tensorOperand);
|
|
continue;
|
|
}
|
|
|
|
// Tensor operands are guaranteed to have been buferized.
|
|
int64_t idx = opOperand.getOperandNumber();
|
|
Value buffer = state.lookupBuffer(tensorOperand);
|
|
|
|
// Caller / callee type mistmatch is handled with a CastOp.
|
|
auto memRefType = bufferizedFuncType.getInput(idx);
|
|
// Since we don't yet have a clear layout story, buffer_cast may
|
|
// conservatively turn tensors into more dynamic memref than necessary.
|
|
// If the memref type of the callee fails, introduce an extra memref.cast
|
|
// that will either canonicalize away or fail compilation until we can do
|
|
// something better.
|
|
if (buffer.getType() != memRefType) {
|
|
Value castBuffer =
|
|
b.create<memref::CastOp>(callOp.getLoc(), memRefType, buffer);
|
|
// Add new op equivalence info.
|
|
state.mapBuffer(tensorOperand, castBuffer);
|
|
buffer = castBuffer;
|
|
}
|
|
newOperands.push_back(buffer);
|
|
}
|
|
|
|
// 4. Create the new CallOp.
|
|
Operation *newCallOp = b.create<CallOp>(callOp.getLoc(), funcOp.sym_name(),
|
|
resultTypes, newOperands);
|
|
newCallOp->setAttrs(callOp->getAttrs());
|
|
|
|
// 5. Delete the op at the end of bufferization.
|
|
state.markOpObsolete(callOp);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct ReturnOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<ReturnOpInterface,
|
|
ReturnOp> {
|
|
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand) const {
|
|
return true;
|
|
}
|
|
|
|
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand) const {
|
|
return false;
|
|
}
|
|
|
|
OpResult getAliasingOpResult(Operation *op, OpOperand &opOperand) const {
|
|
return OpResult();
|
|
}
|
|
|
|
LogicalResult bufferize(Operation *op, OpBuilder &b,
|
|
BufferizationState &state) const {
|
|
auto returnOp = cast<ReturnOp>(op);
|
|
assert(isa<FuncOp>(returnOp->getParentOp()) &&
|
|
"only support FuncOp parent for ReturnOp");
|
|
|
|
for (OpOperand &operand : returnOp->getOpOperands()) {
|
|
auto tensorType = operand.get().getType().dyn_cast<TensorType>();
|
|
if (!tensorType)
|
|
continue;
|
|
Value v = state.lookupBuffer(operand.get());
|
|
Value returnTensor = b.create<bufferization::ToTensorOp>(
|
|
returnOp.getLoc(), v);
|
|
operand.set(returnTensor);
|
|
state.mapBuffer(returnTensor, v);
|
|
}
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct FuncOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<FuncOpInterface, FuncOp> {
|
|
LogicalResult bufferize(Operation *op, OpBuilder &b,
|
|
BufferizationState &state) const {
|
|
auto funcOp = cast<FuncOp>(op);
|
|
b.setInsertionPointToStart(&funcOp.body().front());
|
|
|
|
// Create BufferCastOps for function args.
|
|
for (auto bbArg : funcOp.getArguments()) {
|
|
auto tensorType = bbArg.getType().dyn_cast<TensorType>();
|
|
if (!tensorType)
|
|
continue;
|
|
auto rankedTensorType = tensorType.dyn_cast<RankedTensorType>();
|
|
// Cast the tensor to the most dynamic buffer possible. Further
|
|
// canonicalizations will clean up.
|
|
Type memRefType = rankedTensorType
|
|
? getDynamicMemRefType(rankedTensorType)
|
|
: getContiguousOrUnrankedMemRefType(tensorType);
|
|
Value bufferCast = b.create<bufferization::ToMemrefOp>(funcOp.getLoc(),
|
|
memRefType, bbArg);
|
|
state.mapBuffer(bbArg, bufferCast);
|
|
}
|
|
|
|
// Bufferize function body.
|
|
return comprehensive_bufferize::bufferize(&funcOp.body(), state);
|
|
}
|
|
|
|
/// Return `true` if the given function argument is writable.
|
|
bool isWritable(Operation *op, Value value, BufferizationState &state) const {
|
|
auto funcOp = cast<FuncOp>(op);
|
|
BlockArgument bbArg = value.dyn_cast<BlockArgument>();
|
|
assert(bbArg && "expected BlockArgument");
|
|
ModuleBufferizationState &moduleState = getModuleBufferizationState(state);
|
|
|
|
// In a first approximation:
|
|
// =========================
|
|
// If the function is called, we can allocate on the caller side which lets
|
|
// us force inplace arguments at function boundaries.
|
|
// TODO: do not rely on this behavior.
|
|
if (moduleState.callerMap.find(funcOp) != moduleState.callerMap.end())
|
|
return true;
|
|
|
|
// Set the function arguments marked with inplaceable to be known as
|
|
// bufferizing to a writeable memory.
|
|
BoolAttr inplaceAttr = funcOp.getArgAttrOfType<BoolAttr>(
|
|
bbArg.getArgNumber(), BufferizableOpInterface::kInplaceableAttrName);
|
|
if (inplaceAttr && inplaceAttr.getValue())
|
|
return true;
|
|
|
|
// All other function arguments are not writable.
|
|
return false;
|
|
}
|
|
|
|
bool isAllocationHoistingBarrier(Operation *op) const { return true; }
|
|
};
|
|
|
|
} // namespace std_ext
|
|
} // namespace comprehensive_bufferize
|
|
} // namespace linalg
|
|
} // namespace mlir
|
|
|
|
void mlir::linalg::comprehensive_bufferize::std_ext::
|
|
registerBufferizableOpInterfaceExternalModels(DialectRegistry ®istry) {
|
|
registry.addOpInterface<CallOp, std_ext::CallOpInterface>();
|
|
registry.addOpInterface<ReturnOp, std_ext::ReturnOpInterface>();
|
|
registry.addOpInterface<FuncOp, std_ext::FuncOpInterface>();
|
|
}
|
|
|
|
/// Set the attribute that triggers inplace bufferization on a FuncOp argument
|
|
/// `bbArg`.
|
|
static void setInPlaceFuncArgument(BlockArgument bbArg, bool inPlace) {
|
|
auto funcOp = cast<FuncOp>(bbArg.getOwner()->getParentOp());
|
|
funcOp.setArgAttr(bbArg.getArgNumber(),
|
|
BufferizableOpInterface::kInplaceableAttrName,
|
|
BoolAttr::get(bbArg.getContext(), inPlace));
|
|
}
|
|
|
|
/// Annotate the IR with the result of the analysis. For testing/debugging only.
|
|
static void annotateOpsWithBufferizationMarkers(FuncOp funcOp,
|
|
BufferizationState &state) {
|
|
auto bufferizableOp = cast<BufferizableOpInterface>(funcOp.getOperation());
|
|
for (BlockArgument bbArg : funcOp.getArguments())
|
|
if (bbArg.getType().isa<TensorType>())
|
|
setInPlaceFuncArgument(bbArg, bufferizableOp.isWritable(bbArg, state));
|
|
}
|
|
|
|
LogicalResult mlir::linalg::comprehensive_bufferize::runComprehensiveBufferize(
|
|
ModuleOp moduleOp, const BufferizationOptions &options) {
|
|
BufferizationState state(moduleOp, options);
|
|
ModuleBufferizationState &moduleState = getModuleBufferizationState(state);
|
|
BufferizationAliasInfo &aliasInfo = state.aliasInfo;
|
|
|
|
if (failed(getFuncOpsOrderedByCalls(moduleOp, moduleState.orderedFuncOps,
|
|
moduleState.callerMap)))
|
|
return failure();
|
|
|
|
// Interestingly, all function args that are not visible outside of a module
|
|
// can be fully bufferized inplace by guaranteeing the CallOp is bufferized
|
|
// inplace. Therefore, we just bufferize funcOp as if none of its results were
|
|
// inplaceable, detect which operands are cloned internally and decide what to
|
|
// do at call sites.
|
|
for (FuncOp funcOp : moduleState.orderedFuncOps) {
|
|
// No body => no analysis.
|
|
if (funcOp.body().empty())
|
|
continue;
|
|
|
|
// Register extra post analysis steps. These cannot be stored in `options`
|
|
// because `options` is immutable.
|
|
PostAnalysisStepList extraSteps;
|
|
extraSteps.emplace_back(std::make_unique<EquivalentFuncOpBBArgsAnalysis>());
|
|
|
|
// Gather equivalence info for CallOps.
|
|
equivalenceAnalysis(funcOp, aliasInfo, moduleState);
|
|
|
|
// Analyze and bufferize funcOp.
|
|
if (failed(runComprehensiveBufferize(funcOp, options, state, extraSteps)))
|
|
return failure();
|
|
|
|
// Add annotations to function arguments.
|
|
if (options.testAnalysisOnly)
|
|
annotateOpsWithBufferizationMarkers(funcOp, state);
|
|
}
|
|
|
|
if (options.testAnalysisOnly)
|
|
return success();
|
|
|
|
for (FuncOp funcOp : moduleState.orderedFuncOps) {
|
|
// Note: It would be good to apply cleanups here but we cannot as aliasInfo
|
|
// would be invalidated.
|
|
if (failed(bufferizeFuncOpBoundary(funcOp, state)))
|
|
return failure();
|
|
|
|
if (!options.allowReturnMemref &&
|
|
llvm::any_of(funcOp.getType().getResults(), [](Type t) {
|
|
return t.isa<MemRefType, UnrankedMemRefType>();
|
|
})) {
|
|
funcOp->emitError("memref return type is unsupported");
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
// Perform a post-processing pass of layout modification at function boundary
|
|
// according to the kBufferLayoutAttrName.
|
|
layoutPostProcessing(moduleOp);
|
|
|
|
// Post-pass cleanup of inplaceable and buffer_layout attributes.
|
|
moduleOp.walk([&](FuncOp op) {
|
|
for (BlockArgument bbArg : op.getArguments())
|
|
removeBufferizationFuncArguments(bbArg);
|
|
});
|
|
|
|
return success();
|
|
}
|