Files
clang-p2996/mlir/lib/Dialect/SparseTensor/Transforms/LoopEmitter.cpp
wren romano 84cd51bb97 [mlir][sparse] Renaming "pointer/index" to "position/coordinate"
The old "pointer/index" names often cause confusion since these names clash with names of unrelated things in MLIR; so this change rectifies this by changing everything to use "position/coordinate" terminology instead.

In addition to the basic terminology, there have also been various conventions for making certain distinctions like: (1) the overall storage for coordinates in the sparse-tensor, vs the particular collection of coordinates of a given element; and (2) particular coordinates given as a `Value` or `TypedValue<MemRefType>`, vs particular coordinates given as `ValueRange` or similar.  I have striven to maintain these distinctions
as follows:

  * "p/c" are used for individual position/coordinate values, when there is no risk of confusion.  (Just like we use "d/l" to abbreviate "dim/lvl".)

  * "pos/crd" are used for individual position/coordinate values, when a longer name is helpful to avoid ambiguity or to form compound names (e.g., "parentPos").  (Just like we use "dim/lvl" when we need a longer form of "d/l".)

    I have also used these forms for a handful of compound names where the old name had been using a three-letter form previously, even though a longer form would be more appropriate.  I've avoided renaming these to use a longer form purely for expediency sake, since changing them would require a cascade of other renamings.  They should be updated to follow the new naming scheme, but that can be done in future patches.

  * "coords" is used for the complete collection of crd values associated with a single element.  In the runtime library this includes both `std::vector` and raw pointer representations.  In the compiler, this is used specifically for buffer variables with C++ type `Value`, `TypedValue<MemRefType>`, etc.

    The bare form "coords" is discouraged, since it fails to make the dim/lvl distinction; so the compound names "dimCoords/lvlCoords" should be used instead.  (Though there may exist a rare few cases where is is appropriate to be intentionally ambiguous about what coordinate-space the coords live in; in which case the bare "coords" is appropriate.)

    There is seldom the need for the pos variant of this notion.  In most circumstances we use the term "cursor", since the same buffer is reused for a 'moving' pos-collection.

  * "dcvs/lcvs" is used in the compiler as the `ValueRange` analogue of "dimCoords/lvlCoords".  (The "vs" stands for "`Value`s".)  I haven't found the need for it, but "pvs" would be the obvious name for a pos-`ValueRange`.

    The old "ind"-vs-"ivs" naming scheme does not seem to have been sustained in more recent code, which instead prefers other mnemonics (e.g., adding "Buf" to the end of the names for `TypeValue<MemRefType>`).  I have cleaned up a lot of these to follow the "coords"-vs-"cvs" naming scheme, though haven't done an exhaustive cleanup.

  * "positions/coordinates" are used for larger collections of pos/crd values; in particular, these are used when referring to the complete sparse-tensor storage components.

    I also prefer to use these unabbreviated names in the documentation, unless there is some specific reason why using the abbreviated forms helps resolve ambiguity.

In addition to making this terminology change, this change also does some cleanup along the way:
  * correcting the dim/lvl terminology in certain places.
  * adding `const` when it requires no other code changes.
  * miscellaneous cleanup that was entailed in order to make the proper distinctions.  Most of these are in CodegenUtils.{h,cpp}

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D144773
2023-03-06 12:23:33 -08:00

896 lines
36 KiB
C++

//===- LoopEmitter.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "LoopEmitter.h"
#include "CodegenUtils.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
//===----------------------------------------------------------------------===//
// File local helper functions.
//===----------------------------------------------------------------------===//
/// Generates a position/coordinate load from the sparse storage scheme.
/// Narrower data types need to be zero extended before casting the
/// value into the `Index` type used for looping and indexing.
static Value genIndexLoad(OpBuilder &builder, Location loc, Value mem,
Value s) {
// For the scalar case, we simply zero extend narrower indices into 64-bit
// values before casting to index without a performance penalty. Here too,
// however, indices that already are 64-bit, in theory, cannot express the
// full range as explained above.
Value load = builder.create<memref::LoadOp>(loc, mem, s);
if (!load.getType().isa<IndexType>()) {
if (load.getType().getIntOrFloatBitWidth() < 64)
load = builder.create<arith::ExtUIOp>(loc, builder.getI64Type(), load);
load =
builder.create<arith::IndexCastOp>(loc, builder.getIndexType(), load);
}
return load;
}
// TODO: Support dynamic sized slice.
static Value getSliceOffset(OpBuilder &builder, Location loc,
SparseTensorEncodingAttr enc, unsigned lvl) {
return constantIndex(builder, loc, *enc.getStaticLvlSliceOffset(lvl));
}
static Value getSliceSize(OpBuilder &builder, Location loc,
SparseTensorEncodingAttr enc, unsigned lvl) {
return constantIndex(builder, loc, *enc.getStaticLvlSliceSize(lvl));
}
static Value getSliceStride(OpBuilder &builder, Location loc,
SparseTensorEncodingAttr enc, unsigned lvl) {
return constantIndex(builder, loc, *enc.getStaticLvlSliceStride(lvl));
}
// Converts a coordinate relative to the slice to the coordinate relative
// to the underlying tensor.
static Value toSliceCoord(OpBuilder &builder, Location loc, Value v,
SparseTensorEncodingAttr enc, unsigned lvl) {
Value stride = getSliceStride(builder, loc, enc, lvl);
Value offset = getSliceOffset(builder, loc, enc, lvl);
// iv = iv * stride + offset
v = builder.create<arith::MulIOp>(loc, v, stride);
v = builder.create<arith::AddIOp>(loc, v, offset);
return v;
}
// Converts a coordinate relative to the underlying tensor to the coordinate
// relative to the slice, returns a extra reminder value
static std::pair<Value, Value> fromSliceCrd(OpBuilder &builder, Location loc,
Value v,
SparseTensorEncodingAttr enc,
unsigned lvl) {
Value stride = getSliceStride(builder, loc, enc, lvl);
Value offset = getSliceOffset(builder, loc, enc, lvl);
// iv = (iv - offset) / stride
v = builder.create<arith::SubIOp>(loc, v, offset);
Value rem = builder.create<arith::RemUIOp>(loc, v, stride);
v = builder.create<arith::DivUIOp>(loc, v, stride);
return std::make_pair(v, rem);
}
static std::pair<Value, Value>
genSliceLegitPredicate(OpBuilder &builder, Location loc, Value crd,
SparseTensorEncodingAttr enc, unsigned lvl) {
std::pair<Value, Value> trans = fromSliceCrd(builder, loc, crd, enc, lvl);
// First, crd >= offset (TODO: seems unsigned >= 0 won't be folded, skip
// the check if the offset is zero).
auto geOffset =
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::uge, crd,
getSliceOffset(builder, loc, enc, lvl));
// Second, coord_in_slice < length
auto ltLength =
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, trans.first,
getSliceSize(builder, loc, enc, lvl));
// Third, rem == 0; confirmed that (a % 1) will be folded to 0
auto fitStride =
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, trans.second,
constantIndex(builder, loc, 0));
auto pred = builder.create<arith::AndIOp>(loc, geOffset, ltLength);
pred = builder.create<arith::AndIOp>(loc, pred, fitStride);
return {trans.first, pred};
}
//===----------------------------------------------------------------------===//
// Sparse tensor loop emitter class implementations
//===----------------------------------------------------------------------===//
Value LoopEmitter::genAddress(OpBuilder &builder, Location loc, size_t tid,
size_t dim, Value iv) {
Value p = dim == 0 ? constantIndex(builder, loc, 0) : pidxs[tid][dim - 1];
Value mul = builder.create<arith::MulIOp>(loc, highs[tid][dim], p);
if (isSparseSlices[tid]) {
auto enc = getSparseTensorEncoding(tensors[tid].getType());
iv = toSliceCoord(builder, loc, iv, enc, dim);
}
Value add = builder.create<arith::AddIOp>(loc, mul, iv);
return add;
}
Value LoopEmitter::genSparseCrd(OpBuilder &builder, Location loc, size_t tid,
size_t dstLvl) {
Value crd = constantIndex(builder, loc, 0);
const auto reassoc = getCollapseReassociation(tid, dstLvl);
for (unsigned i = 0; i < reassoc.size(); i++) {
const auto srcLvl = reassoc[i];
// A load on the coordinates array yields the coordinate.
const Value mem = crdBuffer[tid][srcLvl];
const Value pos = pidxs[tid][dstLvl];
const Value off = genIndexLoad(builder, loc, mem, pos);
// Linearized the coordinates within the same collapse reassociation.
crd = builder.create<arith::AddIOp>(loc, crd, off);
if (i != reassoc.size() - 1) {
crd = builder.create<arith::MulIOp>(loc, crd,
this->lvlSizes[tid][reassoc[i + 1]]);
}
}
return crd;
}
LoopEmitter::LoopEmitter(ValueRange tensors, StringAttr loopTag, bool hasOutput,
bool isSparseOut, ArrayRef<unsigned> topSort) {
initialize(tensors, loopTag, hasOutput, isSparseOut, topSort);
}
void LoopEmitter::initialize(ValueRange ts, StringAttr loopTag, bool hasOutput,
bool isSparseOut, ArrayRef<unsigned> topSort) {
// First initializes fields.
this->loopTag = loopTag;
this->hasOutput = hasOutput;
this->isSparseOut = isSparseOut;
this->tensors.assign(ts.begin(), ts.end());
this->isSparseSlices.assign(tensors.size(), false);
this->dimTypes.assign(tensors.size(), std::vector<DimLevelType>());
this->pidxs.assign(tensors.size(), std::vector<Value>());
this->coord.assign(tensors.size(), std::vector<Value>());
this->highs.assign(tensors.size(), std::vector<Value>());
this->lvlSizes.assign(tensors.size(), std::vector<Value>());
this->posBuffer.assign(tensors.size(), std::vector<Value>());
this->crdBuffer.assign(tensors.size(), std::vector<Value>());
this->valBuffer.assign(tensors.size(), nullptr);
this->loopStack.reserve(topSort.size());
this->sparsiferLoopLvlMap.assign(topSort.size(), 0);
this->collapseReassoc.assign(tensors.size(), nullptr);
for (size_t tid = 0, e = tensors.size(); tid < e; tid++) {
auto t = tensors[tid];
// a scalar or 0-dimension tensors
if (isZeroRankedTensorOrScalar(t.getType()))
continue;
auto rtp = getRankedTensorType(t);
if (auto reshape = t.getDefiningOp<tensor::CollapseShapeOp>();
isUniqueCOOType(rtp) && reshape) {
// TODO: Supports more kinds of sparse tensors.
// FIXME: We should instead lower reshape operations on sparse tensors to
// view change.
collapseReassoc[tid] = reshape.getReassociation();
rtp = reshape.getSrcType();
// Overwrites the tensor to the source tensor of reshape operations.
tensors[tid] = t = reshape.getSrc();
}
auto rank = static_cast<size_t>(rtp.getRank());
auto enc = getSparseTensorEncoding(rtp);
// We always treat sparse output tensor as dense so that we always iterate
// it based on dim size.
if (enc && !(isOutputTensor(tid) && isSparseOut)) {
isSparseSlices[tid] = enc.isSlice();
for (auto dimTp : enc.getDimLevelType())
dimTypes[tid].push_back(dimTp);
} else
dimTypes[tid].assign(rank, DimLevelType::Dense);
// Initialize using empty value.
pidxs[tid].assign(rank, Value());
coord[tid].assign(rank, Value());
highs[tid].assign(rank, Value());
lvlSizes[tid].assign(rank, Value());
posBuffer[tid].assign(rank, Value());
crdBuffer[tid].assign(rank, Value());
}
// FIXME: This map should be maintained outside loop emitter.
for (unsigned i = 0, e = topSort.size(); i < e; i++) {
// This is an inverse map of the topologically sorted loop index from
// sparsifier. This is needed to map the AffineDimExpr back to the loopStack
// index used in loop emitter.
sparsiferLoopLvlMap[topSort[i]] = i;
}
}
void LoopEmitter::initializeLoopEmit(OpBuilder &builder, Location loc,
LoopEmitter::OutputUpdater updater) {
// For every tensor, find lower and upper bound on dimensions, set the
// same bounds on loop indices, and obtain dense or sparse buffer(s).
for (size_t t = 0, e = tensors.size(); t < e; t++) {
const auto tensor = tensors[t];
const auto rtp = tensor.getType().dyn_cast<RankedTensorType>();
if (!rtp)
// Skips only scalar, zero ranked tensor still need to be bufferized and
// (probably) filled with zeros by users.
continue;
// FIXME: the definition of `lvlRank` looks more like a dim-rank;
// but the variable is used as a level everywhere below, which
// suggests there may be some dim/lvl confusion going on here.
const Level lvlRank = rtp.getRank();
const auto shape = rtp.getShape();
const auto enc = getSparseTensorEncoding(rtp);
const Level cooStart = enc ? getCOOStart(enc) : lvlRank;
// Scan all levels of current tensor.
for (Level l = 0; l < lvlRank; l++) {
// This should be called only once at beginning.
assert(!posBuffer[t][l] && !crdBuffer[t][l] && !highs[t][l]);
const auto dlt = dimTypes[t][l];
// Handle sparse storage schemes.
if (isCompressedDLT(dlt)) {
// Generate sparse primitives to obtains positions and coordinates.
posBuffer[t][l] = genToPositions(builder, loc, tensor, l);
crdBuffer[t][l] = genToCoordinates(builder, loc, tensor, l, cooStart);
} else if (isSingletonDLT(dlt)) {
// Singleton level, fetch coordinates.
crdBuffer[t][l] = genToCoordinates(builder, loc, tensor, l, cooStart);
} else {
// Dense level, nothing to fetch.
assert(isDenseDLT(dlt));
}
// Find upper bound in current dimension.
// FIXME: `toOrigDim` is deprecated
const Dimension d = toOrigDim(enc, l);
lvlSizes[t][l] = highs[t][l] =
mlir::linalg::createOrFoldDimOp(builder, loc, tensor, d);
}
// Perform the required bufferization. Dense inputs materialize
// from the input tensors. Sparse inputs use sparse primitives to obtain the
// values.
// Delegates extra output initialization to clients.
bool isOutput = isOutputTensor(t);
Type elementType = rtp.getElementType();
if (!enc) {
// Non-annotated dense tensors.
BaseMemRefType denseTp = MemRefType::get(shape, elementType);
// TODO: if we unconditionally use fully dynamic layout here, it breaks
// some vectorization passes which requires static stride = 1.
// Is it possible to call vectorization pass after bufferization?
if (llvm::isa_and_nonnull<tensor::ExtractSliceOp>(tensor.getDefiningOp()))
denseTp = bufferization::getMemRefTypeWithFullyDynamicLayout(rtp);
Value denseVal =
builder.create<bufferization::ToMemrefOp>(loc, denseTp, tensor);
// Dense outputs need special handling.
if (isOutput && updater)
denseVal = updater(builder, loc, denseVal, tensor);
valBuffer[t] = denseVal;
} else {
// Annotated sparse tensors.
// We also need the value buffer for annotated all dense `sparse` tensor.
valBuffer[t] = genToValues(builder, loc, tensor);
}
// NOTE: we can also prepare for 0 dim here in advance, this will hosit
// some loop preparation from tensor iteration, but will also (undesirably)
// hosit the code ouside if conditions.
}
}
void LoopEmitter::enterNewLoopSeq(OpBuilder &builder, Location loc,
ArrayRef<size_t> tids,
ArrayRef<size_t> dims) {
assert(loopSeqStack.size() == loopStack.size());
// Universal Index starts from 0.
loopSeqStack.emplace_back(constantIndex(builder, loc, 0));
// Prepares for all the tensors used in the current loop sequence.
for (auto [tid, dim] : llvm::zip(tids, dims))
prepareLoopOverTensorAtDim(builder, loc, tid, dim);
}
Value LoopEmitter::genAffine(OpBuilder &builder, AffineExpr a, Location loc) {
switch (a.getKind()) {
case AffineExprKind::DimId: {
unsigned idx = a.cast<AffineDimExpr>().getPosition();
return loopStack[sparsiferLoopLvlMap[idx]].iv;
}
case AffineExprKind::Add: {
auto binOp = a.cast<AffineBinaryOpExpr>();
return builder.create<arith::AddIOp>(
loc, genAffine(builder, binOp.getLHS(), loc),
genAffine(builder, binOp.getRHS(), loc));
}
case AffineExprKind::Mul: {
auto binOp = a.cast<AffineBinaryOpExpr>();
return builder.create<arith::MulIOp>(
loc, genAffine(builder, binOp.getLHS(), loc),
genAffine(builder, binOp.getRHS(), loc));
}
case AffineExprKind::Constant: {
int64_t c = a.cast<AffineConstantExpr>().getValue();
return constantIndex(builder, loc, c);
}
default:
llvm_unreachable("unexpected affine subscript");
}
}
Operation *LoopEmitter::enterLoopOverTensorAtDim(
OpBuilder &builder, Location loc, ArrayRef<size_t> tids,
ArrayRef<size_t> dims, MutableArrayRef<Value> reduc, bool isParallel) {
// TODO: support multiple return on parallel for?
assert(!isParallel || reduc.size() <= 1);
bool isSparseInput = false;
size_t tid = tids.front(), dim = dims.front();
for (auto [t, d] : llvm::zip(tids, dims)) {
assert(dimTypes[t].size() > d); // Must be a valid tid, dim pair
assert(!coord[t][d]); // We cannot re-enter the same level
auto dimType = dimTypes[t][d];
// Must be a recognizable DLT.
assert(isDenseDLT(dimType) || isCompressedDLT(dimType) ||
isSingletonDLT(dimType));
bool isSparse = isCompressedDLT(dimType) || isSingletonDLT(dimType);
// We can at most have one sparse input, otherwise, a while loop is required
// to co-iterate multiple sparse tensors.
assert(!isSparseInput || !isSparse);
if (isSparse) {
tid = t;
dim = d;
}
isSparseInput = isSparseInput || isSparse;
}
auto enc = getSparseTensorEncoding(tensors[tid].getType());
const auto reassoc = getCollapseReassociation(tid, dim);
dim = reassoc.front();
// TODO: support dynamic slices.
Value step = constantIndex(builder, loc, 1);
Value lo = isSparseInput ? pidxs[tid][dim] // current offset
: loopSeqStack.back(); // universal index
Value hi = highs[tid][dim];
Operation *loop = nullptr;
Value iv;
if (isParallel) {
assert(collapseReassoc[tid] == nullptr);
scf::ParallelOp parOp =
builder.create<scf::ParallelOp>(loc, lo, hi, step, reduc);
builder.setInsertionPointToStart(parOp.getBody());
assert(parOp.getNumReductions() == reduc.size());
iv = parOp.getInductionVars()[0];
// In-place update on the reduction variable vector.
// Note that the init vals is not the actual reduction variables but instead
// used as a `special handle` to (temporarily) represent them. The
// expression on init vals will be moved into scf.reduce and replaced with
// the block arguments when exiting the loop (see exitForLoop). This is
// needed as we can not build the actual reduction block and get the actual
// reduction varaible before users fill parallel loop body.
for (int i = 0, e = reduc.size(); i < e; i++)
reduc[i] = parOp.getInitVals()[i];
loop = parOp;
} else {
scf::ForOp forOp = builder.create<scf::ForOp>(loc, lo, hi, step, reduc);
builder.setInsertionPointToStart(forOp.getBody());
iv = forOp.getInductionVar();
// In-place update on the reduction variable vector.
assert(forOp.getNumRegionIterArgs() == reduc.size());
for (int i = 0, e = reduc.size(); i < e; i++)
reduc[i] = forOp.getRegionIterArg(i);
loop = forOp;
}
assert(loop && iv);
Value crd;
if (isSparseInput) {
assert(reassoc.size() == 1 || isUniqueCOOType(tensors[tid].getType()));
// For COO, the position is the same across consecutive levels.
llvm::for_each(reassoc,
[this, tid, iv](Level lvl) { pidxs[tid][lvl] = iv; });
crd = genSparseCrd(builder, loc, tid, dim);
} else {
// Dense tensor, the coordinate is the inducation variable.
crd = iv;
}
if (isSparseSlices[tid] && isSparseInput) {
// For sparse level slices, we need to filter out invalid coordinates that
// are not included in the slice.
SmallVector<Type> types;
for (Value red : reduc)
types.push_back(red.getType());
auto [trans, pred] = genSliceLegitPredicate(builder, loc, crd, enc, dim);
bool hasReduc = !types.empty();
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, types, pred,
/*else*/ hasReduc);
if (hasReduc) {
// scf.for (a) -> v
// %s = scf.if (a) -> v
// user-generated code.
// else
// yield a
// yield %s
builder.create<scf::YieldOp>(loc, ifOp.getResults());
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
// On mismatch.
builder.create<scf::YieldOp>(loc, reduc);
}
// Set the insertion point to matched branch.
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
crd = trans;
}
assert(crd);
coord[tid][dim] = crd;
// NOTE: we can also prepare for next dim here in advance
// Push the loop into stack
loopStack.emplace_back(ArrayRef<size_t>(tid), ArrayRef<size_t>(dim), loop,
builder.getInsertionBlock(), coord[tid][dim], loopTag);
// Emit extra locals.
emitExtraLocalsForTensorsAtDenseDims(builder, loc, tids, dims);
return loop;
}
Operation *LoopEmitter::enterFilterLoopOverTensorAtDim(
OpBuilder &builder, Location loc, size_t tid, size_t dim, AffineExpr affine,
MutableArrayRef<Value> reduc) {
assert(!affine.isa<AffineDimExpr>() && !isDenseDLT(dimTypes[tid][dim]));
assert(dimTypes[tid].size() > dim);
// We can not re-enter the same level.
assert(!coord[tid][dim]);
Value step = constantIndex(builder, loc, 1);
Value lo = pidxs[tid][dim];
Value hi = highs[tid][dim];
// TODO: We should instead use a whileOp for filter loop to allow early
// break when exceeding (for ordered dimensions).
// TODO: There are many other potiential opportunities that we might apply in
// the future. E.g., we could use binary search to located the position index.
scf::ForOp forOp = builder.create<scf::ForOp>(loc, lo, hi, step, reduc);
// In-place update on the reduction variable vector.
assert(forOp.getNumRegionIterArgs() == reduc.size());
for (int i = 0, e = reduc.size(); i < e; i++)
reduc[i] = forOp.getRegionIterArg(i);
builder.setInsertionPointToStart(forOp.getBody());
Value iv = forOp.getInductionVar();
pidxs[tid][dim] = iv;
// Generating a load on the coordinates array yields the coordinate.
Value mem = crdBuffer[tid][dim];
coord[tid][dim] = genIndexLoad(builder, loc, mem, iv);
// Generate an if-condition to filter out coordinates that are not
// equal to the result of the affine expression.
Value expected = genAffine(builder, affine, loc);
auto pred = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
coord[tid][dim], expected);
SmallVector<Type> types;
for (Value red : reduc) {
types.push_back(red.getType());
}
bool hasReduc = !types.empty();
scf::IfOp ifOp =
builder.create<scf::IfOp>(loc, types, pred, /*else*/ hasReduc);
if (hasReduc) {
// scf.for (a) -> v
// %s = scf.if (a) -> v
// user-generated code.
// else
// yield a
// yield %s
builder.create<scf::YieldOp>(loc, ifOp.getResults());
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
// On mismatch.
builder.create<scf::YieldOp>(loc, reduc);
}
// Set the insert point to matched branch.
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
// NOTE: we can also prepare for next dim here in advance
// Push the loop into stack
loopStack.emplace_back(ArrayRef<size_t>(tid), ArrayRef<size_t>(dim), forOp,
builder.getInsertionBlock(), coord[tid][dim], nullptr);
return forOp;
}
void LoopEmitter::genDenseAffineAddressAtCurLevel(OpBuilder &builder,
Location loc, size_t tid,
size_t dim,
AffineExpr affine) {
Value affineV = genAffine(builder, affine, loc);
pidxs[tid][dim] = genAddress(builder, loc, tid, dim, affineV);
}
Operation *LoopEmitter::enterCoIterationOverTensorsAtDims(
OpBuilder &builder, Location loc, ArrayRef<size_t> tids,
ArrayRef<size_t> dims, bool needsUniv, MutableArrayRef<Value> reduc) {
assert(tids.size() == dims.size());
SmallVector<Type> types;
SmallVector<Value> operands;
// Construct the while-loop with a parameter for each coordinate.
Type indexType = builder.getIndexType();
for (auto [tid, dim] : llvm::zip(tids, dims)) {
if (isCompressedDLT(dimTypes[tid][dim]) ||
isSingletonDLT(dimTypes[tid][dim])) {
assert(pidxs[tid][dim]);
types.push_back(indexType);
operands.push_back(pidxs[tid][dim]);
}
}
// The position where user-supplied reduction variable starts.
for (Value rec : reduc) {
types.push_back(rec.getType());
operands.push_back(rec);
}
if (needsUniv) {
types.push_back(indexType);
// Update universal index.
operands.push_back(loopSeqStack.back());
}
assert(types.size() == operands.size());
scf::WhileOp whileOp = builder.create<scf::WhileOp>(loc, types, operands);
SmallVector<Location> locs(types.size(), loc);
Block *before = builder.createBlock(&whileOp.getBefore(), {}, types, locs);
Block *after = builder.createBlock(&whileOp.getAfter(), {}, types, locs);
// Build the "before" region, which effectively consists
// of a conjunction of "i < upper" tests on all induction.
builder.setInsertionPointToStart(&whileOp.getBefore().front());
Value cond;
unsigned o = 0;
for (auto [t, lvl] : llvm::zip(tids, dims)) {
unsigned tid = t; // Why `t` can not be captured by lambda?
if (isCompressedDLT(dimTypes[tid][lvl]) ||
isSingletonDLT(dimTypes[tid][lvl])) {
Value op1 = before->getArgument(o);
Value op2 = highs[tid][lvl];
Value opc = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
op1, op2);
cond = cond ? builder.create<arith::AndIOp>(loc, cond, opc) : opc;
// Update positions
Value pos = after->getArgument(o++);
const auto reassoc = getCollapseReassociation(tid, lvl);
assert(reassoc.size() == 1 || isUniqueCOOType(tensors[tid].getType()));
// For COO, the position is the same across consecutive levels.
llvm::for_each(reassoc,
[this, tid, pos](Level lvl) { pidxs[tid][lvl] = pos; });
}
}
builder.create<scf::ConditionOp>(loc, cond, before->getArguments());
// Generates while body.
builder.setInsertionPointToStart(&whileOp.getAfter().front());
SmallVector<std::pair<Value, unsigned>> slicesPreds;
unsigned i = 0;
for (auto [tid, dim] : llvm::zip(tids, dims)) {
// Prepares for next level.
if (isCompressedDLT(dimTypes[tid][dim]) ||
isSingletonDLT(dimTypes[tid][dim])) {
coord[tid][dim] = genSparseCrd(builder, loc, tid, dim);
if (isSparseSlices[tid]) {
Value load =
genIndexLoad(builder, loc, crdBuffer[tid][dim], pidxs[tid][dim]);
auto enc = getSparseTensorEncoding(tensors[tid].getType());
auto [trans, pred] =
genSliceLegitPredicate(builder, loc, load, enc, dim);
slicesPreds.emplace_back(pred, i);
// Updates to the relative coordinate to the slice.
coord[tid][dim] = trans;
}
i++;
}
}
if (!slicesPreds.empty()) {
// Skips invalid loop iteration when slice coordinate is inapplicable.
SmallVector<Value> yields(after->getArguments());
// Generates a list of if statments
// pidx = in_slice ? pidx : pidx + 1
// TODO: instead of always picking pidx + 1, we should set pidx = high to
// break to loop the coordinates is larger than the slice size.
for (auto [pred, idx] : slicesPreds) {
Value nextPidx = builder.create<arith::AddIOp>(
loc, yields[idx], constantIndex(builder, loc, 1));
yields[idx] =
builder.create<arith::SelectOp>(loc, pred, yields[idx], nextPidx);
}
Value pred = slicesPreds.front().first;
for (int i = 1, e = slicesPreds.size(); i < e; i++) {
pred = builder.create<arith::AndIOp>(loc, pred, slicesPreds[i].first);
}
auto ifOp = builder.create<scf::IfOp>(loc, types, pred, /*else*/ true);
ifOp->setAttr(getLoopEmitterLoopAttrName(),
StringAttr::get(builder.getContext(), "slice"));
builder.create<scf::YieldOp>(loc, ifOp->getResults());
assert(types.size() == yields.size());
// If not all slices are legit
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<scf::YieldOp>(loc, yields);
// If all slices are legit, start the user generated code.
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
}
Value min;
// Finds the minimum coordinate
if (!needsUniv) {
for (auto [tid, dim] : llvm::zip(tids, dims)) {
if (isCompressedDLT(dimTypes[tid][dim]) ||
isSingletonDLT(dimTypes[tid][dim])) {
if (min) {
Value cmp = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::ult, coord[tid][dim], min);
min = builder.create<arith::SelectOp>(loc, cmp, coord[tid][dim], min);
} else {
min = coord[tid][dim];
}
}
}
} else {
assert(!min);
// Otherwise, universal index is the minimal pidx.
min = after->getArguments().back();
}
// Sets up the loop stack.
loopStack.emplace_back(tids, dims, whileOp, builder.getInsertionBlock(), min,
loopTag);
assert(loopStack.size() == loopSeqStack.size());
// Emits extra locals
emitExtraLocalsForTensorsAtDenseDims(builder, loc, tids, dims);
// Updates reduction variables
assert(after->getNumArguments() == o + reduc.size() + (needsUniv ? 1 : 0));
// In-place update on reduction variable.
for (unsigned i = 0, e = reduc.size(); i < e; i++)
reduc[i] = after->getArgument(o + i);
return whileOp;
}
void LoopEmitter::prepareLoopOverTensorAtDim(OpBuilder &builder, Location loc,
size_t tid, size_t dim) {
assert(dimTypes[tid].size() > dim);
auto dimType = dimTypes[tid][dim];
if (isDenseDLT(dimType))
return;
for (auto lvl : getCollapseReassociation(tid, dim)) {
// Either the first level, or the previous level has been set.
assert(lvl == 0 || pidxs[tid][lvl - 1]);
Value c0 = constantIndex(builder, loc, 0);
Value c1 = constantIndex(builder, loc, 1);
if (isCompressedDLT(dimType)) {
Value mem = posBuffer[tid][lvl];
Value pLo = lvl == 0 ? c0 : pidxs[tid][lvl - 1];
pidxs[tid][lvl] = genIndexLoad(builder, loc, mem, pLo);
Value pHi = builder.create<arith::AddIOp>(loc, pLo, c1);
highs[tid][lvl] = genIndexLoad(builder, loc, mem, pHi);
return;
}
if (isSingletonDLT(dimType)) {
Value pLo = lvl == 0 ? c0 : pidxs[tid][lvl - 1];
Value pHi = builder.create<arith::AddIOp>(loc, pLo, c1);
pidxs[tid][lvl] = pLo;
highs[tid][lvl] = pHi;
return;
}
}
llvm_unreachable("Unrecognizable dimesion type!");
}
void LoopEmitter::emitExtraLocalsForTensorsAtDenseDims(OpBuilder &builder,
Location loc,
ArrayRef<size_t> tids,
ArrayRef<size_t> dims) {
// Initialize dense positions. Note that we generate dense coordinates of the
// output tensor unconditionally, since they may not appear in the lattice,
// but may be needed for linearized codegen.
for (auto [tid, dim] : llvm::zip(tids, dims)) {
if (isDenseDLT(dimTypes[tid][dim])) {
auto enc = getSparseTensorEncoding(tensors[tid].getType());
if (enc && !isSparseOutput(tid)) {
bool validPidx = dim == 0 || pidxs[tid][dim - 1];
if (!validPidx) {
// We might not find the pidx for the sparse output tensor as it is
// unconditionally required by the sparsification.
assert(isOutputTensor(tid));
continue;
}
pidxs[tid][dim] =
genAddress(builder, loc, tid, dim, loopStack.back().iv);
// NOTE: we can also prepare for next dim here in advance
}
}
}
}
void LoopEmitter::exitForLoop(RewriterBase &rewriter, Location loc,
MutableArrayRef<Value> reduc) {
LoopLevelInfo &loopInfo = loopStack.back();
rewriter.setInsertionPointToEnd(loopInfo.userCodeBlock);
auto &dims = loopStack.back().dims;
auto &tids = loopStack.back().tids;
auto forOp = llvm::dyn_cast<scf::ForOp>(loopInfo.loop);
if (forOp) {
if (!reduc.empty()) {
assert(reduc.size() == forOp.getNumResults());
rewriter.create<scf::YieldOp>(loc, reduc);
}
// Exit the loop.
rewriter.setInsertionPointAfter(forOp);
// In-place update reduction variables.
for (unsigned i = 0, e = forOp.getResults().size(); i < e; i++)
reduc[i] = forOp.getResult(i);
} else {
auto parOp = llvm::cast<scf::ParallelOp>(loopInfo.loop);
if (!reduc.empty()) {
assert(reduc.size() == parOp.getInitVals().size() && reduc.size() == 1);
Operation *redExp = reduc.front().getDefiningOp();
// Reduction expression should have no use.
assert(redExp->getUses().empty());
// This must be a binary operation.
// NOTE: This is users' responsibilty to ensure the operation are
// commutative.
assert(redExp->getNumOperands() == 2 && redExp->getNumResults() == 1);
Value redVal = parOp.getInitVals().front();
Value curVal;
if (redExp->getOperand(0) == redVal)
curVal = redExp->getOperand(1);
else if (redExp->getOperand(1) == redVal)
curVal = redExp->getOperand(0);
// One of the operands must be the init value (which is also the
// previous reduction value).
assert(curVal);
// The reduction expression should be the only user of the reduction val
// inside the parallel for.
unsigned numUsers = 0;
for (Operation *op : redVal.getUsers()) {
if (op->getParentOp() == parOp)
numUsers++;
}
assert(numUsers == 1);
(void)numUsers; // to silence unused variable warning in release build
rewriter.setInsertionPointAfter(redExp);
auto redOp = rewriter.create<scf::ReduceOp>(loc, curVal);
// Attach to the reduction op.
Block *redBlock = &redOp.getRegion().getBlocks().front();
rewriter.setInsertionPointToEnd(redBlock);
Operation *newRed = rewriter.clone(*redExp);
// Replaces arguments of the reduction expression by using the block
// arguments from scf.reduce.
rewriter.updateRootInPlace(
newRed, [&]() { newRed->setOperands(redBlock->getArguments()); });
// Erases the out-dated reduction expression.
rewriter.eraseOp(redExp);
rewriter.setInsertionPointToEnd(redBlock);
rewriter.create<scf::ReduceReturnOp>(loc, newRed->getResult(0));
}
rewriter.setInsertionPointAfter(parOp);
// In-place update reduction variables.
for (unsigned i = 0, e = parOp.getResults().size(); i < e; i++)
reduc[i] = parOp.getResult(i);
}
// Finished iterating a tensor, clean up
// We only do the clean up on for loop as while loops do not necessarily
// finish the iteration on a sparse tensor
for (auto [tid, dim] : llvm::zip(tids, dims)) {
// Reset to null.
coord[tid][dim] = Value();
pidxs[tid][dim] = Value();
// Dense dimension, high is fixed.
if (!isDenseDLT(dimTypes[tid][dim]))
highs[tid][dim] = Value();
}
}
void LoopEmitter::exitCoIterationLoop(OpBuilder &builder, Location loc,
MutableArrayRef<Value> reduc) {
const LoopLevelInfo &loopInfo = loopStack.back();
auto whileOp = llvm::cast<scf::WhileOp>(loopInfo.loop);
builder.setInsertionPointToEnd(loopInfo.userCodeBlock);
auto &dims = loopInfo.dims;
auto &tids = loopInfo.tids;
Value iv = loopInfo.iv;
// Finalize the induction. Note that the induction could be performed
// in the individual if-branches to avoid re-evaluating the conditions.
// However, that would result in a rather elaborate forest of yield
// instructions during code generation. Moreover, performing the induction
// after the if-statements more closely resembles code generated by TACO.
unsigned o = 0;
SmallVector<Value> operands;
Value one = constantIndex(builder, loc, 1);
for (auto [tid, dim] : llvm::zip(tids, dims)) {
if (isCompressedDLT(dimTypes[tid][dim]) ||
isSingletonDLT(dimTypes[tid][dim])) {
Value op1 = coord[tid][dim];
Value op3 = pidxs[tid][dim];
Value cmp =
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, op1, iv);
Value add = builder.create<arith::AddIOp>(loc, op3, one);
operands.push_back(builder.create<arith::SelectOp>(loc, cmp, add, op3));
// Following loops continue iteration from the break point of the
// current while loop.
pidxs[tid][dim] = whileOp->getResult(o++);
// The coordinates are invalid now.
coord[tid][dim] = nullptr;
// highs remains unchanged.
}
}
// Reduction value from users.
for (auto &i : reduc) {
operands.push_back(i);
// In place update reduction variable.
i = whileOp->getResult(o++);
}
// An (optional) universal index.
if (operands.size() < whileOp.getNumResults()) {
assert(operands.size() + 1 == whileOp.getNumResults());
// The last one is the universial index.
operands.push_back(builder.create<arith::AddIOp>(loc, iv, one));
// update the loop starting point of current loop sequence
loopSeqStack.back() = whileOp->getResult(o++);
}
assert(o == operands.size());
builder.create<scf::YieldOp>(loc, operands);
builder.setInsertionPointAfter(whileOp);
}
void LoopEmitter::exitCurrentLoop(RewriterBase &rewriter, Location loc,
MutableArrayRef<Value> reduc) {
// Clean up the values, it would help use to discover potential bug at a
// earlier stage (instead of silently using a wrong value).
LoopLevelInfo &loopInfo = loopStack.back();
assert(loopInfo.tids.size() == loopInfo.dims.size());
SmallVector<Value> red;
if (llvm::isa<scf::WhileOp>(loopInfo.loop)) {
exitCoIterationLoop(rewriter, loc, reduc);
} else {
exitForLoop(rewriter, loc, reduc);
}
assert(loopStack.size() == loopSeqStack.size());
loopStack.pop_back();
}