Files
clang-p2996/llvm/lib/Target/SPIRV/SPIRVCallLowering.cpp
Ilia Diachkov b25b507c77 [SPIRV] use tablegen to create SPIRVBaseInfo*
The patch replaces SPIRVBaseInfo.* previously created using macros by
the tablegen approach. There are many small changes in other files due to
differences in namespaces. Also, functions in SPIRVUtils are moved to
the llvm namespace.

Differential Revision: https://reviews.llvm.org/D130518

Co-authored-by: Aleksandr Bezzubikov <zuban32s@gmail.com>
Co-authored-by: Michal Paszkowski <michal.paszkowski@outlook.com>
Co-authored-by: Andrey Tretyakov <andrey1.tretyakov@intel.com>
Co-authored-by: Konrad Trifunovic <konrad.trifunovic@intel.com>
2022-08-02 01:57:23 +03:00

331 lines
13 KiB
C++

//===--- SPIRVCallLowering.cpp - Call lowering ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the lowering of LLVM calls to machine code calls for
// GlobalISel.
//
//===----------------------------------------------------------------------===//
#include "SPIRVCallLowering.h"
#include "MCTargetDesc/SPIRVBaseInfo.h"
#include "SPIRV.h"
#include "SPIRVGlobalRegistry.h"
#include "SPIRVISelLowering.h"
#include "SPIRVRegisterInfo.h"
#include "SPIRVSubtarget.h"
#include "SPIRVUtils.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
using namespace llvm;
SPIRVCallLowering::SPIRVCallLowering(const SPIRVTargetLowering &TLI,
SPIRVGlobalRegistry *GR)
: CallLowering(&TLI), GR(GR) {}
bool SPIRVCallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
const Value *Val, ArrayRef<Register> VRegs,
FunctionLoweringInfo &FLI,
Register SwiftErrorVReg) const {
// Currently all return types should use a single register.
// TODO: handle the case of multiple registers.
if (VRegs.size() > 1)
return false;
if (Val) {
const auto &STI = MIRBuilder.getMF().getSubtarget();
return MIRBuilder.buildInstr(SPIRV::OpReturnValue)
.addUse(VRegs[0])
.constrainAllUses(MIRBuilder.getTII(), *STI.getRegisterInfo(),
*STI.getRegBankInfo());
}
MIRBuilder.buildInstr(SPIRV::OpReturn);
return true;
}
// Based on the LLVM function attributes, get a SPIR-V FunctionControl.
static uint32_t getFunctionControl(const Function &F) {
uint32_t FuncControl = static_cast<uint32_t>(SPIRV::FunctionControl::None);
if (F.hasFnAttribute(Attribute::AttrKind::AlwaysInline)) {
FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::Inline);
}
if (F.hasFnAttribute(Attribute::AttrKind::ReadNone)) {
FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::Pure);
}
if (F.hasFnAttribute(Attribute::AttrKind::ReadOnly)) {
FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::Const);
}
if (F.hasFnAttribute(Attribute::AttrKind::NoInline)) {
FuncControl |= static_cast<uint32_t>(SPIRV::FunctionControl::DontInline);
}
return FuncControl;
}
static ConstantInt *getConstInt(MDNode *MD, unsigned NumOp) {
if (MD->getNumOperands() > NumOp) {
auto *CMeta = dyn_cast<ConstantAsMetadata>(MD->getOperand(NumOp));
if (CMeta)
return dyn_cast<ConstantInt>(CMeta->getValue());
}
return nullptr;
}
// This code restores function args/retvalue types for composite cases
// because the final types should still be aggregate whereas they're i32
// during the translation to cope with aggregate flattening etc.
static FunctionType *getOriginalFunctionType(const Function &F) {
auto *NamedMD = F.getParent()->getNamedMetadata("spv.cloned_funcs");
if (NamedMD == nullptr)
return F.getFunctionType();
Type *RetTy = F.getFunctionType()->getReturnType();
SmallVector<Type *, 4> ArgTypes;
for (auto &Arg : F.args())
ArgTypes.push_back(Arg.getType());
auto ThisFuncMDIt =
std::find_if(NamedMD->op_begin(), NamedMD->op_end(), [&F](MDNode *N) {
return isa<MDString>(N->getOperand(0)) &&
cast<MDString>(N->getOperand(0))->getString() == F.getName();
});
// TODO: probably one function can have numerous type mutations,
// so we should support this.
if (ThisFuncMDIt != NamedMD->op_end()) {
auto *ThisFuncMD = *ThisFuncMDIt;
MDNode *MD = dyn_cast<MDNode>(ThisFuncMD->getOperand(1));
assert(MD && "MDNode operand is expected");
ConstantInt *Const = getConstInt(MD, 0);
if (Const) {
auto *CMeta = dyn_cast<ConstantAsMetadata>(MD->getOperand(1));
assert(CMeta && "ConstantAsMetadata operand is expected");
assert(Const->getSExtValue() >= -1);
// Currently -1 indicates return value, greater values mean
// argument numbers.
if (Const->getSExtValue() == -1)
RetTy = CMeta->getType();
else
ArgTypes[Const->getSExtValue()] = CMeta->getType();
}
}
return FunctionType::get(RetTy, ArgTypes, F.isVarArg());
}
bool SPIRVCallLowering::lowerFormalArguments(MachineIRBuilder &MIRBuilder,
const Function &F,
ArrayRef<ArrayRef<Register>> VRegs,
FunctionLoweringInfo &FLI) const {
assert(GR && "Must initialize the SPIRV type registry before lowering args.");
GR->setCurrentFunc(MIRBuilder.getMF());
// Assign types and names to all args, and store their types for later.
FunctionType *FTy = getOriginalFunctionType(F);
SmallVector<SPIRVType *, 4> ArgTypeVRegs;
if (VRegs.size() > 0) {
unsigned i = 0;
for (const auto &Arg : F.args()) {
// Currently formal args should use single registers.
// TODO: handle the case of multiple registers.
if (VRegs[i].size() > 1)
return false;
Type *ArgTy = FTy->getParamType(i);
SPIRV::AccessQualifier::AccessQualifier AQ =
SPIRV::AccessQualifier::ReadWrite;
MDNode *Node = F.getMetadata("kernel_arg_access_qual");
if (Node && i < Node->getNumOperands()) {
StringRef AQString = cast<MDString>(Node->getOperand(i))->getString();
if (AQString.compare("read_only") == 0)
AQ = SPIRV::AccessQualifier::ReadOnly;
else if (AQString.compare("write_only") == 0)
AQ = SPIRV::AccessQualifier::WriteOnly;
}
auto *SpirvTy = GR->assignTypeToVReg(ArgTy, VRegs[i][0], MIRBuilder, AQ);
ArgTypeVRegs.push_back(SpirvTy);
if (Arg.hasName())
buildOpName(VRegs[i][0], Arg.getName(), MIRBuilder);
if (Arg.getType()->isPointerTy()) {
auto DerefBytes = static_cast<unsigned>(Arg.getDereferenceableBytes());
if (DerefBytes != 0)
buildOpDecorate(VRegs[i][0], MIRBuilder,
SPIRV::Decoration::MaxByteOffset, {DerefBytes});
}
if (Arg.hasAttribute(Attribute::Alignment)) {
auto Alignment = static_cast<unsigned>(
Arg.getAttribute(Attribute::Alignment).getValueAsInt());
buildOpDecorate(VRegs[i][0], MIRBuilder, SPIRV::Decoration::Alignment,
{Alignment});
}
if (Arg.hasAttribute(Attribute::ReadOnly)) {
auto Attr =
static_cast<unsigned>(SPIRV::FunctionParameterAttribute::NoWrite);
buildOpDecorate(VRegs[i][0], MIRBuilder,
SPIRV::Decoration::FuncParamAttr, {Attr});
}
if (Arg.hasAttribute(Attribute::ZExt)) {
auto Attr =
static_cast<unsigned>(SPIRV::FunctionParameterAttribute::Zext);
buildOpDecorate(VRegs[i][0], MIRBuilder,
SPIRV::Decoration::FuncParamAttr, {Attr});
}
if (Arg.hasAttribute(Attribute::NoAlias)) {
auto Attr =
static_cast<unsigned>(SPIRV::FunctionParameterAttribute::NoAlias);
buildOpDecorate(VRegs[i][0], MIRBuilder,
SPIRV::Decoration::FuncParamAttr, {Attr});
}
Node = F.getMetadata("kernel_arg_type_qual");
if (Node && i < Node->getNumOperands()) {
StringRef TypeQual = cast<MDString>(Node->getOperand(i))->getString();
if (TypeQual.compare("volatile") == 0)
buildOpDecorate(VRegs[i][0], MIRBuilder, SPIRV::Decoration::Volatile,
{});
}
Node = F.getMetadata("spirv.ParameterDecorations");
if (Node && i < Node->getNumOperands() &&
isa<MDNode>(Node->getOperand(i))) {
MDNode *MD = cast<MDNode>(Node->getOperand(i));
for (const MDOperand &MDOp : MD->operands()) {
MDNode *MD2 = dyn_cast<MDNode>(MDOp);
assert(MD2 && "Metadata operand is expected");
ConstantInt *Const = getConstInt(MD2, 0);
assert(Const && "MDOperand should be ConstantInt");
auto Dec =
static_cast<SPIRV::Decoration::Decoration>(Const->getZExtValue());
std::vector<uint32_t> DecVec;
for (unsigned j = 1; j < MD2->getNumOperands(); j++) {
ConstantInt *Const = getConstInt(MD2, j);
assert(Const && "MDOperand should be ConstantInt");
DecVec.push_back(static_cast<uint32_t>(Const->getZExtValue()));
}
buildOpDecorate(VRegs[i][0], MIRBuilder, Dec, DecVec);
}
}
++i;
}
}
// Generate a SPIR-V type for the function.
auto MRI = MIRBuilder.getMRI();
Register FuncVReg = MRI->createGenericVirtualRegister(LLT::scalar(32));
MRI->setRegClass(FuncVReg, &SPIRV::IDRegClass);
if (F.isDeclaration())
GR->add(&F, &MIRBuilder.getMF(), FuncVReg);
SPIRVType *RetTy = GR->getOrCreateSPIRVType(FTy->getReturnType(), MIRBuilder);
SPIRVType *FuncTy = GR->getOrCreateOpTypeFunctionWithArgs(
FTy, RetTy, ArgTypeVRegs, MIRBuilder);
// Build the OpTypeFunction declaring it.
uint32_t FuncControl = getFunctionControl(F);
MIRBuilder.buildInstr(SPIRV::OpFunction)
.addDef(FuncVReg)
.addUse(GR->getSPIRVTypeID(RetTy))
.addImm(FuncControl)
.addUse(GR->getSPIRVTypeID(FuncTy));
// Add OpFunctionParameters.
int i = 0;
for (const auto &Arg : F.args()) {
assert(VRegs[i].size() == 1 && "Formal arg has multiple vregs");
MRI->setRegClass(VRegs[i][0], &SPIRV::IDRegClass);
MIRBuilder.buildInstr(SPIRV::OpFunctionParameter)
.addDef(VRegs[i][0])
.addUse(GR->getSPIRVTypeID(ArgTypeVRegs[i]));
if (F.isDeclaration())
GR->add(&Arg, &MIRBuilder.getMF(), VRegs[i][0]);
i++;
}
// Name the function.
if (F.hasName())
buildOpName(FuncVReg, F.getName(), MIRBuilder);
// Handle entry points and function linkage.
if (F.getCallingConv() == CallingConv::SPIR_KERNEL) {
auto MIB = MIRBuilder.buildInstr(SPIRV::OpEntryPoint)
.addImm(static_cast<uint32_t>(SPIRV::ExecutionModel::Kernel))
.addUse(FuncVReg);
addStringImm(F.getName(), MIB);
} else if (F.getLinkage() == GlobalValue::LinkageTypes::ExternalLinkage ||
F.getLinkage() == GlobalValue::LinkOnceODRLinkage) {
auto LnkTy = F.isDeclaration() ? SPIRV::LinkageType::Import
: SPIRV::LinkageType::Export;
buildOpDecorate(FuncVReg, MIRBuilder, SPIRV::Decoration::LinkageAttributes,
{static_cast<uint32_t>(LnkTy)}, F.getGlobalIdentifier());
}
return true;
}
bool SPIRVCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
CallLoweringInfo &Info) const {
// Currently call returns should have single vregs.
// TODO: handle the case of multiple registers.
if (Info.OrigRet.Regs.size() > 1)
return false;
MachineFunction &MF = MIRBuilder.getMF();
GR->setCurrentFunc(MF);
FunctionType *FTy = nullptr;
const Function *CF = nullptr;
// Emit a regular OpFunctionCall. If it's an externally declared function,
// be sure to emit its type and function declaration here. It will be hoisted
// globally later.
if (Info.Callee.isGlobal()) {
CF = dyn_cast_or_null<const Function>(Info.Callee.getGlobal());
// TODO: support constexpr casts and indirect calls.
if (CF == nullptr)
return false;
FTy = getOriginalFunctionType(*CF);
}
Register ResVReg =
Info.OrigRet.Regs.empty() ? Register(0) : Info.OrigRet.Regs[0];
if (CF && CF->isDeclaration() &&
!GR->find(CF, &MIRBuilder.getMF()).isValid()) {
// Emit the type info and forward function declaration to the first MBB
// to ensure VReg definition dependencies are valid across all MBBs.
MachineIRBuilder FirstBlockBuilder;
FirstBlockBuilder.setMF(MF);
FirstBlockBuilder.setMBB(*MF.getBlockNumbered(0));
SmallVector<ArrayRef<Register>, 8> VRegArgs;
SmallVector<SmallVector<Register, 1>, 8> ToInsert;
for (const Argument &Arg : CF->args()) {
if (MIRBuilder.getDataLayout().getTypeStoreSize(Arg.getType()).isZero())
continue; // Don't handle zero sized types.
ToInsert.push_back(
{MIRBuilder.getMRI()->createGenericVirtualRegister(LLT::scalar(32))});
VRegArgs.push_back(ToInsert.back());
}
// TODO: Reuse FunctionLoweringInfo
FunctionLoweringInfo FuncInfo;
lowerFormalArguments(FirstBlockBuilder, *CF, VRegArgs, FuncInfo);
}
// Make sure there's a valid return reg, even for functions returning void.
if (!ResVReg.isValid())
ResVReg = MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::IDRegClass);
SPIRVType *RetType =
GR->assignTypeToVReg(FTy->getReturnType(), ResVReg, MIRBuilder);
// Emit the OpFunctionCall and its args.
auto MIB = MIRBuilder.buildInstr(SPIRV::OpFunctionCall)
.addDef(ResVReg)
.addUse(GR->getSPIRVTypeID(RetType))
.add(Info.Callee);
for (const auto &Arg : Info.OrigArgs) {
// Currently call args should have single vregs.
if (Arg.Regs.size() > 1)
return false;
MIB.addUse(Arg.Regs[0]);
}
const auto &STI = MF.getSubtarget();
return MIB.constrainAllUses(MIRBuilder.getTII(), *STI.getRegisterInfo(),
*STI.getRegBankInfo());
}