The declarative conversion patterns caused crashes in the asan configuration. The non-declarative implementation circumvents this. Differential Revision: https://reviews.llvm.org/D82797
197 lines
6.5 KiB
C++
197 lines
6.5 KiB
C++
//===- ShapeToStandard.cpp - conversion from Shape to Standard dialect ----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Conversion/ShapeToStandard/ShapeToStandard.h"
|
|
|
|
#include "../PassDetail.h"
|
|
#include "mlir/Dialect/SCF/SCF.h"
|
|
#include "mlir/Dialect/Shape/IR/Shape.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::shape;
|
|
|
|
namespace {
|
|
|
|
/// Generated conversion patterns.
|
|
#include "ShapeToStandardPatterns.inc"
|
|
|
|
/// Conversion patterns.
|
|
template <typename SrcOpTy, typename DstOpTy>
|
|
class BinaryOpConversion : public OpConversionPattern<SrcOpTy> {
|
|
public:
|
|
using OpConversionPattern<SrcOpTy>::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(SrcOpTy op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
typename SrcOpTy::Adaptor adaptor(operands);
|
|
rewriter.replaceOpWithNewOp<DstOpTy>(op.getOperation(), adaptor.lhs(),
|
|
adaptor.rhs());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
class ShapeOfOpConversion : public OpConversionPattern<ShapeOfOp> {
|
|
public:
|
|
using OpConversionPattern<ShapeOfOp>::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(ShapeOfOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
ShapeOfOp::Adaptor transformed(operands);
|
|
auto loc = op.getLoc();
|
|
auto tensorVal = transformed.arg();
|
|
auto tensorTy = tensorVal.getType();
|
|
|
|
// For unranked tensors `shape_of` lowers to `scf` and the pattern can be
|
|
// found in the corresponding pass.
|
|
if (tensorTy.isa<UnrankedTensorType>())
|
|
return failure();
|
|
|
|
// Build values for individual dimensions.
|
|
SmallVector<Value, 8> dimValues;
|
|
auto rankedTensorTy = tensorTy.cast<RankedTensorType>();
|
|
int64_t rank = rankedTensorTy.getRank();
|
|
for (int64_t i = 0; i < rank; i++) {
|
|
if (rankedTensorTy.isDynamicDim(i)) {
|
|
auto dimVal = rewriter.create<DimOp>(loc, tensorVal, i);
|
|
dimValues.push_back(dimVal);
|
|
} else {
|
|
int64_t dim = rankedTensorTy.getDimSize(i);
|
|
auto dimVal = rewriter.create<ConstantIndexOp>(loc, dim);
|
|
dimValues.push_back(dimVal);
|
|
}
|
|
}
|
|
|
|
// Materialize shape as ranked tensor.
|
|
rewriter.replaceOpWithNewOp<TensorFromElementsOp>(op.getOperation(),
|
|
dimValues);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
class ConstSizeOpConverter : public OpConversionPattern<ConstSizeOp> {
|
|
public:
|
|
using OpConversionPattern<ConstSizeOp>::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(ConstSizeOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
rewriter.replaceOpWithNewOp<ConstantIndexOp>(op.getOperation(),
|
|
op.value().getSExtValue());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
class GetExtentOpConverter : public OpConversionPattern<GetExtentOp> {
|
|
using OpConversionPattern<GetExtentOp>::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(GetExtentOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
GetExtentOp::Adaptor transformed(operands);
|
|
|
|
// Derive shape extent directly from shape origin if possible.
|
|
// This circumvents the necessity to materialize the shape in memory.
|
|
if (auto shapeOfOp = op.shape().getDefiningOp<ShapeOfOp>()) {
|
|
rewriter.replaceOpWithNewOp<DimOp>(op, shapeOfOp.arg(),
|
|
transformed.dim());
|
|
return success();
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<ExtractElementOp>(
|
|
op, rewriter.getIndexType(), transformed.shape(),
|
|
ValueRange{transformed.dim()});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
class RankOpConverter : public OpConversionPattern<shape::RankOp> {
|
|
public:
|
|
using OpConversionPattern<shape::RankOp>::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(shape::RankOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
shape::RankOp::Adaptor transformed(operands);
|
|
rewriter.replaceOpWithNewOp<DimOp>(op.getOperation(), transformed.shape(),
|
|
0);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Type conversions.
|
|
class ShapeTypeConverter : public TypeConverter {
|
|
public:
|
|
using TypeConverter::convertType;
|
|
|
|
ShapeTypeConverter(MLIRContext *ctx) {
|
|
// Add default pass-through conversion.
|
|
addConversion([&](Type type) { return type; });
|
|
|
|
addConversion([ctx](SizeType type) { return IndexType::get(ctx); });
|
|
addConversion([ctx](ShapeType type) {
|
|
return RankedTensorType::get({ShapedType::kDynamicSize},
|
|
IndexType::get(ctx));
|
|
});
|
|
}
|
|
};
|
|
|
|
/// Conversion pass.
|
|
class ConvertShapeToStandardPass
|
|
: public ConvertShapeToStandardBase<ConvertShapeToStandardPass> {
|
|
|
|
void runOnOperation() override {
|
|
// Setup type conversion.
|
|
MLIRContext &ctx = getContext();
|
|
ShapeTypeConverter typeConverter(&ctx);
|
|
|
|
// Setup target legality.
|
|
ConversionTarget target(ctx);
|
|
target.addLegalDialect<scf::SCFDialect, StandardOpsDialect>();
|
|
target.addLegalOp<ModuleOp, ModuleTerminatorOp, ReturnOp>();
|
|
target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) {
|
|
return typeConverter.isSignatureLegal(op.getType()) &&
|
|
typeConverter.isLegal(&op.getBody());
|
|
});
|
|
|
|
// Setup conversion patterns.
|
|
OwningRewritePatternList patterns;
|
|
populateShapeToStandardConversionPatterns(patterns, &ctx);
|
|
populateFuncOpTypeConversionPattern(patterns, &ctx, typeConverter);
|
|
|
|
// Apply conversion.
|
|
auto module = getOperation();
|
|
if (failed(applyFullConversion(module, target, patterns)))
|
|
signalPassFailure();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void mlir::populateShapeToStandardConversionPatterns(
|
|
OwningRewritePatternList &patterns, MLIRContext *ctx) {
|
|
populateWithGenerated(ctx, &patterns);
|
|
// clang-format off
|
|
patterns.insert<
|
|
BinaryOpConversion<AddOp, AddIOp>,
|
|
BinaryOpConversion<MulOp, MulIOp>,
|
|
ConstSizeOpConverter,
|
|
GetExtentOpConverter,
|
|
RankOpConverter,
|
|
ShapeOfOpConversion>(ctx);
|
|
// clang-format on
|
|
}
|
|
|
|
std::unique_ptr<OperationPass<ModuleOp>>
|
|
mlir::createConvertShapeToStandardPass() {
|
|
return std::make_unique<ConvertShapeToStandardPass>();
|
|
}
|