Files
clang-p2996/llvm/utils/TableGen/Basic/DirectiveEmitter.cpp
Erich Keane d1cce66469 [OpenACC] Switch Clang to use the Flang 'appertainment' rules for cla… (#135372)
…uses

The Flang implemenation of OpenACC uses a .td file in the llvm/Frontend
directory to determine appertainment in 4 categories:

-Required: If this list has items in it, the directive requires at least
1 of these be present.

-AllowedExclusive: Items on this list are all allowed, but only 1 from
the list may be here (That is, they are exclusive of eachother).

-AllowedOnce: Items on this list are all allowed, but may not be
duplicated.

Allowed: Items on this list are allowed. Note th at the actual list of
'allowed' is all 4 of these lists together.

This is a draft patch to swtich Clang over to use those tables. Surgery
to get this to happen in Clang Sema was somewhat reasonable. However,
some gaps in the implementations are obvious, the existing clang
implementation disagrees with the Flang interpretation of it. SO, we're
keeping a task list here based on what gets discovered.

Changes to Clang:
- [x] Switch 'directive-kind' enum conversions to use tablegen See
ff1a7bddd9435b6ae2890c07eae60bb07898bbf5
- [x] Switch 'clause-kind' enum conversions to use tablegen See
ff1a7bddd9435b6ae2890c07eae60bb07898bbf5
- [x] Investigate 'parse' test differences to see if any new
disagreements arise.
- [x] Clang/Flang disagree as to whether 'collapse' can be multiple
times on a loop. Further research showed no prose to limit this, and the
comment on the clang implementation said "no good reason to allow", so
no standards justification.
- [x] Clang/Flang disagree whether 'num_gangs' can appear >1 on a
compute/combined construct. This ended up being an unjustified
restriction.
- [x] Clang/Flang disagree as to the list of required clauses on a 'set'
construct. My research shows that Clang mistakenly included 'if' in the
list, and that it should be just 'default_async', 'device_num', and
'device_type'.
- [x] Order of 'at least one of' diagnostic has changed. Tests were
updated.
- [x] Ensure we are properly 'de-aliasing' clause names in appertainment
checks?
- [x] What is 'shortloop'? 'shortloop' seems to be an old non-standard
extension that isn't supported by flang, but is parsed for backward
compat reasons. Clang won't parse, but we at least have a spot for it in
the clause list.
- [x] Implemented proposed change for 'routine' gang/worker/vector/seq.
(see issue 539)
- [x] Implement init/shutdown can only have 1 'if' (see issue 540)
- [x] Clang/Flang disagree as to whether 'tile' is permitted more than
once on a 'loop' or combined constructs (Flang prohibits >1). I see no
justification for this in the standard. EDIT: I found a comment in clang
that I did this to make SOMETHING around duplicate checks easier.
Discussion showed we should actually have a better behavior around
'device_type' and duplicates, so I've since implemented that.
- [x] Clang/Flang disagree whether 'gang', 'worker', or 'vector' may
appear on the same construct as a 'seq' on a 'loop' or 'combined'. There
is prose for this in 2022: (a gang, worker, or vector clause may not
appear if a 'seq' clause appears). EDIT: These don't actually disagree,
but aren't in the .td file, so I restored the existing code to do this.
- [x] Clang/Flang disagree on whether 'bind' can appear >1 on a
'routine'. I believe line 3096 (A bind clause may not bind to a routine
name that has a visible bind clause) makes this limitation (Flang
permits >1 bind). we discussed and decided this should have the same
rules as worker/vector/etc, except without the 'exactly 1 of' rule (so
no dupes in individual sections).
- [x] Clang/Flang disagree on whether 'init'/'shutdown' can have
multiple 'device_num' clauses. I believe there is no supporting prose
for this limitation., We decided that `device_num` should only happen
1x.
- [x] Clang/Flang disagree whether 'num_gangs' can appear >1 on a
'kernels' construct. Line 1173 (On a kernels construct, the num_gangs
clause must have a single argument) justifies limiting on a
per-arguement basis, but doesn't do so for multiple num_gangs clauses.
WE decided to do this with the '1-per-device-type' region for num_gangs,
num_workers, and vector_length, see openacc bug here:
https://github.com/OpenACC/openacc-spec/issues/541

Changes to Flang:
- [x] Clang/Flang disgree on whether 'atomic' can take an 'if' clause.
This was added in OpenACC3.3_Next See #135451
- [x] Clang/Flang disagree on whether 'finalize' can be allowed >1 times
on a 'exit_data' construct. see #135415.
- [x] Clang/Flang disagree whether 'if_present' should be allowed >1
times on a 'host_data'/'update' construct. see #135422
- [x] Clang/Flang disagree on whether 'init'/'shutdown' can have
multiple 'device_type' clauses. I believe there is no supporting prose
for this limitation.
- [ ] SEE change for num_gangs/etc above.


Changes that need discussion/research:
2025-04-18 14:54:21 -07:00

1287 lines
47 KiB
C++

//===- DirectiveEmitter.cpp - Directive Language Emitter ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// DirectiveEmitter uses the descriptions of directives and clauses to construct
// common code declarations to be used in Frontends.
//
//===----------------------------------------------------------------------===//
#include "llvm/TableGen/DirectiveEmitter.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <numeric>
#include <vector>
using namespace llvm;
namespace {
// Simple RAII helper for defining ifdef-undef-endif scopes.
class IfDefScope {
public:
IfDefScope(StringRef Name, raw_ostream &OS) : Name(Name), OS(OS) {
OS << "#ifdef " << Name << "\n"
<< "#undef " << Name << "\n";
}
~IfDefScope() { OS << "\n#endif // " << Name << "\n\n"; }
private:
StringRef Name;
raw_ostream &OS;
};
} // namespace
// Generate enum class. Entries are emitted in the order in which they appear
// in the `Records` vector.
static void generateEnumClass(ArrayRef<const Record *> Records, raw_ostream &OS,
StringRef Enum, StringRef Prefix,
const DirectiveLanguage &DirLang,
bool ExportEnums) {
OS << "\n";
OS << "enum class " << Enum << " {\n";
for (const auto &R : Records) {
BaseRecord Rec(R);
OS << " " << Prefix << Rec.getFormattedName() << ",\n";
}
OS << "};\n";
OS << "\n";
OS << "static constexpr std::size_t " << Enum
<< "_enumSize = " << Records.size() << ";\n";
// Make the enum values available in the defined namespace. This allows us to
// write something like Enum_X if we have a `using namespace <CppNamespace>`.
// At the same time we do not loose the strong type guarantees of the enum
// class, that is we cannot pass an unsigned as Directive without an explicit
// cast.
if (ExportEnums) {
OS << "\n";
for (const auto &R : Records) {
BaseRecord Rec(R);
OS << "constexpr auto " << Prefix << Rec.getFormattedName() << " = "
<< "llvm::" << DirLang.getCppNamespace() << "::" << Enum
<< "::" << Prefix << Rec.getFormattedName() << ";\n";
}
}
}
// Generate enums for values that clauses can take.
// Also generate function declarations for get<Enum>Name(StringRef Str).
static void generateEnumClauseVal(ArrayRef<const Record *> Records,
raw_ostream &OS,
const DirectiveLanguage &DirLang,
std::string &EnumHelperFuncs) {
for (const auto &R : Records) {
Clause C(R);
const auto &ClauseVals = C.getClauseVals();
if (ClauseVals.size() <= 0)
continue;
const auto &EnumName = C.getEnumName();
if (EnumName.empty()) {
PrintError("enumClauseValue field not set in Clause" +
C.getFormattedName() + ".");
return;
}
OS << "\n";
OS << "enum class " << EnumName << " {\n";
for (const ClauseVal CVal : ClauseVals)
OS << " " << CVal.getRecordName() << "=" << CVal.getValue() << ",\n";
OS << "};\n";
if (DirLang.hasMakeEnumAvailableInNamespace()) {
OS << "\n";
for (const auto &CV : ClauseVals) {
OS << "constexpr auto " << CV->getName() << " = "
<< "llvm::" << DirLang.getCppNamespace() << "::" << EnumName
<< "::" << CV->getName() << ";\n";
}
EnumHelperFuncs += (Twine("LLVM_ABI ") + Twine(EnumName) + Twine(" get") +
Twine(EnumName) + Twine("(StringRef);\n"))
.str();
EnumHelperFuncs +=
(Twine("LLVM_ABI llvm::StringRef get") + Twine(DirLang.getName()) +
Twine(EnumName) + Twine("Name(") + Twine(EnumName) + Twine(");\n"))
.str();
}
}
}
static bool hasDuplicateClauses(ArrayRef<const Record *> Clauses,
const Directive &Directive,
StringSet<> &CrtClauses) {
bool HasError = false;
for (const VersionedClause VerClause : Clauses) {
const auto InsRes = CrtClauses.insert(VerClause.getClause().getName());
if (!InsRes.second) {
PrintError("Clause " + VerClause.getClause().getRecordName() +
" already defined on directive " + Directive.getRecordName());
HasError = true;
}
}
return HasError;
}
// Check for duplicate clauses in lists. Clauses cannot appear twice in the
// three allowed list. Also, since required implies allowed, clauses cannot
// appear in both the allowedClauses and requiredClauses lists.
static bool
hasDuplicateClausesInDirectives(ArrayRef<const Record *> Directives) {
bool HasDuplicate = false;
for (const Directive Dir : Directives) {
StringSet<> Clauses;
// Check for duplicates in the three allowed lists.
if (hasDuplicateClauses(Dir.getAllowedClauses(), Dir, Clauses) ||
hasDuplicateClauses(Dir.getAllowedOnceClauses(), Dir, Clauses) ||
hasDuplicateClauses(Dir.getAllowedExclusiveClauses(), Dir, Clauses)) {
HasDuplicate = true;
}
// Check for duplicate between allowedClauses and required
Clauses.clear();
if (hasDuplicateClauses(Dir.getAllowedClauses(), Dir, Clauses) ||
hasDuplicateClauses(Dir.getRequiredClauses(), Dir, Clauses)) {
HasDuplicate = true;
}
if (HasDuplicate)
PrintFatalError("One or more clauses are defined multiple times on"
" directive " +
Dir.getRecordName());
}
return HasDuplicate;
}
// Check consitency of records. Return true if an error has been detected.
// Return false if the records are valid.
bool DirectiveLanguage::HasValidityErrors() const {
if (getDirectiveLanguages().size() != 1) {
PrintFatalError("A single definition of DirectiveLanguage is needed.");
return true;
}
return hasDuplicateClausesInDirectives(getDirectives());
}
// Count the maximum number of leaf constituents per construct.
static size_t getMaxLeafCount(const DirectiveLanguage &DirLang) {
size_t MaxCount = 0;
for (const Directive D : DirLang.getDirectives())
MaxCount = std::max(MaxCount, D.getLeafConstructs().size());
return MaxCount;
}
// Generate the declaration section for the enumeration in the directive
// language.
static void emitDirectivesDecl(const RecordKeeper &Records, raw_ostream &OS) {
const auto DirLang = DirectiveLanguage(Records);
if (DirLang.HasValidityErrors())
return;
OS << "#ifndef LLVM_" << DirLang.getName() << "_INC\n";
OS << "#define LLVM_" << DirLang.getName() << "_INC\n";
OS << "\n#include \"llvm/ADT/ArrayRef.h\"\n";
if (DirLang.hasEnableBitmaskEnumInNamespace())
OS << "#include \"llvm/ADT/BitmaskEnum.h\"\n";
OS << "#include \"llvm/Support/Compiler.h\"\n";
OS << "#include <cstddef>\n"; // for size_t
OS << "\n";
OS << "namespace llvm {\n";
OS << "class StringRef;\n";
// Open namespaces defined in the directive language
SmallVector<StringRef, 2> Namespaces;
SplitString(DirLang.getCppNamespace(), Namespaces, "::");
for (auto Ns : Namespaces)
OS << "namespace " << Ns << " {\n";
if (DirLang.hasEnableBitmaskEnumInNamespace())
OS << "\nLLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();\n";
// Emit Directive associations
std::vector<const Record *> Associations;
copy_if(DirLang.getAssociations(), std::back_inserter(Associations),
// Skip the "special" value
[](const Record *Def) { return Def->getName() != "AS_FromLeaves"; });
generateEnumClass(Associations, OS, "Association",
/*Prefix=*/"", DirLang, /*ExportEnums=*/false);
generateEnumClass(DirLang.getCategories(), OS, "Category", /*Prefix=*/"",
DirLang, /*ExportEnums=*/false);
// Emit Directive enumeration
generateEnumClass(DirLang.getDirectives(), OS, "Directive",
DirLang.getDirectivePrefix(), DirLang,
DirLang.hasMakeEnumAvailableInNamespace());
// Emit Clause enumeration
generateEnumClass(DirLang.getClauses(), OS, "Clause",
DirLang.getClausePrefix(), DirLang,
DirLang.hasMakeEnumAvailableInNamespace());
// Emit ClauseVal enumeration
std::string EnumHelperFuncs;
generateEnumClauseVal(DirLang.getClauses(), OS, DirLang, EnumHelperFuncs);
// Generic function signatures
OS << "\n";
OS << "// Enumeration helper functions\n";
OS << "LLVM_ABI Directive get" << DirLang.getName()
<< "DirectiveKind(llvm::StringRef Str);\n";
OS << "\n";
OS << "LLVM_ABI llvm::StringRef get" << DirLang.getName()
<< "DirectiveName(Directive D);\n";
OS << "\n";
OS << "LLVM_ABI Clause get" << DirLang.getName()
<< "ClauseKind(llvm::StringRef Str);\n";
OS << "\n";
OS << "LLVM_ABI llvm::StringRef get" << DirLang.getName()
<< "ClauseName(Clause C);\n";
OS << "\n";
OS << "/// Return true if \\p C is a valid clause for \\p D in version \\p "
<< "Version.\n";
OS << "LLVM_ABI bool isAllowedClauseForDirective(Directive D, "
<< "Clause C, unsigned Version);\n";
OS << "\n";
OS << "constexpr std::size_t getMaxLeafCount() { return "
<< getMaxLeafCount(DirLang) << "; }\n";
OS << "LLVM_ABI Association getDirectiveAssociation(Directive D);\n";
OS << "LLVM_ABI Category getDirectiveCategory(Directive D);\n";
if (EnumHelperFuncs.length() > 0) {
OS << EnumHelperFuncs;
OS << "\n";
}
// Closing namespaces
for (auto Ns : reverse(Namespaces))
OS << "} // namespace " << Ns << "\n";
OS << "} // namespace llvm\n";
OS << "#endif // LLVM_" << DirLang.getName() << "_INC\n";
}
// Generate function implementation for get<Enum>Name(StringRef Str)
static void generateGetName(ArrayRef<const Record *> Records, raw_ostream &OS,
StringRef Enum, const DirectiveLanguage &DirLang,
StringRef Prefix) {
OS << "\n";
OS << "llvm::StringRef llvm::" << DirLang.getCppNamespace() << "::get"
<< DirLang.getName() << Enum << "Name(" << Enum << " Kind) {\n";
OS << " switch (Kind) {\n";
for (const BaseRecord Rec : Records) {
OS << " case " << Prefix << Rec.getFormattedName() << ":\n";
OS << " return \"";
if (Rec.getAlternativeName().empty())
OS << Rec.getName();
else
OS << Rec.getAlternativeName();
OS << "\";\n";
}
OS << " }\n"; // switch
OS << " llvm_unreachable(\"Invalid " << DirLang.getName() << " " << Enum
<< " kind\");\n";
OS << "}\n";
}
// Generate function implementation for get<Enum>Kind(StringRef Str)
static void generateGetKind(ArrayRef<const Record *> Records, raw_ostream &OS,
StringRef Enum, const DirectiveLanguage &DirLang,
StringRef Prefix, bool ImplicitAsUnknown) {
const auto *DefaultIt = find_if(
Records, [](const Record *R) { return R->getValueAsBit("isDefault"); });
if (DefaultIt == Records.end()) {
PrintError("At least one " + Enum + " must be defined as default.");
return;
}
BaseRecord DefaultRec(*DefaultIt);
OS << "\n";
OS << Enum << " llvm::" << DirLang.getCppNamespace() << "::get"
<< DirLang.getName() << Enum << "Kind(llvm::StringRef Str) {\n";
OS << " return llvm::StringSwitch<" << Enum << ">(Str)\n";
for (const auto &R : Records) {
BaseRecord Rec(R);
if (ImplicitAsUnknown && R->getValueAsBit("isImplicit")) {
OS << " .Case(\"" << Rec.getName() << "\"," << Prefix
<< DefaultRec.getFormattedName() << ")\n";
} else {
OS << " .Case(\"" << Rec.getName() << "\"," << Prefix
<< Rec.getFormattedName() << ")\n";
}
}
OS << " .Default(" << Prefix << DefaultRec.getFormattedName() << ");\n";
OS << "}\n";
}
// Generate function implementation for get<ClauseVal>Kind(StringRef Str)
static void generateGetKindClauseVal(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
for (const Clause C : DirLang.getClauses()) {
const auto &ClauseVals = C.getClauseVals();
if (ClauseVals.size() <= 0)
continue;
auto DefaultIt = find_if(ClauseVals, [](const Record *CV) {
return CV->getValueAsBit("isDefault");
});
if (DefaultIt == ClauseVals.end()) {
PrintError("At least one val in Clause " + C.getFormattedName() +
" must be defined as default.");
return;
}
const auto DefaultName = (*DefaultIt)->getName();
const auto &EnumName = C.getEnumName();
if (EnumName.empty()) {
PrintError("enumClauseValue field not set in Clause" +
C.getFormattedName() + ".");
return;
}
OS << "\n";
OS << EnumName << " llvm::" << DirLang.getCppNamespace() << "::get"
<< EnumName << "(llvm::StringRef Str) {\n";
OS << " return llvm::StringSwitch<" << EnumName << ">(Str)\n";
for (const auto &CV : ClauseVals) {
ClauseVal CVal(CV);
OS << " .Case(\"" << CVal.getFormattedName() << "\"," << CV->getName()
<< ")\n";
}
OS << " .Default(" << DefaultName << ");\n";
OS << "}\n";
OS << "\n";
OS << "llvm::StringRef llvm::" << DirLang.getCppNamespace() << "::get"
<< DirLang.getName() << EnumName
<< "Name(llvm::" << DirLang.getCppNamespace() << "::" << EnumName
<< " x) {\n";
OS << " switch (x) {\n";
for (const auto &CV : ClauseVals) {
ClauseVal CVal(CV);
OS << " case " << CV->getName() << ":\n";
OS << " return \"" << CVal.getFormattedName() << "\";\n";
}
OS << " }\n"; // switch
OS << " llvm_unreachable(\"Invalid " << DirLang.getName() << " "
<< EnumName << " kind\");\n";
OS << "}\n";
}
}
static void generateCaseForVersionedClauses(ArrayRef<const Record *> Clauses,
raw_ostream &OS,
StringRef DirectiveName,
const DirectiveLanguage &DirLang,
StringSet<> &Cases) {
for (const VersionedClause VerClause : Clauses) {
const auto ClauseFormattedName = VerClause.getClause().getFormattedName();
if (Cases.insert(ClauseFormattedName).second) {
OS << " case " << DirLang.getClausePrefix() << ClauseFormattedName
<< ":\n";
OS << " return " << VerClause.getMinVersion()
<< " <= Version && " << VerClause.getMaxVersion() << " >= Version;\n";
}
}
}
static std::string getDirectiveName(const DirectiveLanguage &DirLang,
const Record *Rec) {
Directive Dir(Rec);
return (Twine("llvm::") + DirLang.getCppNamespace() +
"::" + DirLang.getDirectivePrefix() + Dir.getFormattedName())
.str();
}
static std::string getDirectiveType(const DirectiveLanguage &DirLang) {
return (Twine("llvm::") + DirLang.getCppNamespace() + "::Directive").str();
}
// Generate the isAllowedClauseForDirective function implementation.
static void generateIsAllowedClause(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
OS << "\n";
OS << "bool llvm::" << DirLang.getCppNamespace()
<< "::isAllowedClauseForDirective("
<< "Directive D, Clause C, unsigned Version) {\n";
OS << " assert(unsigned(D) <= llvm::" << DirLang.getCppNamespace()
<< "::Directive_enumSize);\n";
OS << " assert(unsigned(C) <= llvm::" << DirLang.getCppNamespace()
<< "::Clause_enumSize);\n";
OS << " switch (D) {\n";
for (const Directive Dir : DirLang.getDirectives()) {
OS << " case " << DirLang.getDirectivePrefix() << Dir.getFormattedName()
<< ":\n";
if (Dir.getAllowedClauses().empty() &&
Dir.getAllowedOnceClauses().empty() &&
Dir.getAllowedExclusiveClauses().empty() &&
Dir.getRequiredClauses().empty()) {
OS << " return false;\n";
} else {
OS << " switch (C) {\n";
StringSet<> Cases;
generateCaseForVersionedClauses(Dir.getAllowedClauses(), OS,
Dir.getName(), DirLang, Cases);
generateCaseForVersionedClauses(Dir.getAllowedOnceClauses(), OS,
Dir.getName(), DirLang, Cases);
generateCaseForVersionedClauses(Dir.getAllowedExclusiveClauses(), OS,
Dir.getName(), DirLang, Cases);
generateCaseForVersionedClauses(Dir.getRequiredClauses(), OS,
Dir.getName(), DirLang, Cases);
OS << " default:\n";
OS << " return false;\n";
OS << " }\n"; // End of clauses switch
}
OS << " break;\n";
}
OS << " }\n"; // End of directives switch
OS << " llvm_unreachable(\"Invalid " << DirLang.getName()
<< " Directive kind\");\n";
OS << "}\n"; // End of function isAllowedClauseForDirective
}
static void emitLeafTable(const DirectiveLanguage &DirLang, raw_ostream &OS,
StringRef TableName) {
// The leaf constructs are emitted in a form of a 2D table, where each
// row corresponds to a directive (and there is a row for each directive).
//
// Each row consists of
// - the id of the directive itself,
// - number of leaf constructs that will follow (0 for leafs),
// - ids of the leaf constructs (none if the directive is itself a leaf).
// The total number of these entries is at most MaxLeafCount+2. If this
// number is less than that, it is padded to occupy exactly MaxLeafCount+2
// entries in memory.
//
// The rows are stored in the table in the lexicographical order. This
// is intended to enable binary search when mapping a sequence of leafs
// back to the compound directive.
// The consequence of that is that in order to find a row corresponding
// to the given directive, we'd need to scan the first element of each
// row. To avoid this, an auxiliary ordering table is created, such that
// row for Dir_A = table[auxiliary[Dir_A]].
ArrayRef<const Record *> Directives = DirLang.getDirectives();
DenseMap<const Record *, int> DirId; // Record * -> llvm::omp::Directive
for (auto [Idx, Rec] : enumerate(Directives))
DirId.try_emplace(Rec, Idx);
using LeafList = std::vector<int>;
int MaxLeafCount = getMaxLeafCount(DirLang);
// The initial leaf table, rows order is same as directive order.
std::vector<LeafList> LeafTable(Directives.size());
for (auto [Idx, Rec] : enumerate(Directives)) {
Directive Dir(Rec);
std::vector<const Record *> Leaves = Dir.getLeafConstructs();
auto &List = LeafTable[Idx];
List.resize(MaxLeafCount + 2);
List[0] = Idx; // The id of the directive itself.
List[1] = Leaves.size(); // The number of leaves to follow.
for (int I = 0; I != MaxLeafCount; ++I)
List[I + 2] =
static_cast<size_t>(I) < Leaves.size() ? DirId.at(Leaves[I]) : -1;
}
// Some Fortran directives are delimited, i.e. they have the form of
// "directive"---"end directive". If "directive" is a compound construct,
// then the set of leaf constituents will be nonempty and the same for
// both directives. Given this set of leafs, looking up the corresponding
// compound directive should return "directive", and not "end directive".
// To avoid this problem, gather all "end directives" at the end of the
// leaf table, and only do the search on the initial segment of the table
// that excludes the "end directives".
// It's safe to find all directives whose names begin with "end ". The
// problem only exists for compound directives, like "end do simd".
// All existing directives with names starting with "end " are either
// "end directives" for an existing "directive", or leaf directives
// (such as "end declare target").
DenseSet<int> EndDirectives;
for (auto [Rec, Id] : DirId) {
if (Directive(Rec).getName().starts_with_insensitive("end "))
EndDirectives.insert(Id);
}
// Avoid sorting the vector<vector> array, instead sort an index array.
// It will also be useful later to create the auxiliary indexing array.
std::vector<int> Ordering(Directives.size());
std::iota(Ordering.begin(), Ordering.end(), 0);
sort(Ordering, [&](int A, int B) {
auto &LeavesA = LeafTable[A];
auto &LeavesB = LeafTable[B];
int DirA = LeavesA[0], DirB = LeavesB[0];
// First of all, end directives compare greater than non-end directives.
int IsEndA = EndDirectives.count(DirA), IsEndB = EndDirectives.count(DirB);
if (IsEndA != IsEndB)
return IsEndA < IsEndB;
if (LeavesA[1] == 0 && LeavesB[1] == 0)
return DirA < DirB;
return std::lexicographical_compare(&LeavesA[2], &LeavesA[2] + LeavesA[1],
&LeavesB[2], &LeavesB[2] + LeavesB[1]);
});
// Emit the table
// The directives are emitted into a scoped enum, for which the underlying
// type is `int` (by default). The code above uses `int` to store directive
// ids, so make sure that we catch it when something changes in the
// underlying type.
std::string DirectiveType = getDirectiveType(DirLang);
OS << "\nstatic_assert(sizeof(" << DirectiveType << ") == sizeof(int));\n";
OS << "[[maybe_unused]] static const " << DirectiveType << ' ' << TableName
<< "[][" << MaxLeafCount + 2 << "] = {\n";
for (size_t I = 0, E = Directives.size(); I != E; ++I) {
auto &Leaves = LeafTable[Ordering[I]];
OS << " {" << getDirectiveName(DirLang, Directives[Leaves[0]]);
OS << ", static_cast<" << DirectiveType << ">(" << Leaves[1] << "),";
for (size_t I = 2, E = Leaves.size(); I != E; ++I) {
int Idx = Leaves[I];
if (Idx >= 0)
OS << ' ' << getDirectiveName(DirLang, Directives[Leaves[I]]) << ',';
else
OS << " static_cast<" << DirectiveType << ">(-1),";
}
OS << "},\n";
}
OS << "};\n\n";
// Emit a marker where the first "end directive" is.
auto FirstE = find_if(Ordering, [&](int RowIdx) {
return EndDirectives.count(LeafTable[RowIdx][0]);
});
OS << "[[maybe_unused]] static auto " << TableName
<< "EndDirective = " << TableName << " + "
<< std::distance(Ordering.begin(), FirstE) << ";\n\n";
// Emit the auxiliary index table: it's the inverse of the `Ordering`
// table above.
OS << "[[maybe_unused]] static const int " << TableName << "Ordering[] = {\n";
OS << " ";
std::vector<int> Reverse(Ordering.size());
for (int I = 0, E = Ordering.size(); I != E; ++I)
Reverse[Ordering[I]] = I;
for (int Idx : Reverse)
OS << ' ' << Idx << ',';
OS << "\n};\n";
}
static void generateGetDirectiveAssociation(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
enum struct Association {
None = 0, // None should be the smallest value.
Block, // The values of the rest don't matter.
Declaration,
Delimited,
Loop,
Separating,
FromLeaves,
Invalid,
};
ArrayRef<const Record *> Associations = DirLang.getAssociations();
auto GetAssocValue = [](StringRef Name) -> Association {
return StringSwitch<Association>(Name)
.Case("AS_Block", Association::Block)
.Case("AS_Declaration", Association::Declaration)
.Case("AS_Delimited", Association::Delimited)
.Case("AS_Loop", Association::Loop)
.Case("AS_None", Association::None)
.Case("AS_Separating", Association::Separating)
.Case("AS_FromLeaves", Association::FromLeaves)
.Default(Association::Invalid);
};
auto GetAssocName = [&](Association A) -> StringRef {
if (A != Association::Invalid && A != Association::FromLeaves) {
const auto *F = find_if(Associations, [&](const Record *R) {
return GetAssocValue(R->getName()) == A;
});
if (F != Associations.end())
return (*F)->getValueAsString("name"); // enum name
}
llvm_unreachable("Unexpected association value");
};
auto ErrorPrefixFor = [&](Directive D) -> std::string {
return (Twine("Directive '") + D.getName() + "' in namespace '" +
DirLang.getCppNamespace() + "' ")
.str();
};
auto Reduce = [&](Association A, Association B) -> Association {
if (A > B)
std::swap(A, B);
// Calculate the result using the following rules:
// x + x = x
// AS_None + x = x
// AS_Block + AS_Loop = AS_Loop
if (A == Association::None || A == B)
return B;
if (A == Association::Block && B == Association::Loop)
return B;
if (A == Association::Loop && B == Association::Block)
return A;
return Association::Invalid;
};
DenseMap<const Record *, Association> AsMap;
auto CompAssocImpl = [&](const Record *R, auto &&Self) -> Association {
if (auto F = AsMap.find(R); F != AsMap.end())
return F->second;
Directive D(R);
Association AS = GetAssocValue(D.getAssociation()->getName());
if (AS == Association::Invalid) {
PrintFatalError(ErrorPrefixFor(D) +
"has an unrecognized value for association: '" +
D.getAssociation()->getName() + "'");
}
if (AS != Association::FromLeaves) {
AsMap.try_emplace(R, AS);
return AS;
}
// Compute the association from leaf constructs.
std::vector<const Record *> Leaves = D.getLeafConstructs();
if (Leaves.empty()) {
errs() << D.getName() << '\n';
PrintFatalError(ErrorPrefixFor(D) +
"requests association to be computed from leaves, "
"but it has no leaves");
}
Association Result = Self(Leaves[0], Self);
for (int I = 1, E = Leaves.size(); I < E; ++I) {
Association A = Self(Leaves[I], Self);
Association R = Reduce(Result, A);
if (R == Association::Invalid) {
PrintFatalError(ErrorPrefixFor(D) +
"has leaves with incompatible association values: " +
GetAssocName(A) + " and " + GetAssocName(R));
}
Result = R;
}
assert(Result != Association::Invalid);
assert(Result != Association::FromLeaves);
AsMap.try_emplace(R, Result);
return Result;
};
for (const Record *R : DirLang.getDirectives())
CompAssocImpl(R, CompAssocImpl); // Updates AsMap.
OS << '\n';
auto GetQualifiedName = [&](StringRef Formatted) -> std::string {
return (Twine("llvm::") + DirLang.getCppNamespace() +
"::Directive::" + DirLang.getDirectivePrefix() + Formatted)
.str();
};
std::string DirectiveTypeName =
"llvm::" + DirLang.getCppNamespace().str() + "::Directive";
std::string AssociationTypeName =
"llvm::" + DirLang.getCppNamespace().str() + "::Association";
OS << AssociationTypeName << " llvm::" << DirLang.getCppNamespace()
<< "::getDirectiveAssociation(" << DirectiveTypeName << " Dir) {\n";
OS << " switch (Dir) {\n";
for (const Record *R : DirLang.getDirectives()) {
if (auto F = AsMap.find(R); F != AsMap.end()) {
Directive Dir(R);
OS << " case " << GetQualifiedName(Dir.getFormattedName()) << ":\n";
OS << " return " << AssociationTypeName
<< "::" << GetAssocName(F->second) << ";\n";
}
}
OS << " } // switch (Dir)\n";
OS << " llvm_unreachable(\"Unexpected directive\");\n";
OS << "}\n";
}
static void generateGetDirectiveCategory(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
std::string LangNamespace = "llvm::" + DirLang.getCppNamespace().str();
std::string CategoryTypeName = LangNamespace + "::Category";
std::string CategoryNamespace = CategoryTypeName + "::";
OS << '\n';
OS << CategoryTypeName << ' ' << LangNamespace << "::getDirectiveCategory("
<< getDirectiveType(DirLang) << " Dir) {\n";
OS << " switch (Dir) {\n";
for (const Record *R : DirLang.getDirectives()) {
Directive D(R);
OS << " case " << getDirectiveName(DirLang, R) << ":\n";
OS << " return " << CategoryNamespace
<< D.getCategory()->getValueAsString("name") << ";\n";
}
OS << " } // switch (Dir)\n";
OS << " llvm_unreachable(\"Unexpected directive\");\n";
OS << "}\n";
}
namespace {
enum class DirectiveClauseFE { Flang, Clang };
StringRef getFESpelling(DirectiveClauseFE FE) {
switch (FE) {
case DirectiveClauseFE::Flang:
return "flang";
case DirectiveClauseFE::Clang:
return "clang";
}
llvm_unreachable("unknown FE kind");
}
} // namespace
// Generate a simple enum set with the give clauses.
static void generateClauseSet(ArrayRef<const Record *> Clauses, raw_ostream &OS,
StringRef ClauseSetPrefix, const Directive &Dir,
const DirectiveLanguage &DirLang,
DirectiveClauseFE FE) {
OS << "\n";
OS << " static " << DirLang.getClauseEnumSetClass() << " " << ClauseSetPrefix
<< DirLang.getDirectivePrefix() << Dir.getFormattedName() << " {\n";
for (const auto &C : Clauses) {
VersionedClause VerClause(C);
if (FE == DirectiveClauseFE::Flang) {
OS << " llvm::" << DirLang.getCppNamespace()
<< "::Clause::" << DirLang.getClausePrefix()
<< VerClause.getClause().getFormattedName() << ",\n";
} else {
assert(FE == DirectiveClauseFE::Clang);
assert(DirLang.getName() == "OpenACC");
OS << " clang::OpenACCClauseKind::"
<< VerClause.getClause().getClangAccSpelling() << ",\n";
}
}
OS << " };\n";
}
// Generate an enum set for the 4 kinds of clauses linked to a directive.
static void generateDirectiveClauseSets(const DirectiveLanguage &DirLang,
DirectiveClauseFE FE, raw_ostream &OS) {
std::string IfDefName{"GEN_"};
IfDefName += getFESpelling(FE).upper();
IfDefName += "_DIRECTIVE_CLAUSE_SETS";
IfDefScope Scope(IfDefName, OS);
OS << "\n";
// The namespace has to be different for clang vs flang, as 2 structs with the
// same name but different layout is UB. So just put the 'clang' on in the
// clang namespace.
OS << "namespace " << (FE == DirectiveClauseFE::Flang ? "llvm" : "clang")
<< " {\n";
// Open namespaces defined in the directive language.
SmallVector<StringRef, 2> Namespaces;
SplitString(DirLang.getCppNamespace(), Namespaces, "::");
for (auto Ns : Namespaces)
OS << "namespace " << Ns << " {\n";
for (const Directive Dir : DirLang.getDirectives()) {
OS << "\n";
OS << " // Sets for " << Dir.getName() << "\n";
generateClauseSet(Dir.getAllowedClauses(), OS, "allowedClauses_", Dir,
DirLang, FE);
generateClauseSet(Dir.getAllowedOnceClauses(), OS, "allowedOnceClauses_",
Dir, DirLang, FE);
generateClauseSet(Dir.getAllowedExclusiveClauses(), OS,
"allowedExclusiveClauses_", Dir, DirLang, FE);
generateClauseSet(Dir.getRequiredClauses(), OS, "requiredClauses_", Dir,
DirLang, FE);
}
// Closing namespaces
for (auto Ns : reverse(Namespaces))
OS << "} // namespace " << Ns << "\n";
OS << "} // namespace llvm\n";
}
// Generate a map of directive (key) with DirectiveClauses struct as values.
// The struct holds the 4 sets of enumeration for the 4 kinds of clauses
// allowances (allowed, allowed once, allowed exclusive and required).
static void generateDirectiveClauseMap(const DirectiveLanguage &DirLang,
DirectiveClauseFE FE, raw_ostream &OS) {
std::string IfDefName{"GEN_"};
IfDefName += getFESpelling(FE).upper();
IfDefName += "_DIRECTIVE_CLAUSE_MAP";
IfDefScope Scope(IfDefName, OS);
OS << "\n";
OS << "{\n";
// The namespace has to be different for clang vs flang, as 2 structs with the
// same name but different layout is UB. So just put the 'clang' on in the
// clang namespace.
StringRef TopLevelNS = (FE == DirectiveClauseFE::Flang ? "llvm" : "clang");
for (const Directive Dir : DirLang.getDirectives()) {
OS << " {";
if (FE == DirectiveClauseFE::Flang) {
OS << TopLevelNS << "::" << DirLang.getCppNamespace()
<< "::Directive::" << DirLang.getDirectivePrefix()
<< Dir.getFormattedName() << ",\n";
} else {
assert(FE == DirectiveClauseFE::Clang);
assert(DirLang.getName() == "OpenACC");
OS << "clang::OpenACCDirectiveKind::" << Dir.getClangAccSpelling()
<< ",\n";
}
OS << " {\n";
OS << " " << TopLevelNS << "::" << DirLang.getCppNamespace()
<< "::allowedClauses_" << DirLang.getDirectivePrefix()
<< Dir.getFormattedName() << ",\n";
OS << " " << TopLevelNS << "::" << DirLang.getCppNamespace()
<< "::allowedOnceClauses_" << DirLang.getDirectivePrefix()
<< Dir.getFormattedName() << ",\n";
OS << " " << TopLevelNS << "::" << DirLang.getCppNamespace()
<< "::allowedExclusiveClauses_" << DirLang.getDirectivePrefix()
<< Dir.getFormattedName() << ",\n";
OS << " " << TopLevelNS << "::" << DirLang.getCppNamespace()
<< "::requiredClauses_" << DirLang.getDirectivePrefix()
<< Dir.getFormattedName() << ",\n";
OS << " }\n";
OS << " },\n";
}
OS << "}\n";
}
// Generate classes entry for Flang clauses in the Flang parse-tree
// If the clause as a non-generic class, no entry is generated.
// If the clause does not hold a value, an EMPTY_CLASS is used.
// If the clause class is generic then a WRAPPER_CLASS is used. When the value
// is optional, the value class is wrapped into a std::optional.
static void generateFlangClauseParserClass(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
IfDefScope Scope("GEN_FLANG_CLAUSE_PARSER_CLASSES", OS);
OS << "\n";
for (const Clause Clause : DirLang.getClauses()) {
if (!Clause.getFlangClass().empty()) {
OS << "WRAPPER_CLASS(" << Clause.getFormattedParserClassName() << ", ";
if (Clause.isValueOptional() && Clause.isValueList()) {
OS << "std::optional<std::list<" << Clause.getFlangClass() << ">>";
} else if (Clause.isValueOptional()) {
OS << "std::optional<" << Clause.getFlangClass() << ">";
} else if (Clause.isValueList()) {
OS << "std::list<" << Clause.getFlangClass() << ">";
} else {
OS << Clause.getFlangClass();
}
} else {
OS << "EMPTY_CLASS(" << Clause.getFormattedParserClassName();
}
OS << ");\n";
}
}
// Generate a list of the different clause classes for Flang.
static void generateFlangClauseParserClassList(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
IfDefScope Scope("GEN_FLANG_CLAUSE_PARSER_CLASSES_LIST", OS);
OS << "\n";
interleaveComma(DirLang.getClauses(), OS, [&](const Record *C) {
Clause Clause(C);
OS << Clause.getFormattedParserClassName() << "\n";
});
}
// Generate dump node list for the clauses holding a generic class name.
static void generateFlangClauseDump(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
IfDefScope Scope("GEN_FLANG_DUMP_PARSE_TREE_CLAUSES", OS);
OS << "\n";
for (const Clause Clause : DirLang.getClauses()) {
OS << "NODE(" << DirLang.getFlangClauseBaseClass() << ", "
<< Clause.getFormattedParserClassName() << ")\n";
}
}
// Generate Unparse functions for clauses classes in the Flang parse-tree
// If the clause is a non-generic class, no entry is generated.
static void generateFlangClauseUnparse(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
IfDefScope Scope("GEN_FLANG_CLAUSE_UNPARSE", OS);
OS << "\n";
for (const Clause Clause : DirLang.getClauses()) {
if (!Clause.getFlangClass().empty()) {
if (Clause.isValueOptional() && Clause.getDefaultValue().empty()) {
OS << "void Unparse(const " << DirLang.getFlangClauseBaseClass()
<< "::" << Clause.getFormattedParserClassName() << " &x) {\n";
OS << " Word(\"" << Clause.getName().upper() << "\");\n";
OS << " Walk(\"(\", x.v, \")\");\n";
OS << "}\n";
} else if (Clause.isValueOptional()) {
OS << "void Unparse(const " << DirLang.getFlangClauseBaseClass()
<< "::" << Clause.getFormattedParserClassName() << " &x) {\n";
OS << " Word(\"" << Clause.getName().upper() << "\");\n";
OS << " Put(\"(\");\n";
OS << " if (x.v.has_value())\n";
if (Clause.isValueList())
OS << " Walk(x.v, \",\");\n";
else
OS << " Walk(x.v);\n";
OS << " else\n";
OS << " Put(\"" << Clause.getDefaultValue() << "\");\n";
OS << " Put(\")\");\n";
OS << "}\n";
} else {
OS << "void Unparse(const " << DirLang.getFlangClauseBaseClass()
<< "::" << Clause.getFormattedParserClassName() << " &x) {\n";
OS << " Word(\"" << Clause.getName().upper() << "\");\n";
OS << " Put(\"(\");\n";
if (Clause.isValueList())
OS << " Walk(x.v, \",\");\n";
else
OS << " Walk(x.v);\n";
OS << " Put(\")\");\n";
OS << "}\n";
}
} else {
OS << "void Before(const " << DirLang.getFlangClauseBaseClass()
<< "::" << Clause.getFormattedParserClassName() << " &) { Word(\""
<< Clause.getName().upper() << "\"); }\n";
}
}
}
// Generate check in the Enter functions for clauses classes.
static void generateFlangClauseCheckPrototypes(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
IfDefScope Scope("GEN_FLANG_CLAUSE_CHECK_ENTER", OS);
OS << "\n";
for (const Clause Clause : DirLang.getClauses()) {
OS << "void Enter(const parser::" << DirLang.getFlangClauseBaseClass()
<< "::" << Clause.getFormattedParserClassName() << " &);\n";
}
}
// Generate the mapping for clauses between the parser class and the
// corresponding clause Kind
static void generateFlangClauseParserKindMap(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
IfDefScope Scope("GEN_FLANG_CLAUSE_PARSER_KIND_MAP", OS);
OS << "\n";
for (const Clause Clause : DirLang.getClauses()) {
OS << "if constexpr (std::is_same_v<A, parser::"
<< DirLang.getFlangClauseBaseClass()
<< "::" << Clause.getFormattedParserClassName();
OS << ">)\n";
OS << " return llvm::" << DirLang.getCppNamespace()
<< "::Clause::" << DirLang.getClausePrefix() << Clause.getFormattedName()
<< ";\n";
}
OS << "llvm_unreachable(\"Invalid " << DirLang.getName()
<< " Parser clause\");\n";
}
static bool compareClauseName(const Record *R1, const Record *R2) {
Clause C1(R1);
Clause C2(R2);
return (C1.getName() > C2.getName());
}
// Generate the parser for the clauses.
static void generateFlangClausesParser(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
std::vector<const Record *> Clauses = DirLang.getClauses();
// Sort clauses in reverse alphabetical order so with clauses with same
// beginning, the longer option is tried before.
sort(Clauses, compareClauseName);
IfDefScope Scope("GEN_FLANG_CLAUSES_PARSER", OS);
OS << "\n";
unsigned Index = 0;
unsigned LastClauseIndex = Clauses.size() - 1;
OS << "TYPE_PARSER(\n";
for (const Clause Clause : Clauses) {
if (Clause.getAliases().empty()) {
OS << " \"" << Clause.getName() << "\"";
} else {
OS << " ("
<< "\"" << Clause.getName() << "\"_tok";
for (StringRef Alias : Clause.getAliases()) {
OS << " || \"" << Alias << "\"_tok";
}
OS << ")";
}
OS << " >> construct<" << DirLang.getFlangClauseBaseClass()
<< ">(construct<" << DirLang.getFlangClauseBaseClass()
<< "::" << Clause.getFormattedParserClassName() << ">(";
if (Clause.getFlangClass().empty()) {
OS << "))";
if (Index != LastClauseIndex)
OS << " ||";
OS << "\n";
++Index;
continue;
}
if (Clause.isValueOptional())
OS << "maybe(";
OS << "parenthesized(";
if (Clause.isValueList())
OS << "nonemptyList(";
if (!Clause.getPrefix().empty())
OS << "\"" << Clause.getPrefix() << ":\" >> ";
// The common Flang parser are used directly. Their name is identical to
// the Flang class with first letter as lowercase. If the Flang class is
// not a common class, we assume there is a specific Parser<>{} with the
// Flang class name provided.
SmallString<128> Scratch;
StringRef Parser =
StringSwitch<StringRef>(Clause.getFlangClass())
.Case("Name", "name")
.Case("ScalarIntConstantExpr", "scalarIntConstantExpr")
.Case("ScalarIntExpr", "scalarIntExpr")
.Case("ScalarExpr", "scalarExpr")
.Case("ScalarLogicalExpr", "scalarLogicalExpr")
.Default(("Parser<" + Clause.getFlangClass() + ">{}")
.toStringRef(Scratch));
OS << Parser;
if (!Clause.getPrefix().empty() && Clause.isPrefixOptional())
OS << " || " << Parser;
if (Clause.isValueList()) // close nonemptyList(.
OS << ")";
OS << ")"; // close parenthesized(.
if (Clause.isValueOptional()) // close maybe(.
OS << ")";
OS << "))";
if (Index != LastClauseIndex)
OS << " ||";
OS << "\n";
++Index;
}
OS << ")\n";
}
// Generate the implementation section for the enumeration in the directive
// language
static void emitDirectivesClangImpl(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
// Currently we only have work to do for OpenACC, so skip otherwise.
if (DirLang.getName() != "OpenACC")
return;
generateDirectiveClauseSets(DirLang, DirectiveClauseFE::Clang, OS);
generateDirectiveClauseMap(DirLang, DirectiveClauseFE::Clang, OS);
}
// Generate the implementation section for the enumeration in the directive
// language
static void emitDirectivesFlangImpl(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
generateDirectiveClauseSets(DirLang, DirectiveClauseFE::Flang, OS);
generateDirectiveClauseMap(DirLang, DirectiveClauseFE::Flang, OS);
generateFlangClauseParserClass(DirLang, OS);
generateFlangClauseParserClassList(DirLang, OS);
generateFlangClauseDump(DirLang, OS);
generateFlangClauseUnparse(DirLang, OS);
generateFlangClauseCheckPrototypes(DirLang, OS);
generateFlangClauseParserKindMap(DirLang, OS);
generateFlangClausesParser(DirLang, OS);
}
static void generateClauseClassMacro(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
// Generate macros style information for legacy code in clang
IfDefScope Scope("GEN_CLANG_CLAUSE_CLASS", OS);
OS << "\n";
OS << "#ifndef CLAUSE\n";
OS << "#define CLAUSE(Enum, Str, Implicit)\n";
OS << "#endif\n";
OS << "#ifndef CLAUSE_CLASS\n";
OS << "#define CLAUSE_CLASS(Enum, Str, Class)\n";
OS << "#endif\n";
OS << "#ifndef CLAUSE_NO_CLASS\n";
OS << "#define CLAUSE_NO_CLASS(Enum, Str)\n";
OS << "#endif\n";
OS << "\n";
OS << "#define __CLAUSE(Name, Class) \\\n";
OS << " CLAUSE(" << DirLang.getClausePrefix()
<< "##Name, #Name, /* Implicit */ false) \\\n";
OS << " CLAUSE_CLASS(" << DirLang.getClausePrefix()
<< "##Name, #Name, Class)\n";
OS << "#define __CLAUSE_NO_CLASS(Name) \\\n";
OS << " CLAUSE(" << DirLang.getClausePrefix()
<< "##Name, #Name, /* Implicit */ false) \\\n";
OS << " CLAUSE_NO_CLASS(" << DirLang.getClausePrefix() << "##Name, #Name)\n";
OS << "#define __IMPLICIT_CLAUSE_CLASS(Name, Str, Class) \\\n";
OS << " CLAUSE(" << DirLang.getClausePrefix()
<< "##Name, Str, /* Implicit */ true) \\\n";
OS << " CLAUSE_CLASS(" << DirLang.getClausePrefix()
<< "##Name, Str, Class)\n";
OS << "#define __IMPLICIT_CLAUSE_NO_CLASS(Name, Str) \\\n";
OS << " CLAUSE(" << DirLang.getClausePrefix()
<< "##Name, Str, /* Implicit */ true) \\\n";
OS << " CLAUSE_NO_CLASS(" << DirLang.getClausePrefix() << "##Name, Str)\n";
OS << "\n";
for (const Clause C : DirLang.getClauses()) {
if (C.getClangClass().empty()) { // NO_CLASS
if (C.isImplicit()) {
OS << "__IMPLICIT_CLAUSE_NO_CLASS(" << C.getFormattedName() << ", \""
<< C.getFormattedName() << "\")\n";
} else {
OS << "__CLAUSE_NO_CLASS(" << C.getFormattedName() << ")\n";
}
} else { // CLASS
if (C.isImplicit()) {
OS << "__IMPLICIT_CLAUSE_CLASS(" << C.getFormattedName() << ", \""
<< C.getFormattedName() << "\", " << C.getClangClass() << ")\n";
} else {
OS << "__CLAUSE(" << C.getFormattedName() << ", " << C.getClangClass()
<< ")\n";
}
}
}
OS << "\n";
OS << "#undef __IMPLICIT_CLAUSE_NO_CLASS\n";
OS << "#undef __IMPLICIT_CLAUSE_CLASS\n";
OS << "#undef __CLAUSE_NO_CLASS\n";
OS << "#undef __CLAUSE\n";
OS << "#undef CLAUSE_NO_CLASS\n";
OS << "#undef CLAUSE_CLASS\n";
OS << "#undef CLAUSE\n";
}
// Generate the implemenation for the enumeration in the directive
// language. This code can be included in library.
void emitDirectivesBasicImpl(const DirectiveLanguage &DirLang,
raw_ostream &OS) {
IfDefScope Scope("GEN_DIRECTIVES_IMPL", OS);
OS << "\n#include \"llvm/Support/ErrorHandling.h\"\n";
// getDirectiveKind(StringRef Str)
generateGetKind(DirLang.getDirectives(), OS, "Directive", DirLang,
DirLang.getDirectivePrefix(), /*ImplicitAsUnknown=*/false);
// getDirectiveName(Directive Kind)
generateGetName(DirLang.getDirectives(), OS, "Directive", DirLang,
DirLang.getDirectivePrefix());
// getClauseKind(StringRef Str)
generateGetKind(DirLang.getClauses(), OS, "Clause", DirLang,
DirLang.getClausePrefix(),
/*ImplicitAsUnknown=*/true);
// getClauseName(Clause Kind)
generateGetName(DirLang.getClauses(), OS, "Clause", DirLang,
DirLang.getClausePrefix());
// get<ClauseVal>Kind(StringRef Str)
generateGetKindClauseVal(DirLang, OS);
// isAllowedClauseForDirective(Directive D, Clause C, unsigned Version)
generateIsAllowedClause(DirLang, OS);
// getDirectiveAssociation(Directive D)
generateGetDirectiveAssociation(DirLang, OS);
// getDirectiveCategory(Directive D)
generateGetDirectiveCategory(DirLang, OS);
// Leaf table for getLeafConstructs, etc.
emitLeafTable(DirLang, OS, "LeafConstructTable");
}
// Generate the implemenation section for the enumeration in the directive
// language.
static void emitDirectivesImpl(const RecordKeeper &Records, raw_ostream &OS) {
const auto DirLang = DirectiveLanguage(Records);
if (DirLang.HasValidityErrors())
return;
emitDirectivesFlangImpl(DirLang, OS);
emitDirectivesClangImpl(DirLang, OS);
generateClauseClassMacro(DirLang, OS);
emitDirectivesBasicImpl(DirLang, OS);
}
static TableGen::Emitter::Opt
X("gen-directive-decl", emitDirectivesDecl,
"Generate directive related declaration code (header file)");
static TableGen::Emitter::Opt
Y("gen-directive-impl", emitDirectivesImpl,
"Generate directive related implementation code");