Moves `PackOp` and `UnPackOp` from the Tensor dialect to Linalg. This change was discussed in the following RFC: * https://discourse.llvm.org/t/rfc-move-tensor-pack-and-tensor-unpack-into-linalg This change involves significant churn but only relocates existing code - no new functionality is added. **Note for Downstream Users** Downstream users must update references to `PackOp` and `UnPackOp` as follows: * Code: `s/tensor::(Up)PackOp/linalg::(Un)PackOp/g` * Tests: `s/tensor.(un)pack/linalg.(un)pack/g` No other modifications should be required.
139 lines
5.3 KiB
C++
139 lines
5.3 KiB
C++
//===- EmptyOpPatterns.cpp - Patterns related to tensor.empty folding ----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::tensor;
|
|
|
|
namespace {
|
|
|
|
template <typename ReshapeOp>
|
|
struct FoldEmptyTensorWithReshapeOp : public OpRewritePattern<ReshapeOp> {
|
|
FoldEmptyTensorWithReshapeOp(MLIRContext *ctx, PatternBenefit benefit = 1,
|
|
bool foldSingleUseOnly = false)
|
|
: OpRewritePattern<ReshapeOp>(ctx, benefit),
|
|
foldSingleUseOnly(foldSingleUseOnly) {}
|
|
|
|
LogicalResult matchAndRewrite(ReshapeOp reshapeOp,
|
|
PatternRewriter &rewriter) const override {
|
|
// Check for tensor.empty source.
|
|
auto emptyOp = reshapeOp.getSrc().template getDefiningOp<EmptyOp>();
|
|
if (!emptyOp)
|
|
return failure();
|
|
|
|
// Check for single use.
|
|
if (foldSingleUseOnly && !llvm::hasSingleElement(emptyOp->getUses()))
|
|
return failure();
|
|
|
|
// Reify result shape.
|
|
Location loc = reshapeOp.getLoc();
|
|
ReifiedRankedShapedTypeDims resultShapes;
|
|
if (failed(reifyResultShapes(rewriter, reshapeOp, resultShapes)) ||
|
|
!llvm::hasSingleElement(resultShapes))
|
|
return failure();
|
|
|
|
// Create new tensor.empty op.
|
|
// TODO: Do not drop tensor type encoding.
|
|
Value emptyTensor = rewriter.create<EmptyOp>(
|
|
loc, resultShapes[0], reshapeOp.getResultType().getElementType());
|
|
if (emptyTensor.getType() != reshapeOp.getResultType()) {
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(
|
|
reshapeOp, reshapeOp.getResultType(), emptyTensor);
|
|
} else {
|
|
rewriter.replaceOp(reshapeOp, emptyTensor);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
bool foldSingleUseOnly = false;
|
|
};
|
|
|
|
/// tensor.empty does not define any tensor contents, so a slice of a
|
|
/// tensor.empty can be folded to a smaller tensor.empty.
|
|
struct FoldEmptyTensorWithExtractSliceOp
|
|
: public OpRewritePattern<ExtractSliceOp> {
|
|
FoldEmptyTensorWithExtractSliceOp(MLIRContext *ctx,
|
|
PatternBenefit benefit = 1,
|
|
bool foldSingleUseOnly = false)
|
|
: OpRewritePattern<ExtractSliceOp>(ctx, benefit),
|
|
foldSingleUseOnly(foldSingleUseOnly) {}
|
|
|
|
LogicalResult matchAndRewrite(ExtractSliceOp sliceOp,
|
|
PatternRewriter &rewriter) const override {
|
|
// Check for tensor.empty source.
|
|
auto emptyOp = sliceOp.getSource().template getDefiningOp<EmptyOp>();
|
|
if (!emptyOp)
|
|
return failure();
|
|
|
|
// Check for single use.
|
|
if (foldSingleUseOnly && !llvm::hasSingleElement(emptyOp->getUses()))
|
|
return failure();
|
|
|
|
// Create new tensor.empty op. tensor.extract_slice may be rank-reducing;
|
|
// its dynamic sizes must be preserved as well as its result type.
|
|
auto tensorType = RankedTensorType::get(sliceOp.getType().getShape(),
|
|
sliceOp.getType().getElementType(),
|
|
sliceOp.getType().getEncoding());
|
|
rewriter.replaceOpWithNewOp<EmptyOp>(sliceOp, tensorType,
|
|
sliceOp.getSizes());
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
bool foldSingleUseOnly = false;
|
|
};
|
|
|
|
// Fold concat operation where all the operands are empty.
|
|
struct FoldConcatsOfEmpty : public OpRewritePattern<ConcatOp> {
|
|
using OpRewritePattern<ConcatOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(tensor::ConcatOp concatOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto concatOperands = concatOp.getInputs();
|
|
if (concatOperands.empty()) {
|
|
return failure();
|
|
}
|
|
auto firstEmptyOp = concatOperands.front().getDefiningOp<tensor::EmptyOp>();
|
|
if (!firstEmptyOp) {
|
|
return failure();
|
|
}
|
|
auto isDefinedByEmptyOp = [](Value v) -> bool {
|
|
return v.getDefiningOp<tensor::EmptyOp>();
|
|
};
|
|
if (!llvm::all_of(concatOperands.drop_front(), isDefinedByEmptyOp)) {
|
|
return rewriter.notifyMatchFailure(
|
|
concatOp, "not all operands are defined by an empty op");
|
|
}
|
|
SmallVector<SmallVector<OpFoldResult>> resultShape;
|
|
if (failed(concatOp.reifyResultShapes(rewriter, resultShape))) {
|
|
return rewriter.notifyMatchFailure(concatOp,
|
|
"failed to get result shape");
|
|
}
|
|
rewriter.replaceOpWithNewOp<tensor::EmptyOp>(
|
|
concatOp, resultShape[0], concatOp.getResultType().getElementType());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void mlir::tensor::populateFoldTensorEmptyPatterns(RewritePatternSet &patterns,
|
|
bool foldSingleUseOnly) {
|
|
patterns.add<FoldEmptyTensorWithExtractSliceOp,
|
|
FoldEmptyTensorWithReshapeOp<tensor::ExpandShapeOp>,
|
|
FoldEmptyTensorWithReshapeOp<tensor::CollapseShapeOp>>(
|
|
patterns.getContext(), /*benefit=*/1, foldSingleUseOnly);
|
|
patterns.add<FoldConcatsOfEmpty>(patterns.getContext(),
|
|
/*benefit=*/1);
|
|
}
|