Files
clang-p2996/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp
Aart Bik 86b22d3120 [mlir][sparse] start a sparse codegen conversion pass
This new pass provides an alternative to the current conversion pass
that converts sparse tensor types and sparse primitives to opaque pointers
and calls into a runtime support library. This pass will map sparse tensor
types to actual data structures and primitives to actual code. In the long
run, this new pass will remove our dependence on the support library, avoid
the need to link in fully templated and expanded code, and provide much better
opportunities for optimization on the generated code.

Reviewed By: Peiming

Differential Revision: https://reviews.llvm.org/D132766
2022-08-29 09:39:33 -07:00

254 lines
10 KiB
C++

//===- SparseTensorPasses.cpp - Pass for autogen sparse tensor code -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Func/Transforms/FuncConversions.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
//===----------------------------------------------------------------------===//
// Passes declaration.
//===----------------------------------------------------------------------===//
#define GEN_PASS_CLASSES
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h.inc"
//===----------------------------------------------------------------------===//
// Passes implementation.
//===----------------------------------------------------------------------===//
struct SparsificationPass : public SparsificationBase<SparsificationPass> {
SparsificationPass() = default;
SparsificationPass(const SparsificationPass &pass) = default;
SparsificationPass(const SparsificationOptions &options) {
parallelization = static_cast<int32_t>(options.parallelizationStrategy);
vectorization = static_cast<int32_t>(options.vectorizationStrategy);
vectorLength = options.vectorLength;
enableSIMDIndex32 = options.enableSIMDIndex32;
enableVLAVectorization = options.enableVLAVectorization;
}
void runOnOperation() override {
auto *ctx = &getContext();
// Apply pre-rewriting.
RewritePatternSet prePatterns(ctx);
populateSparseTensorRewriting(prePatterns);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(prePatterns));
// Translate strategy flags to strategy options.
SparsificationOptions options(
sparseParallelizationStrategy(parallelization),
sparseVectorizationStrategy(vectorization), vectorLength,
enableSIMDIndex32, enableVLAVectorization);
// Apply sparsification and vector cleanup rewriting.
RewritePatternSet patterns(ctx);
populateSparsificationPatterns(patterns, options);
vector::populateVectorToVectorCanonicalizationPatterns(patterns);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
};
struct SparseTensorConversionPass
: public SparseTensorConversionBase<SparseTensorConversionPass> {
SparseTensorConversionPass() = default;
SparseTensorConversionPass(const SparseTensorConversionPass &pass) = default;
SparseTensorConversionPass(const SparseTensorConversionOptions &options) {
sparseToSparse = static_cast<int32_t>(options.sparseToSparseStrategy);
}
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
SparseTensorTypeToPtrConverter converter;
ConversionTarget target(*ctx);
// Everything in the sparse dialect must go!
target.addIllegalDialect<SparseTensorDialect>();
// All dynamic rules below accept new function, call, return, and various
// tensor and bufferization operations as legal output of the rewriting
// provided that all sparse tensor types have been fully rewritten.
target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) {
return converter.isSignatureLegal(op.getFunctionType());
});
target.addDynamicallyLegalOp<func::CallOp>([&](func::CallOp op) {
return converter.isSignatureLegal(op.getCalleeType());
});
target.addDynamicallyLegalOp<func::ReturnOp>([&](func::ReturnOp op) {
return converter.isLegal(op.getOperandTypes());
});
target.addDynamicallyLegalOp<tensor::DimOp>([&](tensor::DimOp op) {
return converter.isLegal(op.getOperandTypes());
});
target.addDynamicallyLegalOp<tensor::CastOp>([&](tensor::CastOp op) {
return converter.isLegal(op.getSource().getType()) &&
converter.isLegal(op.getDest().getType());
});
target.addDynamicallyLegalOp<tensor::ExpandShapeOp>(
[&](tensor::ExpandShapeOp op) {
return converter.isLegal(op.getSrc().getType()) &&
converter.isLegal(op.getResult().getType());
});
target.addDynamicallyLegalOp<tensor::CollapseShapeOp>(
[&](tensor::CollapseShapeOp op) {
return converter.isLegal(op.getSrc().getType()) &&
converter.isLegal(op.getResult().getType());
});
target.addDynamicallyLegalOp<bufferization::AllocTensorOp>(
[&](bufferization::AllocTensorOp op) {
return converter.isLegal(op.getType());
});
target.addDynamicallyLegalOp<bufferization::DeallocTensorOp>(
[&](bufferization::DeallocTensorOp op) {
return converter.isLegal(op.getTensor().getType());
});
// The following operations and dialects may be introduced by the
// rewriting rules, and are therefore marked as legal.
target.addLegalOp<bufferization::ToMemrefOp, bufferization::ToTensorOp,
complex::ConstantOp, complex::NotEqualOp, linalg::FillOp,
linalg::YieldOp, tensor::ExtractOp>();
target.addLegalDialect<
arith::ArithmeticDialect, bufferization::BufferizationDialect,
LLVM::LLVMDialect, memref::MemRefDialect, scf::SCFDialect>();
// Translate strategy flags to strategy options.
SparseTensorConversionOptions options(
sparseToSparseConversionStrategy(sparseToSparse));
// Populate with rules and apply rewriting rules.
populateFunctionOpInterfaceTypeConversionPattern<func::FuncOp>(patterns,
converter);
populateCallOpTypeConversionPattern(patterns, converter);
scf::populateSCFStructuralTypeConversionsAndLegality(converter, patterns,
target);
populateSparseTensorConversionPatterns(converter, patterns, options);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
struct SparseTensorCodegenPass
: public SparseTensorCodegenBase<SparseTensorCodegenPass> {
SparseTensorCodegenPass() = default;
SparseTensorCodegenPass(const SparseTensorCodegenPass &pass) = default;
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
SparseTensorTypeToBufferConverter converter;
ConversionTarget target(*ctx);
// Everything in the sparse dialect must go!
target.addIllegalDialect<SparseTensorDialect>();
// All dynamic rules below accept new function, call, return, and various
// tensor and bufferization operations as legal output of the rewriting.
target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) {
return converter.isSignatureLegal(op.getFunctionType());
});
target.addDynamicallyLegalOp<func::CallOp>([&](func::CallOp op) {
return converter.isSignatureLegal(op.getCalleeType());
});
target.addDynamicallyLegalOp<func::ReturnOp>([&](func::ReturnOp op) {
return converter.isLegal(op.getOperandTypes());
});
// Populate with rules and apply rewriting rules.
populateFunctionOpInterfaceTypeConversionPattern<func::FuncOp>(patterns,
converter);
populateCallOpTypeConversionPattern(patterns, converter);
scf::populateSCFStructuralTypeConversionsAndLegality(converter, patterns,
target);
populateSparseTensorCodegenPatterns(converter, patterns);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Strategy flag methods.
//===----------------------------------------------------------------------===//
SparseParallelizationStrategy
mlir::sparseParallelizationStrategy(int32_t flag) {
switch (flag) {
default:
return SparseParallelizationStrategy::kNone;
case 1:
return SparseParallelizationStrategy::kDenseOuterLoop;
case 2:
return SparseParallelizationStrategy::kAnyStorageOuterLoop;
case 3:
return SparseParallelizationStrategy::kDenseAnyLoop;
case 4:
return SparseParallelizationStrategy::kAnyStorageAnyLoop;
}
}
SparseVectorizationStrategy mlir::sparseVectorizationStrategy(int32_t flag) {
switch (flag) {
default:
return SparseVectorizationStrategy::kNone;
case 1:
return SparseVectorizationStrategy::kDenseInnerLoop;
case 2:
return SparseVectorizationStrategy::kAnyStorageInnerLoop;
}
}
SparseToSparseConversionStrategy
mlir::sparseToSparseConversionStrategy(int32_t flag) {
switch (flag) {
default:
return SparseToSparseConversionStrategy::kAuto;
case 1:
return SparseToSparseConversionStrategy::kViaCOO;
case 2:
return SparseToSparseConversionStrategy::kDirect;
}
}
//===----------------------------------------------------------------------===//
// Pass creation methods.
//===----------------------------------------------------------------------===//
std::unique_ptr<Pass> mlir::createSparsificationPass() {
return std::make_unique<SparsificationPass>();
}
std::unique_ptr<Pass>
mlir::createSparsificationPass(const SparsificationOptions &options) {
return std::make_unique<SparsificationPass>(options);
}
std::unique_ptr<Pass> mlir::createSparseTensorConversionPass() {
return std::make_unique<SparseTensorConversionPass>();
}
std::unique_ptr<Pass> mlir::createSparseTensorConversionPass(
const SparseTensorConversionOptions &options) {
return std::make_unique<SparseTensorConversionPass>(options);
}
std::unique_ptr<Pass> mlir::createSparseTensorCodegenPass() {
return std::make_unique<SparseTensorCodegenPass>();
}