Files
clang-p2996/llvm/test/Transforms/InstCombine/and2.ll
Nikita Popov d9a5aa8e2d [PatternMatch] Do not accept undef elements in m_AllOnes() and friends (#88217)
Change all the cstval_pred_ty based PatternMatch helpers (things like
m_AllOnes and m_Zero) to only allow poison elements inside vector
splats, not undef elements.

Historically, we used to represent non-demanded elements in vectors
using undef. Nowadays, we use poison instead. As such, I believe that
support for undef in vector splats is no longer useful.

At the same time, while poison splat elements are pretty much always
safe to ignore, this is not generally the case for undef elements. We
have existing miscompiles in our tests due to this (see the
masked-merge-*.ll tests changed here) and it's easy to miss such cases
in the future, now that we write tests using poison instead of undef
elements.

I think overall, keeping support for undef elements no longer makes
sense, and we should drop it. Once this is done consistently, I think we
may also consider allowing poison in m_APInt by default, as doing that
change is much less risky than doing the same with undef.

This change involves a substantial amount of test changes. For most
tests, I've just replaced undef with poison, as I don't think there is
value in retaining both. For some tests (where the distinction between
undef and poison is important), I've duplicated tests.
2024-04-17 18:22:05 +09:00

288 lines
8.4 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -passes=instcombine -S | FileCheck %s
define i1 @test2(i1 %X, i1 %Y) {
; CHECK-LABEL: @test2(
; CHECK-NEXT: [[A:%.*]] = and i1 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: ret i1 [[A]]
;
%a = and i1 %X, %Y
%b = and i1 %a, %X
ret i1 %b
}
define i1 @test2_logical(i1 %X, i1 %Y) {
; CHECK-LABEL: @test2_logical(
; CHECK-NEXT: [[A:%.*]] = select i1 [[X:%.*]], i1 [[Y:%.*]], i1 false
; CHECK-NEXT: ret i1 [[A]]
;
%a = select i1 %X, i1 %Y, i1 false
%b = select i1 %a, i1 %X, i1 false
ret i1 %b
}
define i32 @test3(i32 %X, i32 %Y) {
; CHECK-LABEL: @test3(
; CHECK-NEXT: [[A:%.*]] = and i32 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: ret i32 [[A]]
;
%a = and i32 %X, %Y
%b = and i32 %Y, %a
ret i32 %b
}
define i1 @test7(i32 %i, i1 %b) {
; CHECK-LABEL: @test7(
; CHECK-NEXT: [[TMP1:%.*]] = icmp eq i32 [[I:%.*]], 0
; CHECK-NEXT: [[AND2:%.*]] = and i1 [[TMP1]], [[B:%.*]]
; CHECK-NEXT: ret i1 [[AND2]]
;
%cmp1 = icmp slt i32 %i, 1
%cmp2 = icmp sgt i32 %i, -1
%and1 = and i1 %cmp1, %b
%and2 = and i1 %and1, %cmp2
ret i1 %and2
}
define i1 @test7_logical(i32 %i, i1 %b) {
; CHECK-LABEL: @test7_logical(
; CHECK-NEXT: [[TMP1:%.*]] = icmp eq i32 [[I:%.*]], 0
; CHECK-NEXT: [[AND2:%.*]] = select i1 [[TMP1]], i1 [[B:%.*]], i1 false
; CHECK-NEXT: ret i1 [[AND2]]
;
%cmp1 = icmp slt i32 %i, 1
%cmp2 = icmp sgt i32 %i, -1
%and1 = select i1 %cmp1, i1 %b, i1 false
%and2 = select i1 %and1, i1 %cmp2, i1 false
ret i1 %and2
}
define i1 @test8(i32 %i) {
; CHECK-LABEL: @test8(
; CHECK-NEXT: [[TMP1:%.*]] = add i32 [[I:%.*]], -1
; CHECK-NEXT: [[COND:%.*]] = icmp ult i32 [[TMP1]], 13
; CHECK-NEXT: ret i1 [[COND]]
;
%cmp1 = icmp ne i32 %i, 0
%cmp2 = icmp ult i32 %i, 14
%cond = and i1 %cmp1, %cmp2
ret i1 %cond
}
define i1 @test8_logical(i32 %i) {
; CHECK-LABEL: @test8_logical(
; CHECK-NEXT: [[TMP1:%.*]] = add i32 [[I:%.*]], -1
; CHECK-NEXT: [[COND:%.*]] = icmp ult i32 [[TMP1]], 13
; CHECK-NEXT: ret i1 [[COND]]
;
%cmp1 = icmp ne i32 %i, 0
%cmp2 = icmp ult i32 %i, 14
%cond = select i1 %cmp1, i1 %cmp2, i1 false
ret i1 %cond
}
define <2 x i1> @test8vec(<2 x i32> %i) {
; CHECK-LABEL: @test8vec(
; CHECK-NEXT: [[TMP1:%.*]] = add <2 x i32> [[I:%.*]], <i32 -1, i32 -1>
; CHECK-NEXT: [[COND:%.*]] = icmp ult <2 x i32> [[TMP1]], <i32 13, i32 13>
; CHECK-NEXT: ret <2 x i1> [[COND]]
;
%cmp1 = icmp ne <2 x i32> %i, zeroinitializer
%cmp2 = icmp ult <2 x i32> %i, <i32 14, i32 14>
%cond = and <2 x i1> %cmp1, %cmp2
ret <2 x i1> %cond
}
; combine -x & 1 into x & 1
define i64 @test9(i64 %x) {
; CHECK-LABEL: @test9(
; CHECK-NEXT: [[AND:%.*]] = and i64 [[X:%.*]], 1
; CHECK-NEXT: ret i64 [[AND]]
;
%sub = sub nsw i64 0, %x
%and = and i64 %sub, 1
ret i64 %and
}
; combine -x & 1 into x & 1
define <2 x i64> @test9vec(<2 x i64> %x) {
; CHECK-LABEL: @test9vec(
; CHECK-NEXT: [[AND:%.*]] = and <2 x i64> [[X:%.*]], <i64 1, i64 1>
; CHECK-NEXT: ret <2 x i64> [[AND]]
;
%sub = sub nsw <2 x i64> <i64 0, i64 0>, %x
%and = and <2 x i64> %sub, <i64 1, i64 1>
ret <2 x i64> %and
}
define i64 @test10(i64 %x) {
; CHECK-LABEL: @test10(
; CHECK-NEXT: [[TMP1:%.*]] = and i64 [[X:%.*]], -2
; CHECK-NEXT: [[ADD:%.*]] = sub i64 0, [[TMP1]]
; CHECK-NEXT: ret i64 [[ADD]]
;
%sub = sub nsw i64 0, %x
%and = and i64 %sub, 1
%add = add i64 %sub, %and
ret i64 %add
}
; (1 << x) & 1 --> zext(x == 0)
define i8 @and1_shl1_is_cmp_eq_0(i8 %x) {
; CHECK-LABEL: @and1_shl1_is_cmp_eq_0(
; CHECK-NEXT: [[TMP1:%.*]] = icmp eq i8 [[X:%.*]], 0
; CHECK-NEXT: [[AND:%.*]] = zext i1 [[TMP1]] to i8
; CHECK-NEXT: ret i8 [[AND]]
;
%sh = shl i8 1, %x
%and = and i8 %sh, 1
ret i8 %and
}
; Don't do it if the shift has another use.
define i8 @and1_shl1_is_cmp_eq_0_multiuse(i8 %x) {
; CHECK-LABEL: @and1_shl1_is_cmp_eq_0_multiuse(
; CHECK-NEXT: [[SH:%.*]] = shl nuw i8 1, [[X:%.*]]
; CHECK-NEXT: [[AND:%.*]] = and i8 [[SH]], 1
; CHECK-NEXT: [[ADD:%.*]] = add nuw i8 [[SH]], [[AND]]
; CHECK-NEXT: ret i8 [[ADD]]
;
%sh = shl i8 1, %x
%and = and i8 %sh, 1
%add = add i8 %sh, %and
ret i8 %add
}
; (1 << x) & 1 --> zext(x == 0)
define <2 x i8> @and1_shl1_is_cmp_eq_0_vec(<2 x i8> %x) {
; CHECK-LABEL: @and1_shl1_is_cmp_eq_0_vec(
; CHECK-NEXT: [[TMP1:%.*]] = icmp eq <2 x i8> [[X:%.*]], zeroinitializer
; CHECK-NEXT: [[AND:%.*]] = zext <2 x i1> [[TMP1]] to <2 x i8>
; CHECK-NEXT: ret <2 x i8> [[AND]]
;
%sh = shl <2 x i8> <i8 1, i8 1>, %x
%and = and <2 x i8> %sh, <i8 1, i8 1>
ret <2 x i8> %and
}
define <2 x i8> @and1_shl1_is_cmp_eq_0_vec_poison(<2 x i8> %x) {
; CHECK-LABEL: @and1_shl1_is_cmp_eq_0_vec_poison(
; CHECK-NEXT: [[TMP1:%.*]] = icmp eq <2 x i8> [[X:%.*]], zeroinitializer
; CHECK-NEXT: [[AND:%.*]] = zext <2 x i1> [[TMP1]] to <2 x i8>
; CHECK-NEXT: ret <2 x i8> [[AND]]
;
%sh = shl <2 x i8> <i8 1, i8 poison>, %x
%and = and <2 x i8> %sh, <i8 1, i8 poison>
ret <2 x i8> %and
}
; The mask is unnecessary.
define i8 @and1_lshr1_is_cmp_eq_0(i8 %x) {
; CHECK-LABEL: @and1_lshr1_is_cmp_eq_0(
; CHECK-NEXT: [[SH:%.*]] = lshr i8 1, [[X:%.*]]
; CHECK-NEXT: ret i8 [[SH]]
;
%sh = lshr i8 1, %x
%and = and i8 %sh, 1
ret i8 %and
}
define i8 @and1_lshr1_is_cmp_eq_0_multiuse(i8 %x) {
; CHECK-LABEL: @and1_lshr1_is_cmp_eq_0_multiuse(
; CHECK-NEXT: [[SH:%.*]] = lshr i8 1, [[X:%.*]]
; CHECK-NEXT: [[ADD:%.*]] = shl nuw nsw i8 [[SH]], 1
; CHECK-NEXT: ret i8 [[ADD]]
;
%sh = lshr i8 1, %x
%and = and i8 %sh, 1
%add = add i8 %sh, %and
ret i8 %add
}
; The mask is unnecessary.
define <2 x i8> @and1_lshr1_is_cmp_eq_0_vec(<2 x i8> %x) {
; CHECK-LABEL: @and1_lshr1_is_cmp_eq_0_vec(
; CHECK-NEXT: [[SH:%.*]] = lshr <2 x i8> <i8 1, i8 1>, [[X:%.*]]
; CHECK-NEXT: ret <2 x i8> [[SH]]
;
%sh = lshr <2 x i8> <i8 1, i8 1>, %x
%and = and <2 x i8> %sh, <i8 1, i8 1>
ret <2 x i8> %and
}
define <2 x i8> @and1_lshr1_is_cmp_eq_0_vec_poison(<2 x i8> %x) {
; CHECK-LABEL: @and1_lshr1_is_cmp_eq_0_vec_poison(
; CHECK-NEXT: [[AND:%.*]] = lshr <2 x i8> <i8 1, i8 poison>, [[X:%.*]]
; CHECK-NEXT: ret <2 x i8> [[AND]]
;
%sh = lshr <2 x i8> <i8 1, i8 poison>, %x
%and = and <2 x i8> %sh, <i8 1, i8 poison>
ret <2 x i8> %and
}
; The add in this test is unnecessary because the LSBs of the LHS are 0 and the 'and' only consumes bits from those LSBs. It doesn't matter what happens to the upper bits.
define i32 @test11(i32 %a, i32 %b) {
; CHECK-LABEL: @test11(
; CHECK-NEXT: [[X:%.*]] = shl i32 [[A:%.*]], 8
; CHECK-NEXT: [[Z:%.*]] = and i32 [[B:%.*]], 128
; CHECK-NEXT: [[W:%.*]] = mul i32 [[Z]], [[X]]
; CHECK-NEXT: ret i32 [[W]]
;
%x = shl i32 %a, 8
%y = add i32 %x, %b
%z = and i32 %y, 128
%w = mul i32 %z, %x ; to keep the shift from being removed
ret i32 %w
}
; The add in this test is unnecessary because the LSBs of the RHS are 0 and the 'and' only consumes bits from those LSBs. It doesn't matter what happens to the upper bits.
define i32 @test12(i32 %a, i32 %b) {
; CHECK-LABEL: @test12(
; CHECK-NEXT: [[X:%.*]] = shl i32 [[A:%.*]], 8
; CHECK-NEXT: [[Z:%.*]] = and i32 [[B:%.*]], 128
; CHECK-NEXT: [[W:%.*]] = mul i32 [[Z]], [[X]]
; CHECK-NEXT: ret i32 [[W]]
;
%x = shl i32 %a, 8
%y = add i32 %b, %x
%z = and i32 %y, 128
%w = mul i32 %z, %x ; to keep the shift from being removed
ret i32 %w
}
; The sub in this test is unnecessary because the LSBs of the RHS are 0 and the 'and' only consumes bits from those LSBs. It doesn't matter what happens to the upper bits.
define i32 @test13(i32 %a, i32 %b) {
; CHECK-LABEL: @test13(
; CHECK-NEXT: [[X:%.*]] = shl i32 [[A:%.*]], 8
; CHECK-NEXT: [[Z:%.*]] = and i32 [[B:%.*]], 128
; CHECK-NEXT: [[W:%.*]] = mul i32 [[Z]], [[X]]
; CHECK-NEXT: ret i32 [[W]]
;
%x = shl i32 %a, 8
%y = sub i32 %b, %x
%z = and i32 %y, 128
%w = mul i32 %z, %x ; to keep the shift from being removed
ret i32 %w
}
; The sub in this test cannot be removed because we need to keep the negation of %b. TODO: But we should be able to replace the LHS of it with a 0.
define i32 @test14(i32 %a, i32 %b) {
; CHECK-LABEL: @test14(
; CHECK-NEXT: [[X:%.*]] = shl i32 [[A:%.*]], 8
; CHECK-NEXT: [[Y:%.*]] = sub i32 0, [[B:%.*]]
; CHECK-NEXT: [[Z:%.*]] = and i32 [[Y]], 128
; CHECK-NEXT: [[W:%.*]] = mul i32 [[Z]], [[X]]
; CHECK-NEXT: ret i32 [[W]]
;
%x = shl i32 %a, 8
%y = sub i32 %x, %b
%z = and i32 %y, 128
%w = mul i32 %z, %x ; to keep the shift from being removed
ret i32 %w
}