Files
clang-p2996/llvm/test/Transforms/InstCombine/xor2.ll
Nikita Popov a105877646 [InstCombine] Remove some of the complexity-based canonicalization (#91185)
The idea behind this canonicalization is that it allows us to handle less
patterns, because we know that some will be canonicalized away. This is
indeed very useful to e.g. know that constants are always on the right.

However, this is only useful if the canonicalization is actually
reliable. This is the case for constants, but not for arguments: Moving
these to the right makes it look like the "more complex" expression is
guaranteed to be on the left, but this is not actually the case in
practice. It fails as soon as you replace the argument with another
instruction.

The end result is that it looks like things correctly work in tests,
while they actually don't. We use the "thwart complexity-based
canonicalization" trick to handle this in tests, but it's often a
challenge for new contributors to get this right, and based on the
regressions this PR originally exposed, we clearly don't get this right
in many cases.

For this reason, I think that it's better to remove this complexity
canonicalization. It will make it much easier to write tests for
commuted cases and make sure that they are handled.
2024-08-21 12:02:54 +02:00

746 lines
22 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -passes=instcombine -S | FileCheck %s
; PR1253
define i1 @test0(i32 %A) {
; CHECK-LABEL: @test0(
; CHECK-NEXT: [[C:%.*]] = icmp slt i32 [[A:%.*]], 0
; CHECK-NEXT: ret i1 [[C]]
;
%B = xor i32 %A, -2147483648
%C = icmp sgt i32 %B, -1
ret i1 %C
}
define <2 x i1> @test0vec(<2 x i32> %A) {
; CHECK-LABEL: @test0vec(
; CHECK-NEXT: [[C:%.*]] = icmp slt <2 x i32> [[A:%.*]], zeroinitializer
; CHECK-NEXT: ret <2 x i1> [[C]]
;
%B = xor <2 x i32> %A, <i32 -2147483648, i32 -2147483648>
%C = icmp sgt <2 x i32> %B, <i32 -1, i32 -1>
ret <2 x i1> %C
}
define i1 @test1(i32 %A) {
; CHECK-LABEL: @test1(
; CHECK-NEXT: [[C:%.*]] = icmp slt i32 [[A:%.*]], 0
; CHECK-NEXT: ret i1 [[C]]
;
%B = xor i32 %A, 12345
%C = icmp slt i32 %B, 0
ret i1 %C
}
; PR1014
define i32 @test2(i32 %t1) {
; CHECK-LABEL: @test2(
; CHECK-NEXT: [[OVM:%.*]] = and i32 [[T1:%.*]], 32
; CHECK-NEXT: [[OV110:%.*]] = or disjoint i32 [[OVM]], 8
; CHECK-NEXT: ret i32 [[OV110]]
;
%ovm = and i32 %t1, 32
%ov3 = add i32 %ovm, 145
%ov110 = xor i32 %ov3, 153
ret i32 %ov110
}
define i32 @test3(i32 %t1) {
; CHECK-LABEL: @test3(
; CHECK-NEXT: [[OVM:%.*]] = and i32 [[T1:%.*]], 32
; CHECK-NEXT: [[OV110:%.*]] = or disjoint i32 [[OVM]], 8
; CHECK-NEXT: ret i32 [[OV110]]
;
%ovm = or i32 %t1, 145
%ov31 = and i32 %ovm, 177
%ov110 = xor i32 %ov31, 153
ret i32 %ov110
}
; defect-2 in rdar://12329730
; (X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
; where the "X" has more than one use
define i32 @test5(i32 %val1) {
; CHECK-LABEL: @test5(
; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[VAL1:%.*]], 1234
; CHECK-NEXT: [[SHR:%.*]] = lshr i32 [[VAL1]], 8
; CHECK-NEXT: [[XOR1:%.*]] = xor i32 [[SHR]], 5
; CHECK-NEXT: [[ADD:%.*]] = add i32 [[XOR1]], [[XOR]]
; CHECK-NEXT: ret i32 [[ADD]]
;
%xor = xor i32 %val1, 1234
%shr = lshr i32 %xor, 8
%xor1 = xor i32 %shr, 1
%add = add i32 %xor1, %xor
ret i32 %add
}
; defect-1 in rdar://12329730
; Simplify (X^Y) -> X or Y in the user's context if we know that
; only bits from X or Y are demanded.
; e.g. the "x ^ 1234" can be optimized into x in the context of "t >> 16".
; Put in other word, t >> 16 -> x >> 16.
; unsigned foo(unsigned x) { unsigned t = x ^ 1234; ; return (t >> 16) + t;}
define i32 @test6(i32 %x) {
; CHECK-LABEL: @test6(
; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[X:%.*]], 1234
; CHECK-NEXT: [[SHR:%.*]] = lshr i32 [[X]], 16
; CHECK-NEXT: [[ADD:%.*]] = add i32 [[SHR]], [[XOR]]
; CHECK-NEXT: ret i32 [[ADD]]
;
%xor = xor i32 %x, 1234
%shr = lshr i32 %xor, 16
%add = add i32 %shr, %xor
ret i32 %add
}
; (A | B) ^ (~A) -> (A | ~B)
define i32 @test7(i32 %a, i32 %b) {
; CHECK-LABEL: @test7(
; CHECK-NEXT: [[B_NOT:%.*]] = xor i32 [[B:%.*]], -1
; CHECK-NEXT: [[XOR:%.*]] = or i32 [[A:%.*]], [[B_NOT]]
; CHECK-NEXT: ret i32 [[XOR]]
;
%or = or i32 %a, %b
%neg = xor i32 %a, -1
%xor = xor i32 %or, %neg
ret i32 %xor
}
; (~A) ^ (A | B) -> (A | ~B)
define i32 @test8(i32 %a, i32 %b) {
; CHECK-LABEL: @test8(
; CHECK-NEXT: [[B_NOT:%.*]] = xor i32 [[B:%.*]], -1
; CHECK-NEXT: [[XOR:%.*]] = or i32 [[A:%.*]], [[B_NOT]]
; CHECK-NEXT: ret i32 [[XOR]]
;
%neg = xor i32 %a, -1
%or = or i32 %a, %b
%xor = xor i32 %neg, %or
ret i32 %xor
}
; (A & B) ^ (A ^ B) -> (A | B)
define i32 @test9(i32 %b, i32 %c) {
; CHECK-LABEL: @test9(
; CHECK-NEXT: [[XOR2:%.*]] = or i32 [[B:%.*]], [[C:%.*]]
; CHECK-NEXT: ret i32 [[XOR2]]
;
%and = and i32 %b, %c
%xor = xor i32 %b, %c
%xor2 = xor i32 %and, %xor
ret i32 %xor2
}
; (A & B) ^ (B ^ A) -> (A | B)
define i32 @test9b(i32 %b, i32 %c) {
; CHECK-LABEL: @test9b(
; CHECK-NEXT: [[XOR2:%.*]] = or i32 [[B:%.*]], [[C:%.*]]
; CHECK-NEXT: ret i32 [[XOR2]]
;
%and = and i32 %b, %c
%xor = xor i32 %c, %b
%xor2 = xor i32 %and, %xor
ret i32 %xor2
}
; (A ^ B) ^ (A & B) -> (A | B)
define i32 @test10(i32 %b, i32 %c) {
; CHECK-LABEL: @test10(
; CHECK-NEXT: [[XOR2:%.*]] = or i32 [[B:%.*]], [[C:%.*]]
; CHECK-NEXT: ret i32 [[XOR2]]
;
%xor = xor i32 %b, %c
%and = and i32 %b, %c
%xor2 = xor i32 %xor, %and
ret i32 %xor2
}
; (A ^ B) ^ (A & B) -> (A | B)
define i32 @test10b(i32 %b, i32 %c) {
; CHECK-LABEL: @test10b(
; CHECK-NEXT: [[XOR2:%.*]] = or i32 [[B:%.*]], [[C:%.*]]
; CHECK-NEXT: ret i32 [[XOR2]]
;
%xor = xor i32 %b, %c
%and = and i32 %c, %b
%xor2 = xor i32 %xor, %and
ret i32 %xor2
}
define i32 @test11(i32 %A, i32 %B) {
; CHECK-LABEL: @test11(
; CHECK-NEXT: [[XOR1:%.*]] = xor i32 [[B:%.*]], [[A:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], [[B]]
; CHECK-NEXT: [[XOR2:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: [[AND:%.*]] = and i32 [[XOR1]], [[XOR2]]
; CHECK-NEXT: ret i32 [[AND]]
;
%xor1 = xor i32 %B, %A
%not = xor i32 %A, -1
%xor2 = xor i32 %not, %B
%and = and i32 %xor1, %xor2
ret i32 %and
}
define i32 @test11b(i32 %A, i32 %B) {
; CHECK-LABEL: @test11b(
; CHECK-NEXT: [[XOR1:%.*]] = xor i32 [[B:%.*]], [[A:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], [[B]]
; CHECK-NEXT: [[XOR2:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: [[AND:%.*]] = and i32 [[XOR1]], [[XOR2]]
; CHECK-NEXT: ret i32 [[AND]]
;
%xor1 = xor i32 %B, %A
%not = xor i32 %A, -1
%xor2 = xor i32 %not, %B
%and = and i32 %xor2, %xor1
ret i32 %and
}
define i32 @test11c(i32 %A, i32 %B) {
; CHECK-LABEL: @test11c(
; CHECK-NEXT: [[XOR1:%.*]] = xor i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], [[B]]
; CHECK-NEXT: [[XOR2:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: [[AND:%.*]] = and i32 [[XOR1]], [[XOR2]]
; CHECK-NEXT: ret i32 [[AND]]
;
%xor1 = xor i32 %A, %B
%not = xor i32 %A, -1
%xor2 = xor i32 %not, %B
%and = and i32 %xor1, %xor2
ret i32 %and
}
define i32 @test11d(i32 %A, i32 %B) {
; CHECK-LABEL: @test11d(
; CHECK-NEXT: [[XOR1:%.*]] = xor i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], [[B]]
; CHECK-NEXT: [[XOR2:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: [[AND:%.*]] = and i32 [[XOR1]], [[XOR2]]
; CHECK-NEXT: ret i32 [[AND]]
;
%xor1 = xor i32 %A, %B
%not = xor i32 %A, -1
%xor2 = xor i32 %not, %B
%and = and i32 %xor2, %xor1
ret i32 %and
}
define i32 @test11e(i32 %A, i32 %B, i32 %C) {
; CHECK-LABEL: @test11e(
; CHECK-NEXT: [[FORCE:%.*]] = mul i32 [[B:%.*]], [[C:%.*]]
; CHECK-NEXT: [[XOR1:%.*]] = xor i32 [[FORCE]], [[A:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], [[FORCE]]
; CHECK-NEXT: [[XOR2:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: [[AND:%.*]] = and i32 [[XOR1]], [[XOR2]]
; CHECK-NEXT: ret i32 [[AND]]
;
%force = mul i32 %B, %C
%xor1 = xor i32 %force, %A
%not = xor i32 %A, -1
%xor2 = xor i32 %force, %not
%and = and i32 %xor1, %xor2
ret i32 %and
}
define i32 @test11f(i32 %A, i32 %B, i32 %C) {
; CHECK-LABEL: @test11f(
; CHECK-NEXT: [[FORCE:%.*]] = mul i32 [[B:%.*]], [[C:%.*]]
; CHECK-NEXT: [[XOR1:%.*]] = xor i32 [[FORCE]], [[A:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], [[FORCE]]
; CHECK-NEXT: [[XOR2:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: [[AND:%.*]] = and i32 [[XOR1]], [[XOR2]]
; CHECK-NEXT: ret i32 [[AND]]
;
%force = mul i32 %B, %C
%xor1 = xor i32 %force, %A
%not = xor i32 %A, -1
%xor2 = xor i32 %force, %not
%and = and i32 %xor2, %xor1
ret i32 %and
}
define i32 @test12(i32 %a, i32 %b) {
; CHECK-LABEL: @test12(
; CHECK-NEXT: [[TMP1:%.*]] = and i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: ret i32 [[XOR]]
;
%negb = xor i32 %b, -1
%and = and i32 %a, %negb
%nega = xor i32 %a, -1
%xor = xor i32 %and, %nega
ret i32 %xor
}
define i32 @test12commuted(i32 %a, i32 %b) {
; CHECK-LABEL: @test12commuted(
; CHECK-NEXT: [[TMP1:%.*]] = and i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: ret i32 [[XOR]]
;
%negb = xor i32 %b, -1
%and = and i32 %negb, %a
%nega = xor i32 %a, -1
%xor = xor i32 %and, %nega
ret i32 %xor
}
; This is a test of canonicalization via operand complexity.
; The final xor has a binary operator and a (fake) unary operator,
; so binary (more complex) should come first.
define i32 @test13(i32 %a, i32 %b) {
; CHECK-LABEL: @test13(
; CHECK-NEXT: [[TMP1:%.*]] = and i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: ret i32 [[XOR]]
;
%nega = xor i32 %a, -1
%negb = xor i32 %b, -1
%and = and i32 %a, %negb
%xor = xor i32 %nega, %and
ret i32 %xor
}
define i32 @test13commuted(i32 %a, i32 %b) {
; CHECK-LABEL: @test13commuted(
; CHECK-NEXT: [[TMP1:%.*]] = and i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[TMP1]], -1
; CHECK-NEXT: ret i32 [[XOR]]
;
%nega = xor i32 %a, -1
%negb = xor i32 %b, -1
%and = and i32 %negb, %a
%xor = xor i32 %nega, %and
ret i32 %xor
}
; (A ^ C) ^ (A | B) -> ((~A) & B) ^ C
define i32 @xor_or_xor_common_op_commute1(i32 %a, i32 %b, i32 %c) {
; CHECK-LABEL: @xor_or_xor_common_op_commute1(
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A:%.*]], -1
; CHECK-NEXT: [[TMP2:%.*]] = and i32 [[B:%.*]], [[TMP1]]
; CHECK-NEXT: [[R:%.*]] = xor i32 [[TMP2]], [[C:%.*]]
; CHECK-NEXT: ret i32 [[R]]
;
%ac = xor i32 %a, %c
%ab = or i32 %a, %b
%r = xor i32 %ac, %ab
ret i32 %r
}
; (C ^ A) ^ (A | B) -> ((~A) & B) ^ C
define i32 @xor_or_xor_common_op_commute2(i32 %a, i32 %b, i32 %c) {
; CHECK-LABEL: @xor_or_xor_common_op_commute2(
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A:%.*]], -1
; CHECK-NEXT: [[TMP2:%.*]] = and i32 [[B:%.*]], [[TMP1]]
; CHECK-NEXT: [[R:%.*]] = xor i32 [[TMP2]], [[C:%.*]]
; CHECK-NEXT: ret i32 [[R]]
;
%ac = xor i32 %c, %a
%ab = or i32 %a, %b
%r = xor i32 %ac, %ab
ret i32 %r
}
; (A ^ C) ^ (B | A) -> ((~A) & B) ^ C
define i32 @xor_or_xor_common_op_commute3(i32 %a, i32 %b, i32 %c) {
; CHECK-LABEL: @xor_or_xor_common_op_commute3(
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A:%.*]], -1
; CHECK-NEXT: [[TMP2:%.*]] = and i32 [[B:%.*]], [[TMP1]]
; CHECK-NEXT: [[R:%.*]] = xor i32 [[TMP2]], [[C:%.*]]
; CHECK-NEXT: ret i32 [[R]]
;
%ac = xor i32 %a, %c
%ab = or i32 %b, %a
%r = xor i32 %ac, %ab
ret i32 %r
}
; (C ^ A) ^ (B | A) -> ((~A) & B) ^ C
define i32 @xor_or_xor_common_op_commute4(i32 %a, i32 %b, i32 %c) {
; CHECK-LABEL: @xor_or_xor_common_op_commute4(
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A:%.*]], -1
; CHECK-NEXT: [[TMP2:%.*]] = and i32 [[B:%.*]], [[TMP1]]
; CHECK-NEXT: [[R:%.*]] = xor i32 [[TMP2]], [[C:%.*]]
; CHECK-NEXT: ret i32 [[R]]
;
%ac = xor i32 %c, %a
%ab = or i32 %b, %a
%r = xor i32 %ac, %ab
ret i32 %r
}
; (A | B) ^ (A ^ C) -> ((~A) & B) ^ C
define i32 @xor_or_xor_common_op_commute5(i32 %a, i32 %b, i32 %c) {
; CHECK-LABEL: @xor_or_xor_common_op_commute5(
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A:%.*]], -1
; CHECK-NEXT: [[TMP2:%.*]] = and i32 [[B:%.*]], [[TMP1]]
; CHECK-NEXT: [[R:%.*]] = xor i32 [[TMP2]], [[C:%.*]]
; CHECK-NEXT: ret i32 [[R]]
;
%ac = xor i32 %a, %c
%ab = or i32 %a, %b
%r = xor i32 %ab, %ac
ret i32 %r
}
; (A | B) ^ (C ^ A) -> ((~A) & B) ^ C
define i32 @xor_or_xor_common_op_commute6(i32 %a, i32 %b, i32 %c) {
; CHECK-LABEL: @xor_or_xor_common_op_commute6(
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A:%.*]], -1
; CHECK-NEXT: [[TMP2:%.*]] = and i32 [[B:%.*]], [[TMP1]]
; CHECK-NEXT: [[R:%.*]] = xor i32 [[TMP2]], [[C:%.*]]
; CHECK-NEXT: ret i32 [[R]]
;
%ac = xor i32 %c, %a
%ab = or i32 %a, %b
%r = xor i32 %ab, %ac
ret i32 %r
}
; (B | A) ^ (A ^ C) -> ((~A) & B) ^ C
define i32 @xor_or_xor_common_op_commute7(i32 %a, i32 %b, i32 %c) {
; CHECK-LABEL: @xor_or_xor_common_op_commute7(
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A:%.*]], -1
; CHECK-NEXT: [[TMP2:%.*]] = and i32 [[B:%.*]], [[TMP1]]
; CHECK-NEXT: [[R:%.*]] = xor i32 [[TMP2]], [[C:%.*]]
; CHECK-NEXT: ret i32 [[R]]
;
%ac = xor i32 %a, %c
%ab = or i32 %b, %a
%r = xor i32 %ab, %ac
ret i32 %r
}
; (B | A) ^ (C ^ A) -> ((~A) & B) ^ C
define i32 @xor_or_xor_common_op_commute8(i32 %a, i32 %b, i32 %c) {
; CHECK-LABEL: @xor_or_xor_common_op_commute8(
; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A:%.*]], -1
; CHECK-NEXT: [[TMP2:%.*]] = and i32 [[B:%.*]], [[TMP1]]
; CHECK-NEXT: [[R:%.*]] = xor i32 [[TMP2]], [[C:%.*]]
; CHECK-NEXT: ret i32 [[R]]
;
%ac = xor i32 %c, %a
%ab = or i32 %b, %a
%r = xor i32 %ab, %ac
ret i32 %r
}
define i32 @xor_or_xor_common_op_extra_use1(i32 %a, i32 %b, i32 %c, ptr %p) {
; CHECK-LABEL: @xor_or_xor_common_op_extra_use1(
; CHECK-NEXT: [[AC:%.*]] = xor i32 [[A:%.*]], [[C:%.*]]
; CHECK-NEXT: store i32 [[AC]], ptr [[P:%.*]], align 4
; CHECK-NEXT: [[AB:%.*]] = or i32 [[A]], [[B:%.*]]
; CHECK-NEXT: [[R:%.*]] = xor i32 [[AC]], [[AB]]
; CHECK-NEXT: ret i32 [[R]]
;
%ac = xor i32 %a, %c
store i32 %ac, ptr %p
%ab = or i32 %a, %b
%r = xor i32 %ac, %ab
ret i32 %r
}
define i32 @xor_or_xor_common_op_extra_use2(i32 %a, i32 %b, i32 %c, ptr %p) {
; CHECK-LABEL: @xor_or_xor_common_op_extra_use2(
; CHECK-NEXT: [[AC:%.*]] = xor i32 [[A:%.*]], [[C:%.*]]
; CHECK-NEXT: [[AB:%.*]] = or i32 [[A]], [[B:%.*]]
; CHECK-NEXT: store i32 [[AB]], ptr [[P:%.*]], align 4
; CHECK-NEXT: [[R:%.*]] = xor i32 [[AC]], [[AB]]
; CHECK-NEXT: ret i32 [[R]]
;
%ac = xor i32 %a, %c
%ab = or i32 %a, %b
store i32 %ab, ptr %p
%r = xor i32 %ac, %ab
ret i32 %r
}
define i32 @xor_or_xor_common_op_extra_use3(i32 %a, i32 %b, i32 %c, ptr %p1, ptr %p2) {
; CHECK-LABEL: @xor_or_xor_common_op_extra_use3(
; CHECK-NEXT: [[AC:%.*]] = xor i32 [[A:%.*]], [[C:%.*]]
; CHECK-NEXT: store i32 [[AC]], ptr [[P1:%.*]], align 4
; CHECK-NEXT: [[AB:%.*]] = or i32 [[A]], [[B:%.*]]
; CHECK-NEXT: store i32 [[AB]], ptr [[P2:%.*]], align 4
; CHECK-NEXT: [[R:%.*]] = xor i32 [[AC]], [[AB]]
; CHECK-NEXT: ret i32 [[R]]
;
%ac = xor i32 %a, %c
store i32 %ac, ptr %p1
%ab = or i32 %a, %b
store i32 %ab, ptr %p2
%r = xor i32 %ac, %ab
ret i32 %r
}
define i8 @test15(i8 %A, i8 %B) {
; CHECK-LABEL: @test15(
; CHECK-NEXT: [[XOR1:%.*]] = xor i8 [[B:%.*]], [[A:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i8 [[A]], [[B]]
; CHECK-NEXT: [[XOR2:%.*]] = xor i8 [[TMP1]], 33
; CHECK-NEXT: [[AND:%.*]] = and i8 [[XOR1]], [[XOR2]]
; CHECK-NEXT: [[RES:%.*]] = mul i8 [[AND]], [[XOR2]]
; CHECK-NEXT: ret i8 [[RES]]
;
%xor1 = xor i8 %B, %A
%not = xor i8 %A, 33
%xor2 = xor i8 %not, %B
%and = and i8 %xor1, %xor2
%res = mul i8 %and, %xor2 ; to increase the use count for the xor
ret i8 %res
}
define i8 @test16(i8 %A, i8 %B) {
; CHECK-LABEL: @test16(
; CHECK-NEXT: [[XOR1:%.*]] = xor i8 [[B:%.*]], [[A:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i8 [[A]], [[B]]
; CHECK-NEXT: [[XOR2:%.*]] = xor i8 [[TMP1]], 33
; CHECK-NEXT: [[AND:%.*]] = and i8 [[XOR2]], [[XOR1]]
; CHECK-NEXT: [[RES:%.*]] = mul i8 [[AND]], [[XOR2]]
; CHECK-NEXT: ret i8 [[RES]]
;
%xor1 = xor i8 %B, %A
%not = xor i8 %A, 33
%xor2 = xor i8 %not, %B
%and = and i8 %xor2, %xor1
%res = mul i8 %and, %xor2 ; to increase the use count for the xor
ret i8 %res
}
; Canonicalize ~((A & B) ^ (A | ?)) -> (A & B) | ~(A | ?)
define i3 @not_xor_to_or_not1(i3 %a, i3 %b, i3 %c) {
; CHECK-LABEL: @not_xor_to_or_not1(
; CHECK-NEXT: [[OR:%.*]] = or i3 [[B:%.*]], [[C:%.*]]
; CHECK-NEXT: [[AND:%.*]] = and i3 [[A:%.*]], [[C]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i3 [[OR]], -1
; CHECK-NEXT: [[NOT:%.*]] = or i3 [[AND]], [[TMP1]]
; CHECK-NEXT: ret i3 [[NOT]]
;
%or = or i3 %b, %c
%and = and i3 %a, %c
%xor = xor i3 %and, %or
%not = xor i3 %xor, -1
ret i3 %not
}
define i3 @not_xor_to_or_not2(i3 %a, i3 %b, i3 %c) {
; CHECK-LABEL: @not_xor_to_or_not2(
; CHECK-NEXT: [[OR:%.*]] = or i3 [[C:%.*]], [[B:%.*]]
; CHECK-NEXT: [[AND:%.*]] = and i3 [[A:%.*]], [[C]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i3 [[OR]], -1
; CHECK-NEXT: [[NOT:%.*]] = or i3 [[AND]], [[TMP1]]
; CHECK-NEXT: ret i3 [[NOT]]
;
%or = or i3 %c, %b
%and = and i3 %a, %c
%xor = xor i3 %and, %or
%not = xor i3 %xor, -1
ret i3 %not
}
define i3 @not_xor_to_or_not3(i3 %a, i3 %b, i3 %c) {
; CHECK-LABEL: @not_xor_to_or_not3(
; CHECK-NEXT: [[OR:%.*]] = or i3 [[C:%.*]], [[B:%.*]]
; CHECK-NEXT: [[AND:%.*]] = and i3 [[C]], [[A:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i3 [[OR]], -1
; CHECK-NEXT: [[NOT:%.*]] = or i3 [[AND]], [[TMP1]]
; CHECK-NEXT: ret i3 [[NOT]]
;
%or = or i3 %c, %b
%and = and i3 %c, %a
%xor = xor i3 %and, %or
%not = xor i3 %xor, -1
ret i3 %not
}
define i3 @not_xor_to_or_not4(i3 %a, i3 %b, i3 %c) {
; CHECK-LABEL: @not_xor_to_or_not4(
; CHECK-NEXT: [[OR:%.*]] = or i3 [[B:%.*]], [[C:%.*]]
; CHECK-NEXT: [[AND:%.*]] = and i3 [[C]], [[A:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i3 [[OR]], -1
; CHECK-NEXT: [[NOT:%.*]] = or i3 [[AND]], [[TMP1]]
; CHECK-NEXT: ret i3 [[NOT]]
;
%or = or i3 %b, %c
%and = and i3 %c, %a
%xor = xor i3 %and, %or
%not = xor i3 %xor, -1
ret i3 %not
}
define <3 x i5> @not_xor_to_or_not_vector(<3 x i5> %a, <3 x i5> %b, <3 x i5> %c) {
; CHECK-LABEL: @not_xor_to_or_not_vector(
; CHECK-NEXT: [[OR:%.*]] = or <3 x i5> [[B:%.*]], [[C:%.*]]
; CHECK-NEXT: [[AND:%.*]] = and <3 x i5> [[A:%.*]], [[C]]
; CHECK-NEXT: [[TMP1:%.*]] = xor <3 x i5> [[OR]], <i5 -1, i5 -1, i5 -1>
; CHECK-NEXT: [[NOT:%.*]] = or <3 x i5> [[AND]], [[TMP1]]
; CHECK-NEXT: ret <3 x i5> [[NOT]]
;
%or = or <3 x i5> %b, %c
%and = and <3 x i5> %a, %c
%xor = xor <3 x i5> %or, %and
%not = xor <3 x i5> %xor, <i5 -1, i5 -1, i5 -1>
ret <3 x i5> %not
}
define <3 x i5> @not_xor_to_or_not_vector_poison(<3 x i5> %a, <3 x i5> %b, <3 x i5> %c) {
; CHECK-LABEL: @not_xor_to_or_not_vector_poison(
; CHECK-NEXT: [[OR:%.*]] = or <3 x i5> [[B:%.*]], [[C:%.*]]
; CHECK-NEXT: [[AND:%.*]] = and <3 x i5> [[A:%.*]], [[C]]
; CHECK-NEXT: [[TMP1:%.*]] = xor <3 x i5> [[OR]], <i5 -1, i5 -1, i5 -1>
; CHECK-NEXT: [[NOT:%.*]] = or <3 x i5> [[AND]], [[TMP1]]
; CHECK-NEXT: ret <3 x i5> [[NOT]]
;
%or = or <3 x i5> %b, %c
%and = and <3 x i5> %a, %c
%xor = xor <3 x i5> %or, %and
%not = xor <3 x i5> %xor, <i5 poison, i5 -1, i5 -1>
ret <3 x i5> %not
}
; negative test : not one use
define i3 @not_xor_to_or_not_2use(i3 %a, i3 %b, i3 %c) {
; CHECK-LABEL: @not_xor_to_or_not_2use(
; CHECK-NEXT: [[OR:%.*]] = or i3 [[B:%.*]], [[C:%.*]]
; CHECK-NEXT: [[AND:%.*]] = and i3 [[A:%.*]], [[C]]
; CHECK-NEXT: [[XOR:%.*]] = xor i3 [[AND]], [[OR]]
; CHECK-NEXT: [[NOT:%.*]] = xor i3 [[XOR]], -1
; CHECK-NEXT: call void @use3(i3 [[XOR]])
; CHECK-NEXT: ret i3 [[NOT]]
;
%or = or i3 %b, %c
%and = and i3 %a, %c
%xor = xor i3 %and, %or
%not = xor i3 %xor, -1
call void @use3(i3 %xor)
ret i3 %not
}
; Canonicalize ~(A & B) ^ (A | ?) -> (A & B) | ~(A | ?)
define i3 @xor_notand_to_or_not1(i3 %a, i3 %b, i3 %c) {
; CHECK-LABEL: @xor_notand_to_or_not1(
; CHECK-NEXT: [[OR:%.*]] = or i3 [[B:%.*]], [[C:%.*]]
; CHECK-NEXT: [[AND:%.*]] = and i3 [[A:%.*]], [[C]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i3 [[OR]], -1
; CHECK-NEXT: [[XOR:%.*]] = or i3 [[AND]], [[TMP1]]
; CHECK-NEXT: ret i3 [[XOR]]
;
%or = or i3 %b, %c
%and = and i3 %a, %c
%not = xor i3 %and, -1
%xor = xor i3 %not, %or
ret i3 %xor
}
define i3 @xor_notand_to_or_not2(i3 %a, i3 %b, i3 %c) {
; CHECK-LABEL: @xor_notand_to_or_not2(
; CHECK-NEXT: [[OR:%.*]] = or i3 [[C:%.*]], [[B:%.*]]
; CHECK-NEXT: [[AND:%.*]] = and i3 [[A:%.*]], [[C]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i3 [[OR]], -1
; CHECK-NEXT: [[XOR:%.*]] = or i3 [[AND]], [[TMP1]]
; CHECK-NEXT: ret i3 [[XOR]]
;
%or = or i3 %c, %b
%and = and i3 %a, %c
%not = xor i3 %and, -1
%xor = xor i3 %not, %or
ret i3 %xor
}
define i3 @xor_notand_to_or_not3(i3 %a, i3 %b, i3 %c) {
; CHECK-LABEL: @xor_notand_to_or_not3(
; CHECK-NEXT: [[OR:%.*]] = or i3 [[C:%.*]], [[B:%.*]]
; CHECK-NEXT: [[AND:%.*]] = and i3 [[C]], [[A:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i3 [[OR]], -1
; CHECK-NEXT: [[XOR:%.*]] = or i3 [[AND]], [[TMP1]]
; CHECK-NEXT: ret i3 [[XOR]]
;
%or = or i3 %c, %b
%and = and i3 %c, %a
%not = xor i3 %and, -1
%xor = xor i3 %not, %or
ret i3 %xor
}
define i3 @xor_notand_to_or_not4(i3 %a, i3 %b, i3 %c) {
; CHECK-LABEL: @xor_notand_to_or_not4(
; CHECK-NEXT: [[OR:%.*]] = or i3 [[B:%.*]], [[C:%.*]]
; CHECK-NEXT: [[AND:%.*]] = and i3 [[C]], [[A:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = xor i3 [[OR]], -1
; CHECK-NEXT: [[XOR:%.*]] = or i3 [[AND]], [[TMP1]]
; CHECK-NEXT: ret i3 [[XOR]]
;
%or = or i3 %b, %c
%and = and i3 %c, %a
%not = xor i3 %and, -1
%xor = xor i3 %not, %or
ret i3 %xor
}
define <3 x i5> @xor_notand_to_or_not_vector(<3 x i5> %a, <3 x i5> %b, <3 x i5> %c) {
; CHECK-LABEL: @xor_notand_to_or_not_vector(
; CHECK-NEXT: [[OR:%.*]] = or <3 x i5> [[B:%.*]], [[C:%.*]]
; CHECK-NEXT: [[AND:%.*]] = and <3 x i5> [[A:%.*]], [[C]]
; CHECK-NEXT: [[TMP1:%.*]] = xor <3 x i5> [[OR]], <i5 -1, i5 -1, i5 -1>
; CHECK-NEXT: [[XOR:%.*]] = or <3 x i5> [[AND]], [[TMP1]]
; CHECK-NEXT: ret <3 x i5> [[XOR]]
;
%or = or <3 x i5> %b, %c
%and = and <3 x i5> %a, %c
%not = xor <3 x i5> %and, <i5 -1, i5 -1, i5 -1>
%xor = xor <3 x i5> %not, %or
ret <3 x i5> %xor
}
define <3 x i5> @xor_notand_to_or_not_vector_poison(<3 x i5> %a, <3 x i5> %b, <3 x i5> %c) {
; CHECK-LABEL: @xor_notand_to_or_not_vector_poison(
; CHECK-NEXT: [[OR:%.*]] = or <3 x i5> [[B:%.*]], [[C:%.*]]
; CHECK-NEXT: [[AND:%.*]] = and <3 x i5> [[A:%.*]], [[C]]
; CHECK-NEXT: [[TMP1:%.*]] = xor <3 x i5> [[OR]], <i5 -1, i5 -1, i5 -1>
; CHECK-NEXT: [[XOR:%.*]] = or <3 x i5> [[AND]], [[TMP1]]
; CHECK-NEXT: ret <3 x i5> [[XOR]]
;
%or = or <3 x i5> %b, %c
%and = and <3 x i5> %a, %c
%not = xor <3 x i5> %and, <i5 -1, i5 poison, i5 -1>
%xor = xor <3 x i5> %not, %or
ret <3 x i5> %xor
}
; negative test : not one use
define i3 @xor_notand_to_or_not_2use(i3 %a, i3 %b, i3 %c) {
; CHECK-LABEL: @xor_notand_to_or_not_2use(
; CHECK-NEXT: [[OR:%.*]] = or i3 [[B:%.*]], [[C:%.*]]
; CHECK-NEXT: [[AND:%.*]] = and i3 [[A:%.*]], [[C]]
; CHECK-NEXT: [[NOT:%.*]] = xor i3 [[AND]], -1
; CHECK-NEXT: [[XOR:%.*]] = xor i3 [[OR]], [[NOT]]
; CHECK-NEXT: call void @use3(i3 [[NOT]])
; CHECK-NEXT: ret i3 [[XOR]]
;
%or = or i3 %b, %c
%and = and i3 %a, %c
%not = xor i3 %and, -1
%xor = xor i3 %not, %or
call void @use3(i3 %not)
ret i3 %xor
}
declare void @use3(i3)