Hello Arjun! Please allow me to contribute this patch as it helps me
debugging significantly! When the 1's and 0's don't line up when
debugging farkas lemma of numerous polyhedrons using simplex lexmin
solver, it is truly straining on the eyes. Hopefully this patch can help
others!
The unfortunate part is the lack of testcase as I'm not sure how to add
testcase for debug dumps. :) However, you can add this testcase to the
SimplexTest.cpp to witness the nice printing!
```c++
TEST(SimplexTest, DumpTest) {
int COLUMNS = 2;
int ROWS = 2;
LexSimplex simplex(COLUMNS * 2);
IntMatrix m1(ROWS, COLUMNS * 2 + 1);
// Adding LHS columns.
for (int i = 0; i < ROWS; i++) {
// an arbitrary formula to test all kinds of integers
for (int j = 0; j < COLUMNS; j++)
m1(i, j) = i + (2 << (i % 3)) * (-1 * ((i + j) % 2));
}
// Adding RHS columns.
for (int i = 0; i < ROWS; i++) {
for (int j = 0; j < COLUMNS; j++)
m1(i, j + COLUMNS) = j - (3 << (j % 4)) * (-1 * ((i + j * 2) % 2));
}
for (int i = 0; i < m1.getNumRows(); i++) {
ArrayRef<DynamicAPInt> curRow = m1.getRow(i);
simplex.addInequality(curRow);
}
IntegerRelation rel =
parseRelationFromSet("(x, y, z)[] : (z - x - 17 * y == 0, x - 11 * z >= 1)",2);
simplex.dump();
m1.dump();
rel.dump();
}
```
```
rows = 2, columns = 7
var: c3, c4, c5, c6
con: r0 [>=0], r1 [>=0]
r0: -1, r1: -2
c0: denom, c1: const, c2: 2147483647, c3: 0, c4: 1, c5: 2, c6: 3
1 0 1 0 -2 0 1
1 0 -8 -3 1 3 7
0 -2 0 1 0
-3 1 3 7 0
Domain: 2, Range: 1, Symbols: 0, Locals: 0
2 constraints
-1 -17 1 0 = 0
1 0 -11 -1 >= 0
```
780 lines
25 KiB
C++
780 lines
25 KiB
C++
//===- Matrix.cpp - MLIR Matrix Class -------------------------------------===//
|
||
//
|
||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
// See https://llvm.org/LICENSE.txt for license information.
|
||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "mlir/Analysis/Presburger/Matrix.h"
|
||
#include "mlir/Analysis/Presburger/Fraction.h"
|
||
#include "mlir/Analysis/Presburger/Utils.h"
|
||
#include "llvm/Support/MathExtras.h"
|
||
#include "llvm/Support/raw_ostream.h"
|
||
#include <algorithm>
|
||
#include <cassert>
|
||
#include <utility>
|
||
|
||
using namespace mlir;
|
||
using namespace presburger;
|
||
|
||
template <typename T>
|
||
Matrix<T>::Matrix(unsigned rows, unsigned columns, unsigned reservedRows,
|
||
unsigned reservedColumns)
|
||
: nRows(rows), nColumns(columns),
|
||
nReservedColumns(std::max(nColumns, reservedColumns)),
|
||
data(nRows * nReservedColumns) {
|
||
data.reserve(std::max(nRows, reservedRows) * nReservedColumns);
|
||
}
|
||
|
||
/// We cannot use the default implementation of operator== as it compares
|
||
/// fields like `reservedColumns` etc., which are not part of the data.
|
||
template <typename T>
|
||
bool Matrix<T>::operator==(const Matrix<T> &m) const {
|
||
if (nRows != m.getNumRows())
|
||
return false;
|
||
if (nColumns != m.getNumColumns())
|
||
return false;
|
||
|
||
for (unsigned i = 0; i < nRows; i++)
|
||
if (getRow(i) != m.getRow(i))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
template <typename T>
|
||
Matrix<T> Matrix<T>::identity(unsigned dimension) {
|
||
Matrix matrix(dimension, dimension);
|
||
for (unsigned i = 0; i < dimension; ++i)
|
||
matrix(i, i) = 1;
|
||
return matrix;
|
||
}
|
||
|
||
template <typename T>
|
||
unsigned Matrix<T>::getNumReservedRows() const {
|
||
return data.capacity() / nReservedColumns;
|
||
}
|
||
|
||
template <typename T>
|
||
void Matrix<T>::reserveRows(unsigned rows) {
|
||
data.reserve(rows * nReservedColumns);
|
||
}
|
||
|
||
template <typename T>
|
||
unsigned Matrix<T>::appendExtraRow() {
|
||
resizeVertically(nRows + 1);
|
||
return nRows - 1;
|
||
}
|
||
|
||
template <typename T>
|
||
unsigned Matrix<T>::appendExtraRow(ArrayRef<T> elems) {
|
||
assert(elems.size() == nColumns && "elems must match row length!");
|
||
unsigned row = appendExtraRow();
|
||
for (unsigned col = 0; col < nColumns; ++col)
|
||
at(row, col) = elems[col];
|
||
return row;
|
||
}
|
||
|
||
template <typename T>
|
||
Matrix<T> Matrix<T>::transpose() const {
|
||
Matrix<T> transp(nColumns, nRows);
|
||
for (unsigned row = 0; row < nRows; ++row)
|
||
for (unsigned col = 0; col < nColumns; ++col)
|
||
transp(col, row) = at(row, col);
|
||
|
||
return transp;
|
||
}
|
||
|
||
template <typename T>
|
||
void Matrix<T>::resizeHorizontally(unsigned newNColumns) {
|
||
if (newNColumns < nColumns)
|
||
removeColumns(newNColumns, nColumns - newNColumns);
|
||
if (newNColumns > nColumns)
|
||
insertColumns(nColumns, newNColumns - nColumns);
|
||
}
|
||
|
||
template <typename T>
|
||
void Matrix<T>::resize(unsigned newNRows, unsigned newNColumns) {
|
||
resizeHorizontally(newNColumns);
|
||
resizeVertically(newNRows);
|
||
}
|
||
|
||
template <typename T>
|
||
void Matrix<T>::resizeVertically(unsigned newNRows) {
|
||
nRows = newNRows;
|
||
data.resize(nRows * nReservedColumns);
|
||
}
|
||
|
||
template <typename T>
|
||
void Matrix<T>::swapRows(unsigned row, unsigned otherRow) {
|
||
assert((row < getNumRows() && otherRow < getNumRows()) &&
|
||
"Given row out of bounds");
|
||
if (row == otherRow)
|
||
return;
|
||
for (unsigned col = 0; col < nColumns; col++)
|
||
std::swap(at(row, col), at(otherRow, col));
|
||
}
|
||
|
||
template <typename T>
|
||
void Matrix<T>::swapColumns(unsigned column, unsigned otherColumn) {
|
||
assert((column < getNumColumns() && otherColumn < getNumColumns()) &&
|
||
"Given column out of bounds");
|
||
if (column == otherColumn)
|
||
return;
|
||
for (unsigned row = 0; row < nRows; row++)
|
||
std::swap(at(row, column), at(row, otherColumn));
|
||
}
|
||
|
||
template <typename T>
|
||
MutableArrayRef<T> Matrix<T>::getRow(unsigned row) {
|
||
return {&data[row * nReservedColumns], nColumns};
|
||
}
|
||
|
||
template <typename T>
|
||
ArrayRef<T> Matrix<T>::getRow(unsigned row) const {
|
||
return {&data[row * nReservedColumns], nColumns};
|
||
}
|
||
|
||
template <typename T>
|
||
void Matrix<T>::setRow(unsigned row, ArrayRef<T> elems) {
|
||
assert(elems.size() == getNumColumns() &&
|
||
"elems size must match row length!");
|
||
for (unsigned i = 0, e = getNumColumns(); i < e; ++i)
|
||
at(row, i) = elems[i];
|
||
}
|
||
|
||
template <typename T>
|
||
void Matrix<T>::insertColumn(unsigned pos) {
|
||
insertColumns(pos, 1);
|
||
}
|
||
template <typename T>
|
||
void Matrix<T>::insertColumns(unsigned pos, unsigned count) {
|
||
if (count == 0)
|
||
return;
|
||
assert(pos <= nColumns);
|
||
unsigned oldNReservedColumns = nReservedColumns;
|
||
if (nColumns + count > nReservedColumns) {
|
||
nReservedColumns = llvm::NextPowerOf2(nColumns + count);
|
||
data.resize(nRows * nReservedColumns);
|
||
}
|
||
nColumns += count;
|
||
|
||
for (int ri = nRows - 1; ri >= 0; --ri) {
|
||
for (int ci = nReservedColumns - 1; ci >= 0; --ci) {
|
||
unsigned r = ri;
|
||
unsigned c = ci;
|
||
T &dest = data[r * nReservedColumns + c];
|
||
if (c >= nColumns) { // NOLINT
|
||
// Out of bounds columns are zero-initialized. NOLINT because clang-tidy
|
||
// complains about this branch being the same as the c >= pos one.
|
||
//
|
||
// TODO: this case can be skipped if the number of reserved columns
|
||
// didn't change.
|
||
dest = 0;
|
||
} else if (c >= pos + count) {
|
||
// Shift the data occuring after the inserted columns.
|
||
dest = data[r * oldNReservedColumns + c - count];
|
||
} else if (c >= pos) {
|
||
// The inserted columns are also zero-initialized.
|
||
dest = 0;
|
||
} else {
|
||
// The columns before the inserted columns stay at the same (row, col)
|
||
// but this corresponds to a different location in the linearized array
|
||
// if the number of reserved columns changed.
|
||
if (nReservedColumns == oldNReservedColumns)
|
||
break;
|
||
dest = data[r * oldNReservedColumns + c];
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
template <typename T>
|
||
void Matrix<T>::removeColumn(unsigned pos) {
|
||
removeColumns(pos, 1);
|
||
}
|
||
template <typename T>
|
||
void Matrix<T>::removeColumns(unsigned pos, unsigned count) {
|
||
if (count == 0)
|
||
return;
|
||
assert(pos + count - 1 < nColumns);
|
||
for (unsigned r = 0; r < nRows; ++r) {
|
||
for (unsigned c = pos; c < nColumns - count; ++c)
|
||
at(r, c) = at(r, c + count);
|
||
for (unsigned c = nColumns - count; c < nColumns; ++c)
|
||
at(r, c) = 0;
|
||
}
|
||
nColumns -= count;
|
||
}
|
||
|
||
template <typename T>
|
||
void Matrix<T>::insertRow(unsigned pos) {
|
||
insertRows(pos, 1);
|
||
}
|
||
template <typename T>
|
||
void Matrix<T>::insertRows(unsigned pos, unsigned count) {
|
||
if (count == 0)
|
||
return;
|
||
|
||
assert(pos <= nRows);
|
||
resizeVertically(nRows + count);
|
||
for (int r = nRows - 1; r >= int(pos + count); --r)
|
||
copyRow(r - count, r);
|
||
for (int r = pos + count - 1; r >= int(pos); --r)
|
||
for (unsigned c = 0; c < nColumns; ++c)
|
||
at(r, c) = 0;
|
||
}
|
||
|
||
template <typename T>
|
||
void Matrix<T>::removeRow(unsigned pos) {
|
||
removeRows(pos, 1);
|
||
}
|
||
template <typename T>
|
||
void Matrix<T>::removeRows(unsigned pos, unsigned count) {
|
||
if (count == 0)
|
||
return;
|
||
assert(pos + count - 1 <= nRows);
|
||
for (unsigned r = pos; r + count < nRows; ++r)
|
||
copyRow(r + count, r);
|
||
resizeVertically(nRows - count);
|
||
}
|
||
|
||
template <typename T>
|
||
void Matrix<T>::copyRow(unsigned sourceRow, unsigned targetRow) {
|
||
if (sourceRow == targetRow)
|
||
return;
|
||
for (unsigned c = 0; c < nColumns; ++c)
|
||
at(targetRow, c) = at(sourceRow, c);
|
||
}
|
||
|
||
template <typename T>
|
||
void Matrix<T>::fillRow(unsigned row, const T &value) {
|
||
for (unsigned col = 0; col < nColumns; ++col)
|
||
at(row, col) = value;
|
||
}
|
||
|
||
// moveColumns is implemented by moving the columns adjacent to the source range
|
||
// to their final position. When moving right (i.e. dstPos > srcPos), the range
|
||
// of the adjacent columns is [srcPos + num, dstPos + num). When moving left
|
||
// (i.e. dstPos < srcPos) the range of the adjacent columns is [dstPos, srcPos).
|
||
// First, zeroed out columns are inserted in the final positions of the adjacent
|
||
// columns. Then, the adjacent columns are moved to their final positions by
|
||
// swapping them with the zeroed columns. Finally, the now zeroed adjacent
|
||
// columns are deleted.
|
||
template <typename T>
|
||
void Matrix<T>::moveColumns(unsigned srcPos, unsigned num, unsigned dstPos) {
|
||
if (num == 0)
|
||
return;
|
||
|
||
int offset = dstPos - srcPos;
|
||
if (offset == 0)
|
||
return;
|
||
|
||
assert(srcPos + num <= getNumColumns() &&
|
||
"move source range exceeds matrix columns");
|
||
assert(dstPos + num <= getNumColumns() &&
|
||
"move destination range exceeds matrix columns");
|
||
|
||
unsigned insertCount = offset > 0 ? offset : -offset;
|
||
unsigned finalAdjStart = offset > 0 ? srcPos : srcPos + num;
|
||
unsigned curAdjStart = offset > 0 ? srcPos + num : dstPos;
|
||
// TODO: This can be done using std::rotate.
|
||
// Insert new zero columns in the positions where the adjacent columns are to
|
||
// be moved.
|
||
insertColumns(finalAdjStart, insertCount);
|
||
// Update curAdjStart if insertion of new columns invalidates it.
|
||
if (finalAdjStart < curAdjStart)
|
||
curAdjStart += insertCount;
|
||
|
||
// Swap the adjacent columns with inserted zero columns.
|
||
for (unsigned i = 0; i < insertCount; ++i)
|
||
swapColumns(finalAdjStart + i, curAdjStart + i);
|
||
|
||
// Delete the now redundant zero columns.
|
||
removeColumns(curAdjStart, insertCount);
|
||
}
|
||
|
||
template <typename T>
|
||
void Matrix<T>::addToRow(unsigned sourceRow, unsigned targetRow,
|
||
const T &scale) {
|
||
addToRow(targetRow, getRow(sourceRow), scale);
|
||
}
|
||
|
||
template <typename T>
|
||
void Matrix<T>::addToRow(unsigned row, ArrayRef<T> rowVec, const T &scale) {
|
||
if (scale == 0)
|
||
return;
|
||
for (unsigned col = 0; col < nColumns; ++col)
|
||
at(row, col) += scale * rowVec[col];
|
||
}
|
||
|
||
template <typename T>
|
||
void Matrix<T>::scaleRow(unsigned row, const T &scale) {
|
||
for (unsigned col = 0; col < nColumns; ++col)
|
||
at(row, col) *= scale;
|
||
}
|
||
|
||
template <typename T>
|
||
void Matrix<T>::addToColumn(unsigned sourceColumn, unsigned targetColumn,
|
||
const T &scale) {
|
||
if (scale == 0)
|
||
return;
|
||
for (unsigned row = 0, e = getNumRows(); row < e; ++row)
|
||
at(row, targetColumn) += scale * at(row, sourceColumn);
|
||
}
|
||
|
||
template <typename T>
|
||
void Matrix<T>::negateColumn(unsigned column) {
|
||
for (unsigned row = 0, e = getNumRows(); row < e; ++row)
|
||
at(row, column) = -at(row, column);
|
||
}
|
||
|
||
template <typename T>
|
||
void Matrix<T>::negateRow(unsigned row) {
|
||
for (unsigned column = 0, e = getNumColumns(); column < e; ++column)
|
||
at(row, column) = -at(row, column);
|
||
}
|
||
|
||
template <typename T>
|
||
void Matrix<T>::negateMatrix() {
|
||
for (unsigned row = 0; row < nRows; ++row)
|
||
negateRow(row);
|
||
}
|
||
|
||
template <typename T>
|
||
SmallVector<T, 8> Matrix<T>::preMultiplyWithRow(ArrayRef<T> rowVec) const {
|
||
assert(rowVec.size() == getNumRows() && "Invalid row vector dimension!");
|
||
|
||
SmallVector<T, 8> result(getNumColumns(), T(0));
|
||
for (unsigned col = 0, e = getNumColumns(); col < e; ++col)
|
||
for (unsigned i = 0, e = getNumRows(); i < e; ++i)
|
||
result[col] += rowVec[i] * at(i, col);
|
||
return result;
|
||
}
|
||
|
||
template <typename T>
|
||
SmallVector<T, 8> Matrix<T>::postMultiplyWithColumn(ArrayRef<T> colVec) const {
|
||
assert(getNumColumns() == colVec.size() &&
|
||
"Invalid column vector dimension!");
|
||
|
||
SmallVector<T, 8> result(getNumRows(), T(0));
|
||
for (unsigned row = 0, e = getNumRows(); row < e; row++)
|
||
for (unsigned i = 0, e = getNumColumns(); i < e; i++)
|
||
result[row] += at(row, i) * colVec[i];
|
||
return result;
|
||
}
|
||
|
||
/// Set M(row, targetCol) to its remainder on division by M(row, sourceCol)
|
||
/// by subtracting from column targetCol an appropriate integer multiple of
|
||
/// sourceCol. This brings M(row, targetCol) to the range [0, M(row,
|
||
/// sourceCol)). Apply the same column operation to otherMatrix, with the same
|
||
/// integer multiple.
|
||
static void modEntryColumnOperation(Matrix<DynamicAPInt> &m, unsigned row,
|
||
unsigned sourceCol, unsigned targetCol,
|
||
Matrix<DynamicAPInt> &otherMatrix) {
|
||
assert(m(row, sourceCol) != 0 && "Cannot divide by zero!");
|
||
assert(m(row, sourceCol) > 0 && "Source must be positive!");
|
||
DynamicAPInt ratio = -floorDiv(m(row, targetCol), m(row, sourceCol));
|
||
m.addToColumn(sourceCol, targetCol, ratio);
|
||
otherMatrix.addToColumn(sourceCol, targetCol, ratio);
|
||
}
|
||
|
||
template <typename T>
|
||
Matrix<T> Matrix<T>::getSubMatrix(unsigned fromRow, unsigned toRow,
|
||
unsigned fromColumn,
|
||
unsigned toColumn) const {
|
||
assert(fromRow <= toRow && "end of row range must be after beginning!");
|
||
assert(toRow < nRows && "end of row range out of bounds!");
|
||
assert(fromColumn <= toColumn &&
|
||
"end of column range must be after beginning!");
|
||
assert(toColumn < nColumns && "end of column range out of bounds!");
|
||
Matrix<T> subMatrix(toRow - fromRow + 1, toColumn - fromColumn + 1);
|
||
for (unsigned i = fromRow; i <= toRow; ++i)
|
||
for (unsigned j = fromColumn; j <= toColumn; ++j)
|
||
subMatrix(i - fromRow, j - fromColumn) = at(i, j);
|
||
return subMatrix;
|
||
}
|
||
|
||
template <typename T>
|
||
void Matrix<T>::print(raw_ostream &os) const {
|
||
PrintTableMetrics ptm = {0, 0, "-"};
|
||
for (unsigned row = 0; row < nRows; ++row)
|
||
for (unsigned column = 0; column < nColumns; ++column)
|
||
updatePrintMetrics<T>(at(row, column), ptm);
|
||
unsigned MIN_SPACING = 1;
|
||
for (unsigned row = 0; row < nRows; ++row) {
|
||
for (unsigned column = 0; column < nColumns; ++column) {
|
||
printWithPrintMetrics<T>(os, at(row, column), MIN_SPACING, ptm);
|
||
}
|
||
os << "\n";
|
||
}
|
||
}
|
||
|
||
/// We iterate over the `indicator` bitset, checking each bit. If a bit is 1,
|
||
/// we append it to one matrix, and if it is zero, we append it to the other.
|
||
template <typename T>
|
||
std::pair<Matrix<T>, Matrix<T>>
|
||
Matrix<T>::splitByBitset(ArrayRef<int> indicator) {
|
||
Matrix<T> rowsForOne(0, nColumns), rowsForZero(0, nColumns);
|
||
for (unsigned i = 0; i < nRows; i++) {
|
||
if (indicator[i] == 1)
|
||
rowsForOne.appendExtraRow(getRow(i));
|
||
else
|
||
rowsForZero.appendExtraRow(getRow(i));
|
||
}
|
||
return {rowsForOne, rowsForZero};
|
||
}
|
||
|
||
template <typename T>
|
||
void Matrix<T>::dump() const {
|
||
print(llvm::errs());
|
||
}
|
||
|
||
template <typename T>
|
||
bool Matrix<T>::hasConsistentState() const {
|
||
if (data.size() != nRows * nReservedColumns)
|
||
return false;
|
||
if (nColumns > nReservedColumns)
|
||
return false;
|
||
#ifdef EXPENSIVE_CHECKS
|
||
for (unsigned r = 0; r < nRows; ++r)
|
||
for (unsigned c = nColumns; c < nReservedColumns; ++c)
|
||
if (data[r * nReservedColumns + c] != 0)
|
||
return false;
|
||
#endif
|
||
return true;
|
||
}
|
||
|
||
namespace mlir {
|
||
namespace presburger {
|
||
template class Matrix<DynamicAPInt>;
|
||
template class Matrix<Fraction>;
|
||
} // namespace presburger
|
||
} // namespace mlir
|
||
|
||
IntMatrix IntMatrix::identity(unsigned dimension) {
|
||
IntMatrix matrix(dimension, dimension);
|
||
for (unsigned i = 0; i < dimension; ++i)
|
||
matrix(i, i) = 1;
|
||
return matrix;
|
||
}
|
||
|
||
std::pair<IntMatrix, IntMatrix> IntMatrix::computeHermiteNormalForm() const {
|
||
// We start with u as an identity matrix and perform operations on h until h
|
||
// is in hermite normal form. We apply the same sequence of operations on u to
|
||
// obtain a transform that takes h to hermite normal form.
|
||
IntMatrix h = *this;
|
||
IntMatrix u = IntMatrix::identity(h.getNumColumns());
|
||
|
||
unsigned echelonCol = 0;
|
||
// Invariant: in all rows above row, all columns from echelonCol onwards
|
||
// are all zero elements. In an iteration, if the curent row has any non-zero
|
||
// elements echelonCol onwards, we bring one to echelonCol and use it to
|
||
// make all elements echelonCol + 1 onwards zero.
|
||
for (unsigned row = 0; row < h.getNumRows(); ++row) {
|
||
// Search row for a non-empty entry, starting at echelonCol.
|
||
unsigned nonZeroCol = echelonCol;
|
||
for (unsigned e = h.getNumColumns(); nonZeroCol < e; ++nonZeroCol) {
|
||
if (h(row, nonZeroCol) == 0)
|
||
continue;
|
||
break;
|
||
}
|
||
|
||
// Continue to the next row with the same echelonCol if this row is all
|
||
// zeros from echelonCol onwards.
|
||
if (nonZeroCol == h.getNumColumns())
|
||
continue;
|
||
|
||
// Bring the non-zero column to echelonCol. This doesn't affect rows
|
||
// above since they are all zero at these columns.
|
||
if (nonZeroCol != echelonCol) {
|
||
h.swapColumns(nonZeroCol, echelonCol);
|
||
u.swapColumns(nonZeroCol, echelonCol);
|
||
}
|
||
|
||
// Make h(row, echelonCol) non-negative.
|
||
if (h(row, echelonCol) < 0) {
|
||
h.negateColumn(echelonCol);
|
||
u.negateColumn(echelonCol);
|
||
}
|
||
|
||
// Make all the entries in row after echelonCol zero.
|
||
for (unsigned i = echelonCol + 1, e = h.getNumColumns(); i < e; ++i) {
|
||
// We make h(row, i) non-negative, and then apply the Euclidean GCD
|
||
// algorithm to (row, i) and (row, echelonCol). At the end, one of them
|
||
// has value equal to the gcd of the two entries, and the other is zero.
|
||
|
||
if (h(row, i) < 0) {
|
||
h.negateColumn(i);
|
||
u.negateColumn(i);
|
||
}
|
||
|
||
unsigned targetCol = i, sourceCol = echelonCol;
|
||
// At every step, we set h(row, targetCol) %= h(row, sourceCol), and
|
||
// swap the indices sourceCol and targetCol. (not the columns themselves)
|
||
// This modulo is implemented as a subtraction
|
||
// h(row, targetCol) -= quotient * h(row, sourceCol),
|
||
// where quotient = floor(h(row, targetCol) / h(row, sourceCol)),
|
||
// which brings h(row, targetCol) to the range [0, h(row, sourceCol)).
|
||
//
|
||
// We are only allowed column operations; we perform the above
|
||
// for every row, i.e., the above subtraction is done as a column
|
||
// operation. This does not affect any rows above us since they are
|
||
// guaranteed to be zero at these columns.
|
||
while (h(row, targetCol) != 0 && h(row, sourceCol) != 0) {
|
||
modEntryColumnOperation(h, row, sourceCol, targetCol, u);
|
||
std::swap(targetCol, sourceCol);
|
||
}
|
||
|
||
// One of (row, echelonCol) and (row, i) is zero and the other is the gcd.
|
||
// Make it so that (row, echelonCol) holds the non-zero value.
|
||
if (h(row, echelonCol) == 0) {
|
||
h.swapColumns(i, echelonCol);
|
||
u.swapColumns(i, echelonCol);
|
||
}
|
||
}
|
||
|
||
// Make all entries before echelonCol non-negative and strictly smaller
|
||
// than the pivot entry.
|
||
for (unsigned i = 0; i < echelonCol; ++i)
|
||
modEntryColumnOperation(h, row, echelonCol, i, u);
|
||
|
||
++echelonCol;
|
||
}
|
||
|
||
return {h, u};
|
||
}
|
||
|
||
DynamicAPInt IntMatrix::normalizeRow(unsigned row, unsigned cols) {
|
||
return normalizeRange(getRow(row).slice(0, cols));
|
||
}
|
||
|
||
DynamicAPInt IntMatrix::normalizeRow(unsigned row) {
|
||
return normalizeRow(row, getNumColumns());
|
||
}
|
||
|
||
DynamicAPInt IntMatrix::determinant(IntMatrix *inverse) const {
|
||
assert(nRows == nColumns &&
|
||
"determinant can only be calculated for square matrices!");
|
||
|
||
FracMatrix m(*this);
|
||
|
||
FracMatrix fracInverse(nRows, nColumns);
|
||
DynamicAPInt detM = m.determinant(&fracInverse).getAsInteger();
|
||
|
||
if (detM == 0)
|
||
return DynamicAPInt(0);
|
||
|
||
if (!inverse)
|
||
return detM;
|
||
|
||
*inverse = IntMatrix(nRows, nColumns);
|
||
for (unsigned i = 0; i < nRows; i++)
|
||
for (unsigned j = 0; j < nColumns; j++)
|
||
inverse->at(i, j) = (fracInverse.at(i, j) * detM).getAsInteger();
|
||
|
||
return detM;
|
||
}
|
||
|
||
FracMatrix FracMatrix::identity(unsigned dimension) {
|
||
return Matrix::identity(dimension);
|
||
}
|
||
|
||
FracMatrix::FracMatrix(IntMatrix m)
|
||
: FracMatrix(m.getNumRows(), m.getNumColumns()) {
|
||
for (unsigned i = 0, r = m.getNumRows(); i < r; i++)
|
||
for (unsigned j = 0, c = m.getNumColumns(); j < c; j++)
|
||
this->at(i, j) = m.at(i, j);
|
||
}
|
||
|
||
Fraction FracMatrix::determinant(FracMatrix *inverse) const {
|
||
assert(nRows == nColumns &&
|
||
"determinant can only be calculated for square matrices!");
|
||
|
||
FracMatrix m(*this);
|
||
FracMatrix tempInv(nRows, nColumns);
|
||
if (inverse)
|
||
tempInv = FracMatrix::identity(nRows);
|
||
|
||
Fraction a, b;
|
||
// Make the matrix into upper triangular form using
|
||
// gaussian elimination with row operations.
|
||
// If inverse is required, we apply more operations
|
||
// to turn the matrix into diagonal form. We apply
|
||
// the same operations to the inverse matrix,
|
||
// which is initially identity.
|
||
// Either way, the product of the diagonal elements
|
||
// is then the determinant.
|
||
for (unsigned i = 0; i < nRows; i++) {
|
||
if (m(i, i) == 0)
|
||
// First ensure that the diagonal
|
||
// element is nonzero, by swapping
|
||
// it with a nonzero row.
|
||
for (unsigned j = i + 1; j < nRows; j++) {
|
||
if (m(j, i) != 0) {
|
||
m.swapRows(j, i);
|
||
if (inverse)
|
||
tempInv.swapRows(j, i);
|
||
break;
|
||
}
|
||
}
|
||
|
||
b = m.at(i, i);
|
||
if (b == 0)
|
||
return 0;
|
||
|
||
// Set all elements above the
|
||
// diagonal to zero.
|
||
if (inverse) {
|
||
for (unsigned j = 0; j < i; j++) {
|
||
if (m.at(j, i) == 0)
|
||
continue;
|
||
a = m.at(j, i);
|
||
// Set element (j, i) to zero
|
||
// by subtracting the ith row,
|
||
// appropriately scaled.
|
||
m.addToRow(i, j, -a / b);
|
||
tempInv.addToRow(i, j, -a / b);
|
||
}
|
||
}
|
||
|
||
// Set all elements below the
|
||
// diagonal to zero.
|
||
for (unsigned j = i + 1; j < nRows; j++) {
|
||
if (m.at(j, i) == 0)
|
||
continue;
|
||
a = m.at(j, i);
|
||
// Set element (j, i) to zero
|
||
// by subtracting the ith row,
|
||
// appropriately scaled.
|
||
m.addToRow(i, j, -a / b);
|
||
if (inverse)
|
||
tempInv.addToRow(i, j, -a / b);
|
||
}
|
||
}
|
||
|
||
// Now only diagonal elements of m are nonzero, but they are
|
||
// not necessarily 1. To get the true inverse, we should
|
||
// normalize them and apply the same scale to the inverse matrix.
|
||
// For efficiency we skip scaling m and just scale tempInv appropriately.
|
||
if (inverse) {
|
||
for (unsigned i = 0; i < nRows; i++)
|
||
for (unsigned j = 0; j < nRows; j++)
|
||
tempInv.at(i, j) = tempInv.at(i, j) / m(i, i);
|
||
|
||
*inverse = std::move(tempInv);
|
||
}
|
||
|
||
Fraction determinant = 1;
|
||
for (unsigned i = 0; i < nRows; i++)
|
||
determinant *= m.at(i, i);
|
||
|
||
return determinant;
|
||
}
|
||
|
||
FracMatrix FracMatrix::gramSchmidt() const {
|
||
// Create a copy of the argument to store
|
||
// the orthogonalised version.
|
||
FracMatrix orth(*this);
|
||
|
||
// For each vector (row) in the matrix, subtract its unit
|
||
// projection along each of the previous vectors.
|
||
// This ensures that it has no component in the direction
|
||
// of any of the previous vectors.
|
||
for (unsigned i = 1, e = getNumRows(); i < e; i++) {
|
||
for (unsigned j = 0; j < i; j++) {
|
||
Fraction jNormSquared = dotProduct(orth.getRow(j), orth.getRow(j));
|
||
assert(jNormSquared != 0 && "some row became zero! Inputs to this "
|
||
"function must be linearly independent.");
|
||
Fraction projectionScale =
|
||
dotProduct(orth.getRow(i), orth.getRow(j)) / jNormSquared;
|
||
orth.addToRow(j, i, -projectionScale);
|
||
}
|
||
}
|
||
return orth;
|
||
}
|
||
|
||
// Convert the matrix, interpreted (row-wise) as a basis
|
||
// to an LLL-reduced basis.
|
||
//
|
||
// This is an implementation of the algorithm described in
|
||
// "Factoring polynomials with rational coefficients" by
|
||
// A. K. Lenstra, H. W. Lenstra Jr., L. Lovasz.
|
||
//
|
||
// Let {b_1, ..., b_n} be the current basis and
|
||
// {b_1*, ..., b_n*} be the Gram-Schmidt orthogonalised
|
||
// basis (unnormalized).
|
||
// Define the Gram-Schmidt coefficients μ_ij as
|
||
// (b_i • b_j*) / (b_j* • b_j*), where (•) represents the inner product.
|
||
//
|
||
// We iterate starting from the second row to the last row.
|
||
//
|
||
// For the kth row, we first check μ_kj for all rows j < k.
|
||
// We subtract b_j (scaled by the integer nearest to μ_kj)
|
||
// from b_k.
|
||
//
|
||
// Now, we update k.
|
||
// If b_k and b_{k-1} satisfy the Lovasz condition
|
||
// |b_k|^2 ≥ (δ - μ_k{k-1}^2) |b_{k-1}|^2,
|
||
// we are done and we increment k.
|
||
// Otherwise, we swap b_k and b_{k-1} and decrement k.
|
||
//
|
||
// We repeat this until k = n and return.
|
||
void FracMatrix::LLL(Fraction delta) {
|
||
DynamicAPInt nearest;
|
||
Fraction mu;
|
||
|
||
// `gsOrth` holds the Gram-Schmidt orthogonalisation
|
||
// of the matrix at all times. It is recomputed every
|
||
// time the matrix is modified during the algorithm.
|
||
// This is naive and can be optimised.
|
||
FracMatrix gsOrth = gramSchmidt();
|
||
|
||
// We start from the second row.
|
||
unsigned k = 1;
|
||
while (k < getNumRows()) {
|
||
for (unsigned j = k - 1; j < k; j--) {
|
||
// Compute the Gram-Schmidt coefficient μ_jk.
|
||
mu = dotProduct(getRow(k), gsOrth.getRow(j)) /
|
||
dotProduct(gsOrth.getRow(j), gsOrth.getRow(j));
|
||
nearest = round(mu);
|
||
// Subtract b_j scaled by the integer nearest to μ_jk from b_k.
|
||
addToRow(k, getRow(j), -Fraction(nearest, 1));
|
||
gsOrth = gramSchmidt(); // Update orthogonalization.
|
||
}
|
||
mu = dotProduct(getRow(k), gsOrth.getRow(k - 1)) /
|
||
dotProduct(gsOrth.getRow(k - 1), gsOrth.getRow(k - 1));
|
||
// Check the Lovasz condition for b_k and b_{k-1}.
|
||
if (dotProduct(gsOrth.getRow(k), gsOrth.getRow(k)) >
|
||
(delta - mu * mu) *
|
||
dotProduct(gsOrth.getRow(k - 1), gsOrth.getRow(k - 1))) {
|
||
// If it is satisfied, proceed to the next k.
|
||
k += 1;
|
||
} else {
|
||
// If it is not satisfied, decrement k (without
|
||
// going beyond the second row).
|
||
swapRows(k, k - 1);
|
||
gsOrth = gramSchmidt(); // Update orthogonalization.
|
||
k = k > 1 ? k - 1 : 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
IntMatrix FracMatrix::normalizeRows() const {
|
||
unsigned numRows = getNumRows();
|
||
unsigned numColumns = getNumColumns();
|
||
IntMatrix normalized(numRows, numColumns);
|
||
|
||
DynamicAPInt lcmDenoms = DynamicAPInt(1);
|
||
for (unsigned i = 0; i < numRows; i++) {
|
||
// For a row, first compute the LCM of the denominators.
|
||
for (unsigned j = 0; j < numColumns; j++)
|
||
lcmDenoms = lcm(lcmDenoms, at(i, j).den);
|
||
// Then, multiply by it throughout and convert to integers.
|
||
for (unsigned j = 0; j < numColumns; j++)
|
||
normalized(i, j) = (at(i, j) * lcmDenoms).getAsInteger();
|
||
}
|
||
return normalized;
|
||
}
|