The conversion between PDL and the interpreter is split into several different parts.
** The Matcher:
The matching section of all incoming pdl.pattern operations is converted into a predicate tree and merged. Each pattern is first converted into an ordered list of predicates starting from the root operation. A predicate is composed of three distinct parts:
* Position
- A position refers to a specific location on the input DAG, i.e. an
existing MLIR entity being matched. These can be attributes, operands,
operations, results, and types. Each position also defines a relation to
its parent. For example, the operand `[0] -> 1` has a parent operation
position `[0]` (the root).
* Question
- A question refers to a query on a specific positional value. For
example, an operation name question checks the name of an operation
position.
* Answer
- An answer is the expected result of a question. For example, when
matching an operation with the name "foo.op". The question would be an
operation name question, with an expected answer of "foo.op".
After the predicate lists have been created and ordered(based on occurrence of common predicates and other factors), they are formed into a tree of nodes that represent the branching flow of a pattern match. This structure allows for efficient construction and merging of the input patterns. There are currently only 4 simple nodes in the tree:
* ExitNode: Represents the termination of a match
* SuccessNode: Represents a successful match of a specific pattern
* BoolNode/SwitchNode: Branch to a specific child node based on the expected answer to a predicate question.
Once the matcher tree has been generated, this tree is walked to generate the corresponding interpreter operations.
** The Rewriter:
The rewriter portion of a pattern is generated in a very straightforward manor, similarly to lowerings in other dialects. Each PDL operation that may exist within a rewrite has a mapping into the interpreter dialect. The code for the rewriter is generated within a FuncOp, that is invoked by the interpreter on a successful pattern match. Referenced values defined in the matcher become inputs the generated rewriter function.
An example lowering is shown below:
```mlir
// The following high level PDL pattern:
pdl.pattern : benefit(1) {
%resultType = pdl.type
%inputOperand = pdl.input
%root, %results = pdl.operation "foo.op"(%inputOperand) -> %resultType
pdl.rewrite %root {
pdl.replace %root with (%inputOperand)
}
}
// is lowered to the following:
module {
// The matcher function takes the root operation as an input.
func @matcher(%arg0: !pdl.operation) {
pdl_interp.check_operation_name of %arg0 is "foo.op" -> ^bb2, ^bb1
^bb1:
pdl_interp.return
^bb2:
pdl_interp.check_operand_count of %arg0 is 1 -> ^bb3, ^bb1
^bb3:
pdl_interp.check_result_count of %arg0 is 1 -> ^bb4, ^bb1
^bb4:
%0 = pdl_interp.get_operand 0 of %arg0
pdl_interp.is_not_null %0 : !pdl.value -> ^bb5, ^bb1
^bb5:
%1 = pdl_interp.get_result 0 of %arg0
pdl_interp.is_not_null %1 : !pdl.value -> ^bb6, ^bb1
^bb6:
// This operation corresponds to a successful pattern match.
pdl_interp.record_match @rewriters::@rewriter(%0, %arg0 : !pdl.value, !pdl.operation) : benefit(1), loc([%arg0]), root("foo.op") -> ^bb1
}
module @rewriters {
// The inputs to the rewriter from the matcher are passed as arguments.
func @rewriter(%arg0: !pdl.value, %arg1: !pdl.operation) {
pdl_interp.replace %arg1 with(%arg0)
pdl_interp.return
}
}
}
```
Differential Revision: https://reviews.llvm.org/D84580
463 lines
19 KiB
C++
463 lines
19 KiB
C++
//===- PredicateTree.cpp - Predicate tree merging -------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PredicateTree.h"
|
|
#include "mlir/Dialect/PDL/IR/PDL.h"
|
|
#include "mlir/Dialect/PDL/IR/PDLTypes.h"
|
|
#include "mlir/Dialect/PDLInterp/IR/PDLInterp.h"
|
|
#include "mlir/IR/Module.h"
|
|
#include "mlir/Interfaces/InferTypeOpInterface.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::pdl_to_pdl_interp;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Predicate List Building
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Compares the depths of two positions.
|
|
static bool comparePosDepth(Position *lhs, Position *rhs) {
|
|
return lhs->getIndex().size() < rhs->getIndex().size();
|
|
}
|
|
|
|
/// Collect the tree predicates anchored at the given value.
|
|
static void getTreePredicates(std::vector<PositionalPredicate> &predList,
|
|
Value val, PredicateBuilder &builder,
|
|
DenseMap<Value, Position *> &inputs,
|
|
Position *pos) {
|
|
// Make sure this input value is accessible to the rewrite.
|
|
auto it = inputs.try_emplace(val, pos);
|
|
|
|
// If this is an input value that has been visited in the tree, add a
|
|
// constraint to ensure that both instances refer to the same value.
|
|
if (!it.second &&
|
|
isa<pdl::AttributeOp, pdl::InputOp, pdl::TypeOp>(val.getDefiningOp())) {
|
|
auto minMaxPositions = std::minmax(pos, it.first->second, comparePosDepth);
|
|
predList.emplace_back(minMaxPositions.second,
|
|
builder.getEqualTo(minMaxPositions.first));
|
|
return;
|
|
}
|
|
|
|
// Check for a per-position predicate to apply.
|
|
switch (pos->getKind()) {
|
|
case Predicates::AttributePos: {
|
|
assert(val.getType().isa<pdl::AttributeType>() &&
|
|
"expected attribute type");
|
|
pdl::AttributeOp attr = cast<pdl::AttributeOp>(val.getDefiningOp());
|
|
predList.emplace_back(pos, builder.getIsNotNull());
|
|
|
|
// If the attribute has a type, add a type constraint.
|
|
if (Value type = attr.type()) {
|
|
getTreePredicates(predList, type, builder, inputs, builder.getType(pos));
|
|
|
|
// Check for a constant value of the attribute.
|
|
} else if (Optional<Attribute> value = attr.value()) {
|
|
predList.emplace_back(pos, builder.getAttributeConstraint(*value));
|
|
}
|
|
break;
|
|
}
|
|
case Predicates::OperandPos: {
|
|
assert(val.getType().isa<pdl::ValueType>() && "expected value type");
|
|
|
|
// Prevent traversal into a null value.
|
|
predList.emplace_back(pos, builder.getIsNotNull());
|
|
|
|
// If this is a typed input, add a type constraint.
|
|
if (auto in = val.getDefiningOp<pdl::InputOp>()) {
|
|
if (Value type = in.type()) {
|
|
getTreePredicates(predList, type, builder, inputs,
|
|
builder.getType(pos));
|
|
}
|
|
|
|
// Otherwise, recurse into the parent node.
|
|
} else if (auto parentOp = val.getDefiningOp<pdl::OperationOp>()) {
|
|
getTreePredicates(predList, parentOp.op(), builder, inputs,
|
|
builder.getParent(cast<OperandPosition>(pos)));
|
|
}
|
|
break;
|
|
}
|
|
case Predicates::OperationPos: {
|
|
assert(val.getType().isa<pdl::OperationType>() && "expected operation");
|
|
pdl::OperationOp op = cast<pdl::OperationOp>(val.getDefiningOp());
|
|
OperationPosition *opPos = cast<OperationPosition>(pos);
|
|
|
|
// Ensure getDefiningOp returns a non-null operation.
|
|
if (!opPos->isRoot())
|
|
predList.emplace_back(pos, builder.getIsNotNull());
|
|
|
|
// Check that this is the correct root operation.
|
|
if (Optional<StringRef> opName = op.name())
|
|
predList.emplace_back(pos, builder.getOperationName(*opName));
|
|
|
|
// Check that the operation has the proper number of operands and results.
|
|
OperandRange operands = op.operands();
|
|
ResultRange results = op.results();
|
|
predList.emplace_back(pos, builder.getOperandCount(operands.size()));
|
|
predList.emplace_back(pos, builder.getResultCount(results.size()));
|
|
|
|
// Recurse into any attributes, operands, or results.
|
|
for (auto it : llvm::zip(op.attributeNames(), op.attributes())) {
|
|
getTreePredicates(
|
|
predList, std::get<1>(it), builder, inputs,
|
|
builder.getAttribute(opPos,
|
|
std::get<0>(it).cast<StringAttr>().getValue()));
|
|
}
|
|
for (auto operandIt : llvm::enumerate(operands))
|
|
getTreePredicates(predList, operandIt.value(), builder, inputs,
|
|
builder.getOperand(opPos, operandIt.index()));
|
|
|
|
// Only recurse into results that are not referenced in the source tree.
|
|
for (auto resultIt : llvm::enumerate(results)) {
|
|
getTreePredicates(predList, resultIt.value(), builder, inputs,
|
|
builder.getResult(opPos, resultIt.index()));
|
|
}
|
|
break;
|
|
}
|
|
case Predicates::ResultPos: {
|
|
assert(val.getType().isa<pdl::ValueType>() && "expected value type");
|
|
pdl::OperationOp parentOp = cast<pdl::OperationOp>(val.getDefiningOp());
|
|
|
|
// Prevent traversing a null value.
|
|
predList.emplace_back(pos, builder.getIsNotNull());
|
|
|
|
// Traverse the type constraint.
|
|
unsigned resultNo = cast<ResultPosition>(pos)->getResultNumber();
|
|
getTreePredicates(predList, parentOp.types()[resultNo], builder, inputs,
|
|
builder.getType(pos));
|
|
break;
|
|
}
|
|
case Predicates::TypePos: {
|
|
assert(val.getType().isa<pdl::TypeType>() && "expected value type");
|
|
pdl::TypeOp typeOp = cast<pdl::TypeOp>(val.getDefiningOp());
|
|
|
|
// Check for a constraint on a constant type.
|
|
if (Optional<Type> type = typeOp.type())
|
|
predList.emplace_back(pos, builder.getTypeConstraint(*type));
|
|
break;
|
|
}
|
|
default:
|
|
llvm_unreachable("unknown position kind");
|
|
}
|
|
}
|
|
|
|
/// Collect all of the predicates related to constraints within the given
|
|
/// pattern operation.
|
|
static void collectConstraintPredicates(
|
|
pdl::PatternOp pattern, std::vector<PositionalPredicate> &predList,
|
|
PredicateBuilder &builder, DenseMap<Value, Position *> &inputs) {
|
|
for (auto op : pattern.body().getOps<pdl::ApplyConstraintOp>()) {
|
|
OperandRange arguments = op.args();
|
|
ArrayAttr parameters = op.constParamsAttr();
|
|
|
|
std::vector<Position *> allPositions;
|
|
allPositions.reserve(arguments.size());
|
|
for (Value arg : arguments)
|
|
allPositions.push_back(inputs.lookup(arg));
|
|
|
|
// Push the constraint to the furthest position.
|
|
Position *pos = *std::max_element(allPositions.begin(), allPositions.end(),
|
|
comparePosDepth);
|
|
PredicateBuilder::Predicate pred =
|
|
builder.getConstraint(op.name(), std::move(allPositions), parameters);
|
|
predList.emplace_back(pos, pred);
|
|
}
|
|
}
|
|
|
|
/// Given a pattern operation, build the set of matcher predicates necessary to
|
|
/// match this pattern.
|
|
static void buildPredicateList(pdl::PatternOp pattern,
|
|
PredicateBuilder &builder,
|
|
std::vector<PositionalPredicate> &predList,
|
|
DenseMap<Value, Position *> &valueToPosition) {
|
|
getTreePredicates(predList, pattern.getRewriter().root(), builder,
|
|
valueToPosition, builder.getRoot());
|
|
collectConstraintPredicates(pattern, predList, builder, valueToPosition);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pattern Predicate Tree Merging
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// This class represents a specific predicate applied to a position, and
|
|
/// provides hashing and ordering operators. This class allows for computing a
|
|
/// frequence sum and ordering predicates based on a cost model.
|
|
struct OrderedPredicate {
|
|
OrderedPredicate(const std::pair<Position *, Qualifier *> &ip)
|
|
: position(ip.first), question(ip.second) {}
|
|
OrderedPredicate(const PositionalPredicate &ip)
|
|
: position(ip.position), question(ip.question) {}
|
|
|
|
/// The position this predicate is applied to.
|
|
Position *position;
|
|
|
|
/// The question that is applied by this predicate onto the position.
|
|
Qualifier *question;
|
|
|
|
/// The first and second order benefit sums.
|
|
/// The primary sum is the number of occurrences of this predicate among all
|
|
/// of the patterns.
|
|
unsigned primary = 0;
|
|
/// The secondary sum is a squared summation of the primary sum of all of the
|
|
/// predicates within each pattern that contains this predicate. This allows
|
|
/// for favoring predicates that are more commonly shared within a pattern, as
|
|
/// opposed to those shared across patterns.
|
|
unsigned secondary = 0;
|
|
|
|
/// A map between a pattern operation and the answer to the predicate question
|
|
/// within that pattern.
|
|
DenseMap<Operation *, Qualifier *> patternToAnswer;
|
|
|
|
/// Returns true if this predicate is ordered before `other`, based on the
|
|
/// cost model.
|
|
bool operator<(const OrderedPredicate &other) const {
|
|
// Sort by:
|
|
// * first and secondary order sums
|
|
// * lower depth
|
|
// * position dependency
|
|
// * predicate dependency.
|
|
auto *otherPos = other.position;
|
|
return std::make_tuple(other.primary, other.secondary,
|
|
otherPos->getIndex().size(), otherPos->getKind(),
|
|
other.question->getKind()) >
|
|
std::make_tuple(primary, secondary, position->getIndex().size(),
|
|
position->getKind(), question->getKind());
|
|
}
|
|
};
|
|
|
|
/// A DenseMapInfo for OrderedPredicate based solely on the position and
|
|
/// question.
|
|
struct OrderedPredicateDenseInfo {
|
|
using Base = DenseMapInfo<std::pair<Position *, Qualifier *>>;
|
|
|
|
static OrderedPredicate getEmptyKey() { return Base::getEmptyKey(); }
|
|
static OrderedPredicate getTombstoneKey() { return Base::getTombstoneKey(); }
|
|
static bool isEqual(const OrderedPredicate &lhs,
|
|
const OrderedPredicate &rhs) {
|
|
return lhs.position == rhs.position && lhs.question == rhs.question;
|
|
}
|
|
static unsigned getHashValue(const OrderedPredicate &p) {
|
|
return llvm::hash_combine(p.position, p.question);
|
|
}
|
|
};
|
|
|
|
/// This class wraps a set of ordered predicates that are used within a specific
|
|
/// pattern operation.
|
|
struct OrderedPredicateList {
|
|
OrderedPredicateList(pdl::PatternOp pattern) : pattern(pattern) {}
|
|
|
|
pdl::PatternOp pattern;
|
|
DenseSet<OrderedPredicate *> predicates;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Returns true if the given matcher refers to the same predicate as the given
|
|
/// ordered predicate. This means that the position and questions of the two
|
|
/// match.
|
|
static bool isSamePredicate(MatcherNode *node, OrderedPredicate *predicate) {
|
|
return node->getPosition() == predicate->position &&
|
|
node->getQuestion() == predicate->question;
|
|
}
|
|
|
|
/// Get or insert a child matcher for the given parent switch node, given a
|
|
/// predicate and parent pattern.
|
|
std::unique_ptr<MatcherNode> &getOrCreateChild(SwitchNode *node,
|
|
OrderedPredicate *predicate,
|
|
pdl::PatternOp pattern) {
|
|
assert(isSamePredicate(node, predicate) &&
|
|
"expected matcher to equal the given predicate");
|
|
|
|
auto it = predicate->patternToAnswer.find(pattern);
|
|
assert(it != predicate->patternToAnswer.end() &&
|
|
"expected pattern to exist in predicate");
|
|
return node->getChildren().insert({it->second, nullptr}).first->second;
|
|
}
|
|
|
|
/// Build the matcher CFG by "pushing" patterns through by sorted predicate
|
|
/// order. A pattern will traverse as far as possible using common predicates
|
|
/// and then either diverge from the CFG or reach the end of a branch and start
|
|
/// creating new nodes.
|
|
static void propagatePattern(std::unique_ptr<MatcherNode> &node,
|
|
OrderedPredicateList &list,
|
|
std::vector<OrderedPredicate *>::iterator current,
|
|
std::vector<OrderedPredicate *>::iterator end) {
|
|
if (current == end) {
|
|
// We've hit the end of a pattern, so create a successful result node.
|
|
node = std::make_unique<SuccessNode>(list.pattern, std::move(node));
|
|
|
|
// If the pattern doesn't contain this predicate, ignore it.
|
|
} else if (list.predicates.find(*current) == list.predicates.end()) {
|
|
propagatePattern(node, list, std::next(current), end);
|
|
|
|
// If the current matcher node is invalid, create a new one for this
|
|
// position and continue propagation.
|
|
} else if (!node) {
|
|
// Create a new node at this position and continue
|
|
node = std::make_unique<SwitchNode>((*current)->position,
|
|
(*current)->question);
|
|
propagatePattern(
|
|
getOrCreateChild(cast<SwitchNode>(&*node), *current, list.pattern),
|
|
list, std::next(current), end);
|
|
|
|
// If the matcher has already been created, and it is for this predicate we
|
|
// continue propagation to the child.
|
|
} else if (isSamePredicate(node.get(), *current)) {
|
|
propagatePattern(
|
|
getOrCreateChild(cast<SwitchNode>(&*node), *current, list.pattern),
|
|
list, std::next(current), end);
|
|
|
|
// If the matcher doesn't match the current predicate, insert a branch as
|
|
// the common set of matchers has diverged.
|
|
} else {
|
|
propagatePattern(node->getFailureNode(), list, current, end);
|
|
}
|
|
}
|
|
|
|
/// Fold any switch nodes nested under `node` to boolean nodes when possible.
|
|
/// `node` is updated in-place if it is a switch.
|
|
static void foldSwitchToBool(std::unique_ptr<MatcherNode> &node) {
|
|
if (!node)
|
|
return;
|
|
|
|
if (SwitchNode *switchNode = dyn_cast<SwitchNode>(&*node)) {
|
|
SwitchNode::ChildMapT &children = switchNode->getChildren();
|
|
for (auto &it : children)
|
|
foldSwitchToBool(it.second);
|
|
|
|
// If the node only contains one child, collapse it into a boolean predicate
|
|
// node.
|
|
if (children.size() == 1) {
|
|
auto childIt = children.begin();
|
|
node = std::make_unique<BoolNode>(
|
|
node->getPosition(), node->getQuestion(), childIt->first,
|
|
std::move(childIt->second), std::move(node->getFailureNode()));
|
|
}
|
|
} else if (BoolNode *boolNode = dyn_cast<BoolNode>(&*node)) {
|
|
foldSwitchToBool(boolNode->getSuccessNode());
|
|
}
|
|
|
|
foldSwitchToBool(node->getFailureNode());
|
|
}
|
|
|
|
/// Insert an exit node at the end of the failure path of the `root`.
|
|
static void insertExitNode(std::unique_ptr<MatcherNode> *root) {
|
|
while (*root)
|
|
root = &(*root)->getFailureNode();
|
|
*root = std::make_unique<ExitNode>();
|
|
}
|
|
|
|
/// Given a module containing PDL pattern operations, generate a matcher tree
|
|
/// using the patterns within the given module and return the root matcher node.
|
|
std::unique_ptr<MatcherNode>
|
|
MatcherNode::generateMatcherTree(ModuleOp module, PredicateBuilder &builder,
|
|
DenseMap<Value, Position *> &valueToPosition) {
|
|
// Collect the set of predicates contained within the pattern operations of
|
|
// the module.
|
|
SmallVector<std::pair<pdl::PatternOp, std::vector<PositionalPredicate>>, 16>
|
|
patternsAndPredicates;
|
|
for (pdl::PatternOp pattern : module.getOps<pdl::PatternOp>()) {
|
|
std::vector<PositionalPredicate> predicateList;
|
|
buildPredicateList(pattern, builder, predicateList, valueToPosition);
|
|
patternsAndPredicates.emplace_back(pattern, std::move(predicateList));
|
|
}
|
|
|
|
// Associate a pattern result with each unique predicate.
|
|
DenseSet<OrderedPredicate, OrderedPredicateDenseInfo> uniqued;
|
|
for (auto &patternAndPredList : patternsAndPredicates) {
|
|
for (auto &predicate : patternAndPredList.second) {
|
|
auto it = uniqued.insert(predicate);
|
|
it.first->patternToAnswer.try_emplace(patternAndPredList.first,
|
|
predicate.answer);
|
|
}
|
|
}
|
|
|
|
// Associate each pattern to a set of its ordered predicates for later lookup.
|
|
std::vector<OrderedPredicateList> lists;
|
|
lists.reserve(patternsAndPredicates.size());
|
|
for (auto &patternAndPredList : patternsAndPredicates) {
|
|
OrderedPredicateList list(patternAndPredList.first);
|
|
for (auto &predicate : patternAndPredList.second) {
|
|
OrderedPredicate *orderedPredicate = &*uniqued.find(predicate);
|
|
list.predicates.insert(orderedPredicate);
|
|
|
|
// Increment the primary sum for each reference to a particular predicate.
|
|
++orderedPredicate->primary;
|
|
}
|
|
lists.push_back(std::move(list));
|
|
}
|
|
|
|
// For a particular pattern, get the total primary sum and add it to the
|
|
// secondary sum of each predicate. Square the primary sums to emphasize
|
|
// shared predicates within rather than across patterns.
|
|
for (auto &list : lists) {
|
|
unsigned total = 0;
|
|
for (auto *predicate : list.predicates)
|
|
total += predicate->primary * predicate->primary;
|
|
for (auto *predicate : list.predicates)
|
|
predicate->secondary += total;
|
|
}
|
|
|
|
// Sort the set of predicates now that the cost primary and secondary sums
|
|
// have been computed.
|
|
std::vector<OrderedPredicate *> ordered;
|
|
ordered.reserve(uniqued.size());
|
|
for (auto &ip : uniqued)
|
|
ordered.push_back(&ip);
|
|
std::stable_sort(
|
|
ordered.begin(), ordered.end(),
|
|
[](OrderedPredicate *lhs, OrderedPredicate *rhs) { return *lhs < *rhs; });
|
|
|
|
// Build the matchers for each of the pattern predicate lists.
|
|
std::unique_ptr<MatcherNode> root;
|
|
for (OrderedPredicateList &list : lists)
|
|
propagatePattern(root, list, ordered.begin(), ordered.end());
|
|
|
|
// Collapse the graph and insert the exit node.
|
|
foldSwitchToBool(root);
|
|
insertExitNode(&root);
|
|
return root;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MatcherNode
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MatcherNode::MatcherNode(TypeID matcherTypeID, Position *p, Qualifier *q,
|
|
std::unique_ptr<MatcherNode> failureNode)
|
|
: position(p), question(q), failureNode(std::move(failureNode)),
|
|
matcherTypeID(matcherTypeID) {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BoolNode
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
BoolNode::BoolNode(Position *position, Qualifier *question, Qualifier *answer,
|
|
std::unique_ptr<MatcherNode> successNode,
|
|
std::unique_ptr<MatcherNode> failureNode)
|
|
: MatcherNode(TypeID::get<BoolNode>(), position, question,
|
|
std::move(failureNode)),
|
|
answer(answer), successNode(std::move(successNode)) {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SuccessNode
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SuccessNode::SuccessNode(pdl::PatternOp pattern,
|
|
std::unique_ptr<MatcherNode> failureNode)
|
|
: MatcherNode(TypeID::get<SuccessNode>(), /*position=*/nullptr,
|
|
/*question=*/nullptr, std::move(failureNode)),
|
|
pattern(pattern) {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SwitchNode
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SwitchNode::SwitchNode(Position *position, Qualifier *question)
|
|
: MatcherNode(TypeID::get<SwitchNode>(), position, question) {}
|