This aligns the SCF dialect file layout with the majority of the dialects. Reviewed By: jpienaar Differential Revision: https://reviews.llvm.org/D128049
1217 lines
52 KiB
C++
1217 lines
52 KiB
C++
//===- BufferizableOpInterfaceImpl.cpp - Impl. of BufferizableOpInterface -===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/SCF/Transforms/BufferizableOpInterfaceImpl.h"
|
|
|
|
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/SCF/IR/SCF.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/IR/Dialect.h"
|
|
#include "mlir/IR/Operation.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::bufferization;
|
|
using namespace mlir::scf;
|
|
|
|
namespace mlir {
|
|
namespace scf {
|
|
namespace {
|
|
|
|
// bufferization.to_memref is not allowed to change the rank.
|
|
static void ensureToMemrefOpIsValid(Value tensor, Type memrefType) {
|
|
#ifndef NDEBUG
|
|
auto rankedTensorType = tensor.getType().dyn_cast<RankedTensorType>();
|
|
assert((!rankedTensorType || (memrefType.cast<MemRefType>().getRank() ==
|
|
rankedTensorType.getRank())) &&
|
|
"to_memref would be invalid: mismatching ranks");
|
|
#endif
|
|
}
|
|
|
|
/// Bufferization of scf.execute_region. Can be analyzed, but bufferization not
|
|
/// fully implemented at the moment.
|
|
struct ExecuteRegionOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<ExecuteRegionOpInterface,
|
|
scf::ExecuteRegionOp> {
|
|
SmallVector<OpOperand *>
|
|
getAliasingOpOperand(Operation *op, OpResult opResult,
|
|
const AnalysisState &state) const {
|
|
// ExecuteRegionOps do not have tensor OpOperands. The yielded value can be
|
|
// any SSA value that is in scope. To allow for use-def chain traversal
|
|
// through ExecuteRegionOps in the analysis, the corresponding yield value
|
|
// is considered to be aliasing with the result.
|
|
auto executeRegionOp = cast<scf::ExecuteRegionOp>(op);
|
|
size_t resultNum = std::distance(op->getOpResults().begin(),
|
|
llvm::find(op->getOpResults(), opResult));
|
|
// TODO: Support multiple blocks.
|
|
assert(executeRegionOp.getRegion().getBlocks().size() == 1 &&
|
|
"expected exactly 1 block");
|
|
auto yieldOp = dyn_cast<scf::YieldOp>(
|
|
executeRegionOp.getRegion().front().getTerminator());
|
|
assert(yieldOp && "expected scf.yield terminator in scf.execute_region");
|
|
return {&yieldOp->getOpOperand(resultNum)};
|
|
}
|
|
|
|
// TODO: For better bufferization results, this could return `true` only if
|
|
// there is a memory write in the region.
|
|
bool isMemoryWrite(Operation *op, OpResult opResult,
|
|
const AnalysisState &state) const {
|
|
// Similar to scf.if, results of this op are always considered memory writes
|
|
// in the analysis. This is a useful pattern for all ops that have tensor
|
|
// OpResults but no tensor OpOperands. By default, `isMemoryWrite` is
|
|
// implemented in terms of `bufferizesToMemoryWrite`, which does not work on
|
|
// ops without OpOperands.
|
|
return true;
|
|
}
|
|
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
const BufferizationOptions &options) const {
|
|
auto executeRegionOp = cast<scf::ExecuteRegionOp>(op);
|
|
|
|
// Compute new result types.
|
|
SmallVector<Type> newResultTypes;
|
|
for (Type type : executeRegionOp->getResultTypes()) {
|
|
if (auto tensorType = type.dyn_cast<TensorType>()) {
|
|
// TODO: Infer the result type instead of computing it.
|
|
newResultTypes.push_back(getMemRefType(tensorType, options));
|
|
} else {
|
|
newResultTypes.push_back(type);
|
|
}
|
|
}
|
|
|
|
// Create new op and move over region.
|
|
auto newOp =
|
|
rewriter.create<scf::ExecuteRegionOp>(op->getLoc(), newResultTypes);
|
|
newOp.getRegion().takeBody(executeRegionOp.getRegion());
|
|
|
|
// Update terminator.
|
|
assert(newOp.getRegion().getBlocks().size() == 1 &&
|
|
"only 1 block supported");
|
|
Block *newBlock = &newOp.getRegion().front();
|
|
auto yieldOp = cast<scf::YieldOp>(newBlock->getTerminator());
|
|
rewriter.setInsertionPoint(yieldOp);
|
|
SmallVector<Value> newYieldValues;
|
|
for (const auto &it : llvm::enumerate(yieldOp.getResults())) {
|
|
Value val = it.value();
|
|
if (val.getType().isa<TensorType>()) {
|
|
newYieldValues.push_back(rewriter.create<bufferization::ToMemrefOp>(
|
|
yieldOp.getLoc(), newResultTypes[it.index()], val));
|
|
} else {
|
|
newYieldValues.push_back(val);
|
|
}
|
|
}
|
|
rewriter.replaceOpWithNewOp<scf::YieldOp>(yieldOp, newYieldValues);
|
|
|
|
// Update all uses of the old op.
|
|
rewriter.setInsertionPointAfter(newOp);
|
|
SmallVector<Value> newResults;
|
|
for (const auto &it : llvm::enumerate(executeRegionOp->getResultTypes())) {
|
|
if (it.value().isa<TensorType>()) {
|
|
newResults.push_back(rewriter.create<bufferization::ToTensorOp>(
|
|
executeRegionOp.getLoc(), newOp->getResult(it.index())));
|
|
} else {
|
|
newResults.push_back(newOp->getResult(it.index()));
|
|
}
|
|
}
|
|
|
|
// Replace old op.
|
|
rewriter.replaceOp(executeRegionOp, newResults);
|
|
|
|
return success();
|
|
}
|
|
|
|
BufferRelation bufferRelation(Operation *op, OpResult opResult,
|
|
const AnalysisState &state) const {
|
|
return BufferRelation::Equivalent;
|
|
}
|
|
};
|
|
|
|
/// Bufferization of scf.if. Replace with a new scf.if that yields memrefs.
|
|
struct IfOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<IfOpInterface, scf::IfOp> {
|
|
SmallVector<OpOperand *>
|
|
getAliasingOpOperand(Operation *op, OpResult opResult,
|
|
const AnalysisState &state) const {
|
|
// IfOps do not have tensor OpOperands. The yielded value can be any SSA
|
|
// value that is in scope. To allow for use-def chain traversal through
|
|
// IfOps in the analysis, both corresponding yield values from the then/else
|
|
// branches are considered to be aliasing with the result.
|
|
auto ifOp = cast<scf::IfOp>(op);
|
|
size_t resultNum = std::distance(op->getOpResults().begin(),
|
|
llvm::find(op->getOpResults(), opResult));
|
|
return {&ifOp.thenYield()->getOpOperand(resultNum),
|
|
&ifOp.elseYield()->getOpOperand(resultNum)};
|
|
}
|
|
|
|
// TODO: For better bufferization results, this could return `true` only if
|
|
// there is a memory write in one (or both) of the branches. Since this is not
|
|
// allowed at the moment, we should never encounter scf.ifs that yield
|
|
// unmodified tensors. Such scf.yield ops could just fold away.
|
|
bool isMemoryWrite(Operation *op, OpResult opResult,
|
|
const AnalysisState &state) const {
|
|
// IfOp results are always considered memory writes in the analysis. This
|
|
// design decision simplifies the analysis considerably. E.g., consider the
|
|
// following test case:
|
|
//
|
|
// %0 = "some_writing_op" : tensor<?xf32>
|
|
// %r = scf.if %c -> (tensor<?xf32>) {
|
|
// scf.yield %0
|
|
// } else {
|
|
// %1 = "another_writing_op"(%0) : tensor<?xf32>
|
|
// }
|
|
// "some_reading_op"(%r)
|
|
//
|
|
// "another_writing_op" in the above example should be able to bufferize
|
|
// inplace in the absence of another read of %0. However, if the scf.if op
|
|
// would not be considered a "write", the analysis would detect the
|
|
// following conflict:
|
|
//
|
|
// * read = some_reading_op
|
|
// * lastWrite = %0 (Note: The last write of %r would be a set: {%0, %1}.)
|
|
// * conflictingWrite = %1
|
|
//
|
|
// For more details, check the "scf.IfOp" section of the design document.
|
|
return true;
|
|
}
|
|
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
const BufferizationOptions &options) const {
|
|
auto ifOp = cast<scf::IfOp>(op);
|
|
|
|
// Compute new types of the bufferized scf.if op.
|
|
SmallVector<Type> newTypes;
|
|
for (Type returnType : ifOp->getResultTypes()) {
|
|
if (auto tensorType = returnType.dyn_cast<TensorType>()) {
|
|
// TODO: Infer the result type instead of computing it.
|
|
newTypes.push_back(getMemRefType(tensorType, options));
|
|
} else {
|
|
newTypes.push_back(returnType);
|
|
}
|
|
}
|
|
|
|
// Create new op.
|
|
auto newIfOp =
|
|
rewriter.create<scf::IfOp>(ifOp.getLoc(), newTypes, ifOp.getCondition(),
|
|
/*withElseRegion=*/true);
|
|
|
|
// Remove terminators.
|
|
if (!newIfOp.thenBlock()->empty()) {
|
|
rewriter.eraseOp(newIfOp.thenBlock()->getTerminator());
|
|
rewriter.eraseOp(newIfOp.elseBlock()->getTerminator());
|
|
}
|
|
|
|
// Move over then/else blocks.
|
|
rewriter.mergeBlocks(ifOp.thenBlock(), newIfOp.thenBlock());
|
|
rewriter.mergeBlocks(ifOp.elseBlock(), newIfOp.elseBlock());
|
|
|
|
// Update scf.yield of new then-block.
|
|
auto thenYieldOp = cast<scf::YieldOp>(newIfOp.thenBlock()->getTerminator());
|
|
rewriter.setInsertionPoint(thenYieldOp);
|
|
SmallVector<Value> thenYieldValues;
|
|
for (OpOperand &operand : thenYieldOp->getOpOperands()) {
|
|
if (operand.get().getType().isa<TensorType>()) {
|
|
ensureToMemrefOpIsValid(operand.get(),
|
|
newTypes[operand.getOperandNumber()]);
|
|
Value toMemrefOp = rewriter.create<bufferization::ToMemrefOp>(
|
|
operand.get().getLoc(), newTypes[operand.getOperandNumber()],
|
|
operand.get());
|
|
operand.set(toMemrefOp);
|
|
}
|
|
}
|
|
|
|
// Update scf.yield of new else-block.
|
|
auto elseYieldOp = cast<scf::YieldOp>(newIfOp.elseBlock()->getTerminator());
|
|
rewriter.setInsertionPoint(elseYieldOp);
|
|
SmallVector<Value> elseYieldValues;
|
|
for (OpOperand &operand : elseYieldOp->getOpOperands()) {
|
|
if (operand.get().getType().isa<TensorType>()) {
|
|
ensureToMemrefOpIsValid(operand.get(),
|
|
newTypes[operand.getOperandNumber()]);
|
|
Value toMemrefOp = rewriter.create<bufferization::ToMemrefOp>(
|
|
operand.get().getLoc(), newTypes[operand.getOperandNumber()],
|
|
operand.get());
|
|
operand.set(toMemrefOp);
|
|
}
|
|
}
|
|
|
|
// Replace op results.
|
|
replaceOpWithBufferizedValues(rewriter, op, newIfOp->getResults());
|
|
|
|
return success();
|
|
}
|
|
|
|
BufferRelation bufferRelation(Operation *op, OpResult opResult,
|
|
const AnalysisState &state) const {
|
|
// IfOp results are equivalent to their corresponding yield values if both
|
|
// yield values are equivalent to each other.
|
|
auto bufferizableOp = cast<BufferizableOpInterface>(op);
|
|
SmallVector<OpOperand *> yieldValues =
|
|
bufferizableOp.getAliasingOpOperand(opResult, state);
|
|
assert(yieldValues.size() == 2 && "expected 2 yield values");
|
|
bool equivalentYields = state.areEquivalentBufferizedValues(
|
|
yieldValues[0]->get(), yieldValues[1]->get());
|
|
return equivalentYields ? BufferRelation::Equivalent : BufferRelation::None;
|
|
}
|
|
};
|
|
|
|
/// Helper function for loop bufferization. Return the indices of all values
|
|
/// that have a tensor type.
|
|
static DenseSet<int64_t> getTensorIndices(ValueRange values) {
|
|
DenseSet<int64_t> result;
|
|
for (const auto &it : llvm::enumerate(values))
|
|
if (it.value().getType().isa<TensorType>())
|
|
result.insert(it.index());
|
|
return result;
|
|
}
|
|
|
|
/// Helper function for loop bufferization. Return the indices of all
|
|
/// bbArg/yielded value pairs who's buffer relation is "Equivalent".
|
|
DenseSet<int64_t> getEquivalentBuffers(Block::BlockArgListType bbArgs,
|
|
ValueRange yieldedValues,
|
|
const AnalysisState &state) {
|
|
unsigned int minSize = std::min(bbArgs.size(), yieldedValues.size());
|
|
DenseSet<int64_t> result;
|
|
for (unsigned int i = 0; i < minSize; ++i) {
|
|
if (!bbArgs[i].getType().isa<TensorType>() ||
|
|
!yieldedValues[i].getType().isa<TensorType>())
|
|
continue;
|
|
if (state.areEquivalentBufferizedValues(bbArgs[i], yieldedValues[i]))
|
|
result.insert(i);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// Helper function for loop bufferization. Cast the given buffer to the given
|
|
/// memref type.
|
|
static Value castBuffer(OpBuilder &b, Value buffer, Type type) {
|
|
assert(type.isa<BaseMemRefType>() && "expected BaseMemRefType");
|
|
assert(buffer.getType().isa<BaseMemRefType>() && "expected BaseMemRefType");
|
|
// If the buffer already has the correct type, no cast is needed.
|
|
if (buffer.getType() == type)
|
|
return buffer;
|
|
// TODO: In case `type` has a layout map that is not the fully dynamic
|
|
// one, we may not be able to cast the buffer. In that case, the loop
|
|
// iter_arg's layout map must be changed (see uses of `castBuffer`).
|
|
assert(memref::CastOp::areCastCompatible(buffer.getType(), type) &&
|
|
"scf.while op bufferization: cast incompatible");
|
|
return b.create<memref::CastOp>(buffer.getLoc(), type, buffer).getResult();
|
|
}
|
|
|
|
/// Helper function for loop bufferization. Return the bufferized values of the
|
|
/// given OpOperands. If an operand is not a tensor, return the original value.
|
|
static SmallVector<Value> getBuffers(RewriterBase &rewriter,
|
|
MutableArrayRef<OpOperand> operands,
|
|
const BufferizationOptions &options) {
|
|
SmallVector<Value> result;
|
|
for (OpOperand &opOperand : operands) {
|
|
if (opOperand.get().getType().isa<TensorType>()) {
|
|
Value resultBuffer = getBuffer(rewriter, opOperand.get(), options);
|
|
result.push_back(resultBuffer);
|
|
} else {
|
|
result.push_back(opOperand.get());
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// Helper function for loop bufferization. Compute the buffer that should be
|
|
/// yielded from a loop block (loop body or loop condition).
|
|
static Value getYieldedBuffer(RewriterBase &rewriter, Value tensor,
|
|
BaseMemRefType type,
|
|
const BufferizationOptions &options) {
|
|
assert(tensor.getType().isa<TensorType>() && "expected tensor");
|
|
ensureToMemrefOpIsValid(tensor, type);
|
|
Value yieldedVal = getBuffer(rewriter, tensor, options);
|
|
return castBuffer(rewriter, yieldedVal, type);
|
|
}
|
|
|
|
/// Helper function for loop bufferization. Given a range of values, apply
|
|
/// `func` to those marked in `tensorIndices`. Otherwise, store the unmodified
|
|
/// value in the result vector.
|
|
static SmallVector<Value>
|
|
convertTensorValues(ValueRange values, const DenseSet<int64_t> &tensorIndices,
|
|
llvm::function_ref<Value(Value, int64_t)> func) {
|
|
SmallVector<Value> result;
|
|
for (const auto &it : llvm::enumerate(values)) {
|
|
size_t idx = it.index();
|
|
Value val = it.value();
|
|
result.push_back(tensorIndices.contains(idx) ? func(val, idx) : val);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// Helper function for loop bufferization. Given a list of pre-bufferization
|
|
/// yielded values, compute the list of bufferized yielded values.
|
|
SmallVector<Value> getYieldedValues(RewriterBase &rewriter, ValueRange values,
|
|
TypeRange bufferizedTypes,
|
|
const DenseSet<int64_t> &tensorIndices,
|
|
const BufferizationOptions &options) {
|
|
return convertTensorValues(
|
|
values, tensorIndices, [&](Value val, int64_t index) {
|
|
return getYieldedBuffer(rewriter, val,
|
|
bufferizedTypes[index].cast<BaseMemRefType>(),
|
|
options);
|
|
});
|
|
}
|
|
|
|
/// Helper function for loop bufferization. Given a list of bbArgs of the new
|
|
/// (bufferized) loop op, wrap the bufferized tensor args (now memrefs) into
|
|
/// ToTensorOps, so that the block body can be moved over to the new op.
|
|
SmallVector<Value>
|
|
getBbArgReplacements(RewriterBase &rewriter, Block::BlockArgListType bbArgs,
|
|
const DenseSet<int64_t> &tensorIndices) {
|
|
return convertTensorValues(
|
|
bbArgs, tensorIndices, [&](Value val, int64_t index) {
|
|
return rewriter.create<bufferization::ToTensorOp>(val.getLoc(), val);
|
|
});
|
|
}
|
|
|
|
/// Bufferization of scf.for. Replace with a new scf.for that operates on
|
|
/// memrefs.
|
|
struct ForOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<ForOpInterface,
|
|
scf::ForOp> {
|
|
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
// scf::ForOp alone doesn't bufferize to a memory read, one of the uses of
|
|
// its matching bbArg may.
|
|
auto forOp = cast<scf::ForOp>(op);
|
|
return state.isValueRead(forOp.getRegionIterArgForOpOperand(opOperand));
|
|
}
|
|
|
|
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
// Tensor iter_args of scf::ForOps are always considered as a write.
|
|
return true;
|
|
}
|
|
|
|
SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
auto forOp = cast<scf::ForOp>(op);
|
|
return {forOp.getResultForOpOperand(opOperand)};
|
|
}
|
|
|
|
BufferRelation bufferRelation(Operation *op, OpResult opResult,
|
|
const AnalysisState &state) const {
|
|
// ForOp results are equivalent to their corresponding init_args if the
|
|
// corresponding iter_args and yield values are equivalent.
|
|
auto forOp = cast<scf::ForOp>(op);
|
|
OpOperand &forOperand = forOp.getOpOperandForResult(opResult);
|
|
auto bbArg = forOp.getRegionIterArgForOpOperand(forOperand);
|
|
auto yieldOp =
|
|
cast<scf::YieldOp>(forOp.getLoopBody().front().getTerminator());
|
|
bool equivalentYield = state.areEquivalentBufferizedValues(
|
|
bbArg, yieldOp->getOperand(opResult.getResultNumber()));
|
|
return equivalentYield ? BufferRelation::Equivalent : BufferRelation::None;
|
|
}
|
|
|
|
bool isWritable(Operation *op, Value value,
|
|
const AnalysisState &state) const {
|
|
// Interestingly, scf::ForOp's bbArg can **always** be viewed
|
|
// inplace from the perspective of ops nested under:
|
|
// 1. Either the matching iter operand is not bufferized inplace and an
|
|
// alloc + optional copy makes the bbArg itself inplaceable.
|
|
// 2. Or the matching iter operand is bufferized inplace and bbArg just
|
|
// bufferizes to that too.
|
|
return true;
|
|
}
|
|
|
|
LogicalResult resolveConflicts(Operation *op, RewriterBase &rewriter,
|
|
const AnalysisState &state) const {
|
|
auto bufferizableOp = cast<BufferizableOpInterface>(op);
|
|
if (failed(bufferizableOp.resolveTensorOpOperandConflicts(rewriter, state)))
|
|
return failure();
|
|
|
|
if (!state.getOptions().enforceAliasingInvariants)
|
|
return success();
|
|
|
|
// According to the `getAliasing...` implementations, a bufferized OpResult
|
|
// may alias only with the corresponding bufferized init_arg and with no
|
|
// other buffers. I.e., the i-th OpResult may alias with the i-th init_arg;
|
|
// but not with any other OpOperand. If a corresponding OpResult/init_arg
|
|
// pair bufferizes to equivalent buffers, this aliasing requirement is
|
|
// satisfied. Otherwise, we cannot be sure and must yield a new buffer copy.
|
|
// (New buffer copies do not alias with any buffer.)
|
|
auto forOp = cast<scf::ForOp>(op);
|
|
auto yieldOp =
|
|
cast<scf::YieldOp>(forOp.getLoopBody().front().getTerminator());
|
|
OpBuilder::InsertionGuard g(rewriter);
|
|
rewriter.setInsertionPoint(yieldOp);
|
|
|
|
// Indices of all iter_args that have tensor type. These are the ones that
|
|
// are bufferized.
|
|
DenseSet<int64_t> indices = getTensorIndices(forOp.getInitArgs());
|
|
// For every yielded value, is the value equivalent to its corresponding
|
|
// bbArg?
|
|
DenseSet<int64_t> equivalentYields = getEquivalentBuffers(
|
|
forOp.getRegionIterArgs(), yieldOp.getResults(), state);
|
|
SmallVector<Value> yieldValues;
|
|
for (int64_t idx = 0;
|
|
idx < static_cast<int64_t>(yieldOp.getResults().size()); ++idx) {
|
|
Value value = yieldOp.getResults()[idx];
|
|
if (!indices.contains(idx) || equivalentYields.contains(idx)) {
|
|
yieldValues.push_back(value);
|
|
continue;
|
|
}
|
|
Value alloc = rewriter.create<bufferization::AllocTensorOp>(
|
|
yieldOp.getLoc(), value.getType().cast<RankedTensorType>(),
|
|
/*dynamicSizes=*/ValueRange(), value, /*escape=*/true);
|
|
yieldValues.push_back(alloc);
|
|
}
|
|
|
|
rewriter.updateRootInPlace(
|
|
yieldOp, [&]() { yieldOp.getResultsMutable().assign(yieldValues); });
|
|
return success();
|
|
}
|
|
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
const BufferizationOptions &options) const {
|
|
auto forOp = cast<scf::ForOp>(op);
|
|
Block *oldLoopBody = &forOp.getLoopBody().front();
|
|
|
|
// Indices of all iter_args that have tensor type. These are the ones that
|
|
// are bufferized.
|
|
DenseSet<int64_t> indices = getTensorIndices(forOp.getInitArgs());
|
|
|
|
// The new memref init_args of the loop.
|
|
SmallVector<Value> initArgs =
|
|
getBuffers(rewriter, forOp.getIterOpOperands(), options);
|
|
|
|
// Construct a new scf.for op with memref instead of tensor values.
|
|
auto newForOp = rewriter.create<scf::ForOp>(
|
|
forOp.getLoc(), forOp.getLowerBound(), forOp.getUpperBound(),
|
|
forOp.getStep(), initArgs);
|
|
newForOp->setAttrs(forOp->getAttrs());
|
|
ValueRange initArgsRange(initArgs);
|
|
TypeRange initArgsTypes(initArgsRange);
|
|
Block *loopBody = &newForOp.getLoopBody().front();
|
|
|
|
// Set up new iter_args. The loop body uses tensors, so wrap the (memref)
|
|
// iter_args of the new loop in ToTensorOps.
|
|
rewriter.setInsertionPointToStart(loopBody);
|
|
SmallVector<Value> iterArgs =
|
|
getBbArgReplacements(rewriter, newForOp.getRegionIterArgs(), indices);
|
|
iterArgs.insert(iterArgs.begin(), newForOp.getInductionVar());
|
|
|
|
// Erase terminator if present.
|
|
if (iterArgs.size() == 1)
|
|
rewriter.eraseOp(loopBody->getTerminator());
|
|
|
|
// Move loop body to new loop.
|
|
rewriter.mergeBlocks(oldLoopBody, loopBody, iterArgs);
|
|
|
|
// Update scf.yield of new loop.
|
|
auto yieldOp = cast<scf::YieldOp>(loopBody->getTerminator());
|
|
rewriter.setInsertionPoint(yieldOp);
|
|
SmallVector<Value> yieldValues = getYieldedValues(
|
|
rewriter, yieldOp.getResults(), initArgsTypes, indices, options);
|
|
yieldOp.getResultsMutable().assign(yieldValues);
|
|
|
|
// Replace loop results.
|
|
replaceOpWithBufferizedValues(rewriter, op, newForOp->getResults());
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Assert that yielded values of an scf.for op are equivalent to their
|
|
/// corresponding bbArgs. In that case, the buffer relations of the
|
|
/// corresponding OpResults are "Equivalent".
|
|
///
|
|
/// If this is not the case, an allocs+copies are inserted and yielded from
|
|
/// the loop. This could be a performance problem, so it must be explicitly
|
|
/// activated with `alloc-return-allocs`.
|
|
LogicalResult verifyAnalysis(Operation *op,
|
|
const AnalysisState &state) const {
|
|
const auto &options =
|
|
static_cast<const OneShotBufferizationOptions &>(state.getOptions());
|
|
if (options.allowReturnAllocs)
|
|
return success();
|
|
|
|
auto forOp = cast<scf::ForOp>(op);
|
|
auto yieldOp =
|
|
cast<scf::YieldOp>(forOp.getLoopBody().front().getTerminator());
|
|
for (OpResult opResult : op->getOpResults()) {
|
|
if (!opResult.getType().isa<TensorType>())
|
|
continue;
|
|
|
|
// Note: This is overly strict. We should check for aliasing bufferized
|
|
// values. But we don't have a "must-alias" analysis yet.
|
|
if (bufferRelation(op, opResult, state) != BufferRelation::Equivalent)
|
|
return yieldOp->emitError()
|
|
<< "Yield operand #" << opResult.getResultNumber()
|
|
<< " is not equivalent to the corresponding iter bbArg";
|
|
}
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Bufferization of scf.while. Replace with a new scf.while that operates on
|
|
/// memrefs.
|
|
struct WhileOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<WhileOpInterface,
|
|
scf::WhileOp> {
|
|
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
// Tensor iter_args of scf::WhileOps are always considered as a read.
|
|
return true;
|
|
}
|
|
|
|
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
// Tensor iter_args of scf::WhileOps are always considered as a write.
|
|
return true;
|
|
}
|
|
|
|
SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
auto whileOp = cast<scf::WhileOp>(op);
|
|
unsigned int idx = opOperand.getOperandNumber();
|
|
|
|
// The OpResults and OpOperands may not match. They may not even have the
|
|
// same type. The number of OpResults and OpOperands can also differ.
|
|
if (idx >= op->getNumResults() ||
|
|
opOperand.get().getType() != op->getResult(idx).getType())
|
|
return {};
|
|
|
|
// The only aliasing OpResult may be the one at the same index.
|
|
return {whileOp->getResult(idx)};
|
|
}
|
|
|
|
BufferRelation bufferRelation(Operation *op, OpResult opResult,
|
|
const AnalysisState &state) const {
|
|
// WhileOp results are equivalent to their corresponding init_args if the
|
|
// corresponding iter_args and yield values are equivalent (for both the
|
|
// "before" and the "after" block).
|
|
unsigned int resultNumber = opResult.getResultNumber();
|
|
auto whileOp = cast<scf::WhileOp>(op);
|
|
|
|
// The "before" region bbArgs and the OpResults may not match.
|
|
if (resultNumber >= whileOp.getBeforeArguments().size())
|
|
return BufferRelation::None;
|
|
if (opResult.getType() !=
|
|
whileOp.getBeforeArguments()[resultNumber].getType())
|
|
return BufferRelation::None;
|
|
|
|
auto conditionOp = whileOp.getConditionOp();
|
|
BlockArgument conditionBbArg = whileOp.getBeforeArguments()[resultNumber];
|
|
Value conditionOperand = conditionOp.getArgs()[resultNumber];
|
|
bool equivCondition =
|
|
state.areEquivalentBufferizedValues(conditionBbArg, conditionOperand);
|
|
|
|
auto yieldOp = whileOp.getYieldOp();
|
|
BlockArgument bodyBbArg = whileOp.getAfterArguments()[resultNumber];
|
|
Value yieldOperand = yieldOp.getOperand(resultNumber);
|
|
bool equivYield =
|
|
state.areEquivalentBufferizedValues(bodyBbArg, yieldOperand);
|
|
|
|
return equivCondition && equivYield ? BufferRelation::Equivalent
|
|
: BufferRelation::None;
|
|
}
|
|
|
|
bool isWritable(Operation *op, Value value,
|
|
const AnalysisState &state) const {
|
|
// Interestingly, scf::WhileOp's bbArg can **always** be viewed
|
|
// inplace from the perspective of ops nested under:
|
|
// 1. Either the matching iter operand is not bufferized inplace and an
|
|
// alloc + optional copy makes the bbArg itself inplaceable.
|
|
// 2. Or the matching iter operand is bufferized inplace and bbArg just
|
|
// bufferizes to that too.
|
|
return true;
|
|
}
|
|
|
|
LogicalResult resolveConflicts(Operation *op, RewriterBase &rewriter,
|
|
const AnalysisState &state) const {
|
|
auto bufferizableOp = cast<BufferizableOpInterface>(op);
|
|
if (failed(bufferizableOp.resolveTensorOpOperandConflicts(rewriter, state)))
|
|
return failure();
|
|
|
|
if (!state.getOptions().enforceAliasingInvariants)
|
|
return success();
|
|
|
|
// According to the `getAliasing...` implementations, a bufferized OpResult
|
|
// may alias only with the corresponding bufferized init_arg and with no
|
|
// other buffers. I.e., the i-th OpResult may alias with the i-th init_arg;
|
|
// but not with any other OpOperand. If a corresponding OpResult/init_arg
|
|
// pair bufferizes to equivalent buffers, this aliasing requirement is
|
|
// satisfied. Otherwise, we cannot be sure and must yield a new buffer copy.
|
|
// (New buffer copies do not alias with any buffer.)
|
|
OpBuilder::InsertionGuard g(rewriter);
|
|
auto whileOp = cast<scf::WhileOp>(op);
|
|
auto conditionOp = whileOp.getConditionOp();
|
|
auto yieldOp = whileOp.getYieldOp();
|
|
|
|
// Indices of all bbArgs that have tensor type. These are the ones that
|
|
// are bufferized. The "before" and "after" regions may have different args.
|
|
DenseSet<int64_t> indicesBefore = getTensorIndices(whileOp.getInits());
|
|
DenseSet<int64_t> indicesAfter =
|
|
getTensorIndices(whileOp.getAfterArguments());
|
|
|
|
// For every yielded value, is the value equivalent to its corresponding
|
|
// bbArg?
|
|
DenseSet<int64_t> equivalentYieldsBefore = getEquivalentBuffers(
|
|
whileOp.getBeforeArguments(), conditionOp.getArgs(), state);
|
|
DenseSet<int64_t> equivalentYieldsAfter = getEquivalentBuffers(
|
|
whileOp.getAfterArguments(), whileOp.getYieldOp().getResults(), state);
|
|
|
|
// Update "before" region.
|
|
rewriter.setInsertionPoint(conditionOp);
|
|
SmallVector<Value> beforeYieldValues;
|
|
for (int64_t idx = 0;
|
|
idx < static_cast<int64_t>(conditionOp.getArgs().size()); ++idx) {
|
|
Value value = conditionOp.getArgs()[idx];
|
|
if (!indicesBefore.contains(idx) ||
|
|
equivalentYieldsBefore.contains(idx)) {
|
|
beforeYieldValues.push_back(value);
|
|
continue;
|
|
}
|
|
Value alloc = rewriter.create<bufferization::AllocTensorOp>(
|
|
conditionOp.getLoc(), value.getType().cast<RankedTensorType>(),
|
|
/*dynamicSizes=*/ValueRange(), value, /*escape=*/true);
|
|
beforeYieldValues.push_back(alloc);
|
|
}
|
|
rewriter.updateRootInPlace(conditionOp, [&]() {
|
|
conditionOp.getArgsMutable().assign(beforeYieldValues);
|
|
});
|
|
|
|
// Update "after" region.
|
|
rewriter.setInsertionPoint(yieldOp);
|
|
SmallVector<Value> afterYieldValues;
|
|
for (int64_t idx = 0;
|
|
idx < static_cast<int64_t>(yieldOp.getResults().size()); ++idx) {
|
|
Value value = yieldOp.getResults()[idx];
|
|
if (!indicesAfter.contains(idx) || equivalentYieldsAfter.contains(idx)) {
|
|
afterYieldValues.push_back(value);
|
|
continue;
|
|
}
|
|
Value alloc = rewriter.create<bufferization::AllocTensorOp>(
|
|
yieldOp.getLoc(), value.getType().cast<RankedTensorType>(),
|
|
/*dynamicSizes=*/ValueRange(), value, /*escape=*/true);
|
|
afterYieldValues.push_back(alloc);
|
|
}
|
|
rewriter.updateRootInPlace(yieldOp, [&]() {
|
|
yieldOp.getResultsMutable().assign(afterYieldValues);
|
|
});
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
const BufferizationOptions &options) const {
|
|
auto whileOp = cast<scf::WhileOp>(op);
|
|
|
|
assert(whileOp.getBefore().getBlocks().size() == 1 &&
|
|
"regions with multiple blocks not supported");
|
|
Block *beforeBody = &whileOp.getBefore().front();
|
|
assert(whileOp.getAfter().getBlocks().size() == 1 &&
|
|
"regions with multiple blocks not supported");
|
|
Block *afterBody = &whileOp.getAfter().front();
|
|
|
|
// Indices of all bbArgs that have tensor type. These are the ones that
|
|
// are bufferized. The "before" and "after" regions may have different args.
|
|
DenseSet<int64_t> indicesBefore = getTensorIndices(whileOp.getInits());
|
|
DenseSet<int64_t> indicesAfter =
|
|
getTensorIndices(whileOp.getAfterArguments());
|
|
|
|
// The new memref init_args of the loop.
|
|
SmallVector<Value> initArgs =
|
|
getBuffers(rewriter, whileOp->getOpOperands(), options);
|
|
|
|
// The result types of a WhileOp are the same as the "after" bbArg types.
|
|
SmallVector<Type> argsTypesAfter = llvm::to_vector(
|
|
llvm::map_range(whileOp.getAfterArguments(), [&](BlockArgument bbArg) {
|
|
return getBufferType(bbArg, options).cast<Type>();
|
|
}));
|
|
|
|
// Construct a new scf.while op with memref instead of tensor values.
|
|
ValueRange argsRangeBefore(initArgs);
|
|
TypeRange argsTypesBefore(argsRangeBefore);
|
|
auto newWhileOp = rewriter.create<scf::WhileOp>(whileOp.getLoc(),
|
|
argsTypesAfter, initArgs);
|
|
|
|
// Add before/after regions to the new op.
|
|
SmallVector<Location> bbArgLocsBefore(initArgs.size(), whileOp.getLoc());
|
|
SmallVector<Location> bbArgLocsAfter(argsTypesAfter.size(),
|
|
whileOp.getLoc());
|
|
Block *newBeforeBody = &newWhileOp.getBefore().emplaceBlock();
|
|
newWhileOp.getBefore().addArguments(argsTypesBefore, bbArgLocsBefore);
|
|
Block *newAfterBody = &newWhileOp.getAfter().emplaceBlock();
|
|
newWhileOp.getAfter().addArguments(argsTypesAfter, bbArgLocsAfter);
|
|
|
|
// Set up new iter_args and move the loop condition block to the new op.
|
|
// The old block uses tensors, so wrap the (memref) bbArgs of the new block
|
|
// in ToTensorOps.
|
|
rewriter.setInsertionPointToStart(newBeforeBody);
|
|
SmallVector<Value> newBeforeArgs = getBbArgReplacements(
|
|
rewriter, newWhileOp.getBeforeArguments(), indicesBefore);
|
|
rewriter.mergeBlocks(beforeBody, newBeforeBody, newBeforeArgs);
|
|
|
|
// Update scf.condition of new loop.
|
|
auto newConditionOp = newWhileOp.getConditionOp();
|
|
rewriter.setInsertionPoint(newConditionOp);
|
|
// Only equivalent buffers or new buffer allocations may be yielded to the
|
|
// "after" region.
|
|
// TODO: This could be relaxed for better bufferization results.
|
|
SmallVector<Value> newConditionArgs =
|
|
getYieldedValues(rewriter, newConditionOp.getArgs(), argsTypesAfter,
|
|
indicesAfter, options);
|
|
newConditionOp.getArgsMutable().assign(newConditionArgs);
|
|
|
|
// Set up new iter_args and move the loop body block to the new op.
|
|
// The old block uses tensors, so wrap the (memref) bbArgs of the new block
|
|
// in ToTensorOps.
|
|
rewriter.setInsertionPointToStart(newAfterBody);
|
|
SmallVector<Value> newAfterArgs = getBbArgReplacements(
|
|
rewriter, newWhileOp.getAfterArguments(), indicesAfter);
|
|
rewriter.mergeBlocks(afterBody, newAfterBody, newAfterArgs);
|
|
|
|
// Update scf.yield of the new loop.
|
|
auto newYieldOp = newWhileOp.getYieldOp();
|
|
rewriter.setInsertionPoint(newYieldOp);
|
|
// Only equivalent buffers or new buffer allocations may be yielded to the
|
|
// "before" region.
|
|
// TODO: This could be relaxed for better bufferization results.
|
|
SmallVector<Value> newYieldValues =
|
|
getYieldedValues(rewriter, newYieldOp.getResults(), argsTypesBefore,
|
|
indicesBefore, options);
|
|
newYieldOp.getResultsMutable().assign(newYieldValues);
|
|
|
|
// Replace loop results.
|
|
replaceOpWithBufferizedValues(rewriter, op, newWhileOp->getResults());
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Assert that yielded values of an scf.while op are equivalent to their
|
|
/// corresponding bbArgs. In that case, the buffer relations of the
|
|
/// corresponding OpResults are "Equivalent".
|
|
///
|
|
/// If this is not the case, allocs+copies are inserted and yielded from
|
|
/// the loop. This could be a performance problem, so it must be explicitly
|
|
/// activated with `alloc-return-allocs`.
|
|
///
|
|
/// Not: In contrast to scf::ForOp, scf::WhileOp has two regions and the
|
|
/// equivalence condition must be checked for both.
|
|
LogicalResult verifyAnalysis(Operation *op,
|
|
const AnalysisState &state) const {
|
|
auto whileOp = cast<scf::WhileOp>(op);
|
|
const auto &options =
|
|
static_cast<const OneShotBufferizationOptions &>(state.getOptions());
|
|
if (options.allowReturnAllocs)
|
|
return success();
|
|
|
|
auto conditionOp = whileOp.getConditionOp();
|
|
for (const auto &it : llvm::enumerate(conditionOp.getArgs())) {
|
|
if (!it.value().getType().isa<TensorType>())
|
|
continue;
|
|
if (!state.areEquivalentBufferizedValues(
|
|
it.value(), conditionOp->getBlock()->getArgument(it.index())))
|
|
return conditionOp->emitError()
|
|
<< "Condition arg #" << it.index()
|
|
<< " is not equivalent to the corresponding iter bbArg";
|
|
}
|
|
|
|
auto yieldOp = whileOp.getYieldOp();
|
|
for (const auto &it : llvm::enumerate(yieldOp.getResults())) {
|
|
if (!it.value().getType().isa<TensorType>())
|
|
continue;
|
|
if (!state.areEquivalentBufferizedValues(
|
|
it.value(), yieldOp->getBlock()->getArgument(it.index())))
|
|
return yieldOp->emitError()
|
|
<< "Yield operand #" << it.index()
|
|
<< " is not equivalent to the corresponding iter bbArg";
|
|
}
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Bufferization of scf.yield. Bufferized as part of their enclosing ops, so
|
|
/// this is for analysis only.
|
|
struct YieldOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<YieldOpInterface,
|
|
scf::YieldOp> {
|
|
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return true;
|
|
}
|
|
|
|
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return false;
|
|
}
|
|
|
|
SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
if (isa<scf::IfOp>(op->getParentOp()))
|
|
return {op->getParentOp()->getResult(opOperand.getOperandNumber())};
|
|
if (isa<scf::ExecuteRegionOp>(op->getParentOp()))
|
|
return {op->getParentOp()->getResult(opOperand.getOperandNumber())};
|
|
return {};
|
|
}
|
|
|
|
bool mustBufferizeInPlace(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
// Yield operands always bufferize inplace. Otherwise, an alloc + copy
|
|
// may be generated inside the block. We should not return/yield allocations
|
|
// when possible.
|
|
return true;
|
|
}
|
|
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
const BufferizationOptions &options) const {
|
|
auto yieldOp = cast<scf::YieldOp>(op);
|
|
if (!isa<scf::ExecuteRegionOp, scf::IfOp, scf::ForOp, scf::WhileOp>(
|
|
yieldOp->getParentOp()))
|
|
return yieldOp->emitError("unsupported scf::YieldOp parent");
|
|
return success();
|
|
}
|
|
};
|
|
|
|
using tensor::ExtractSliceOp;
|
|
|
|
/// Return the destinations that an ForeachThreadOp is inserting into. One per
|
|
/// ParallelInsertSliceOp.
|
|
static SmallVector<OpOperand *>
|
|
getInsertionDest(ForeachThreadOp foreachThreadOp) {
|
|
PerformConcurrentlyOp terminator = foreachThreadOp.getTerminator();
|
|
SmallVector<OpOperand *> result;
|
|
terminator.walk([&](ParallelInsertSliceOp insertOp) {
|
|
result.push_back(&insertOp->getOpOperand(1) /*dest*/);
|
|
});
|
|
return result;
|
|
}
|
|
|
|
/// Bufferization of ForeachThreadOp. This also bufferizes the terminator of the
|
|
/// region. There are op interfaces for the terminators (PerformConcurrentlyOp
|
|
/// and ParallelInsertSliceOp), but these are only used during analysis. Not
|
|
/// for bufferization.
|
|
struct ForeachThreadOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<ForeachThreadOpInterface,
|
|
ForeachThreadOp> {
|
|
SmallVector<OpOperand *>
|
|
getAliasingOpOperand(Operation *op, OpResult opResult,
|
|
const AnalysisState &state) const {
|
|
// Get OpOperand (dest) from corresponding ParallelInsertSliceOp.
|
|
auto foreachThreadOp = cast<ForeachThreadOp>(op);
|
|
return {getInsertionDest(foreachThreadOp)[opResult.getResultNumber()]};
|
|
}
|
|
|
|
bool isMemoryWrite(Operation *op, OpResult opResult,
|
|
const AnalysisState &state) const {
|
|
// This op is a memory write. Stop lookup here to avoid finding false
|
|
// conflicts involving this op and one of the ops in the region. This is
|
|
// similar to how scf.if ops are analyzed.
|
|
return true;
|
|
}
|
|
|
|
BufferRelation bufferRelation(Operation *op, OpResult opResult,
|
|
const AnalysisState &state) const {
|
|
return BufferRelation::Equivalent;
|
|
}
|
|
|
|
LogicalResult resolveConflicts(Operation *op, RewriterBase &rewriter,
|
|
const AnalysisState &state) const {
|
|
auto bufferizableOp = cast<BufferizableOpInterface>(op);
|
|
if (failed(bufferizableOp.resolveTensorOpOperandConflicts(rewriter, state)))
|
|
return failure();
|
|
|
|
OpBuilder::InsertionGuard g(rewriter);
|
|
auto foreachThreadOp = cast<ForeachThreadOp>(op);
|
|
for (OpResult opResult : foreachThreadOp->getOpResults()) {
|
|
SmallVector<OpOperand *> destOperands =
|
|
state.getAliasingOpOperand(opResult);
|
|
assert(destOperands.size() == 1 &&
|
|
"expected exactly one aliasing OpOperand");
|
|
assert(isa<ParallelInsertSliceOp>(destOperands.front()->getOwner()) &&
|
|
"expected ParallelInsertSliceOp");
|
|
|
|
// Nothing to do if there is no conflict.
|
|
if (state.isInPlace(*destOperands.front()))
|
|
continue;
|
|
|
|
// Create AllocTensorOp.
|
|
bool isYielded = state.isTensorYielded(opResult);
|
|
auto resultType = opResult.getType().cast<RankedTensorType>();
|
|
Value alloc = rewriter.create<bufferization::AllocTensorOp>(
|
|
op->getLoc(), resultType, /*dynamicDims=*/ValueRange(),
|
|
/*copy=*/destOperands.front()->get(),
|
|
/*escape=*/isYielded);
|
|
|
|
// Update terminator operand.
|
|
rewriter.updateRootInPlace(destOperands.front()->getOwner(),
|
|
[&]() { destOperands.front()->set(alloc); });
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult bufferize(Operation *op, RewriterBase &b,
|
|
const BufferizationOptions &options) const {
|
|
OpBuilder::InsertionGuard g(b);
|
|
auto foreachThreadOp = cast<ForeachThreadOp>(op);
|
|
|
|
// Gather new results of the ForeachThreadOp.
|
|
SmallVector<Value> newResults;
|
|
for (OpResult opResult : foreachThreadOp->getOpResults()) {
|
|
OpOperand *insertDest =
|
|
getInsertionDest(foreachThreadOp)[opResult.getResultNumber()];
|
|
// Insert copies right before the PerformConcurrentlyOp terminator. They
|
|
// should not be inside terminator (which would be the default insertion
|
|
// point).
|
|
Value buffer = getBuffer(b, insertDest->get(), options);
|
|
newResults.push_back(buffer);
|
|
}
|
|
|
|
// Create new ForeachThreadOp without any results and drop the automatically
|
|
// introduced terminator.
|
|
TypeRange newResultTypes;
|
|
auto newForeachThreadOp =
|
|
b.create<ForeachThreadOp>(foreachThreadOp.getLoc(), newResultTypes,
|
|
foreachThreadOp.getNumThreads());
|
|
newForeachThreadOp.getBody()->getTerminator()->erase();
|
|
|
|
// Move over block contents of the old op.
|
|
b.mergeBlocks(foreachThreadOp.getBody(), newForeachThreadOp.getBody(),
|
|
{newForeachThreadOp.getBody()->getArguments()});
|
|
|
|
// Bufferize terminator.
|
|
auto performConcurrentlyOp = cast<PerformConcurrentlyOp>(
|
|
newForeachThreadOp.getBody()->getTerminator());
|
|
b.setInsertionPoint(performConcurrentlyOp);
|
|
unsigned resultCounter = 0;
|
|
WalkResult walkResult =
|
|
performConcurrentlyOp.walk([&](ParallelInsertSliceOp insertOp) {
|
|
Location loc = insertOp.getLoc();
|
|
Type srcType = getMemRefType(
|
|
insertOp.getSource().getType().cast<RankedTensorType>(), options);
|
|
// ParallelInsertSliceOp bufferizes to a copy.
|
|
auto srcMemref = b.create<bufferization::ToMemrefOp>(
|
|
loc, srcType, insertOp.getSource());
|
|
Value destMemref = newResults[resultCounter++];
|
|
Value subview = b.create<memref::SubViewOp>(
|
|
loc, destMemref, insertOp.getMixedOffsets(),
|
|
insertOp.getMixedSizes(), insertOp.getMixedStrides());
|
|
// This memcpy will fold away if everything bufferizes in-place.
|
|
if (failed(options.createMemCpy(b, insertOp.getLoc(), srcMemref,
|
|
subview)))
|
|
return WalkResult::interrupt();
|
|
b.eraseOp(insertOp);
|
|
return WalkResult::advance();
|
|
});
|
|
if (walkResult.wasInterrupted())
|
|
return failure();
|
|
|
|
// Replace the op.
|
|
replaceOpWithBufferizedValues(b, op, newResults);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Nothing to do for PerformConcurrentlyOp.
|
|
struct PerformConcurrentlyOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<
|
|
PerformConcurrentlyOpInterface, PerformConcurrentlyOp> {
|
|
LogicalResult bufferize(Operation *op, RewriterBase &b,
|
|
const BufferizationOptions &options) const {
|
|
llvm_unreachable("op does not have any tensor OpOperands / OpResults");
|
|
return failure();
|
|
}
|
|
};
|
|
|
|
/// Return true if the (ExtractSliceOp, ParallelInsertSliceOp) pair match (i.e.
|
|
/// equivalent operand / result and same offset/sizes/strides specification).
|
|
static bool areEquivalentExtractSliceOps(const AnalysisState &state,
|
|
ExtractSliceOp st,
|
|
ParallelInsertSliceOp sti) {
|
|
if (!st || !sti)
|
|
return false;
|
|
if (st != sti &&
|
|
!state.areEquivalentBufferizedValues(st.getSource(), sti.getDest()))
|
|
return false;
|
|
if (!sameOffsetsSizesAndStrides(st, sti, isEqualConstantIntOrValue))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Return true if `value` is originating from an ExtractSliceOp that matches
|
|
/// the given InsertSliceOp.
|
|
static bool hasMatchingExtractSliceOp(const AnalysisState &state, Value value,
|
|
ParallelInsertSliceOp insertOp) {
|
|
auto condition = [&](Value val) {
|
|
if (auto extractOp = val.getDefiningOp<ExtractSliceOp>())
|
|
if (areEquivalentExtractSliceOps(state, extractOp, insertOp))
|
|
return true;
|
|
return false;
|
|
};
|
|
|
|
return llvm::all_of(state.findValueInReverseUseDefChain(value, condition),
|
|
condition);
|
|
}
|
|
|
|
/// Analysis of ParallelInsertSliceOp.
|
|
struct ParallelInsertSliceOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<
|
|
ParallelInsertSliceOpInterface, ParallelInsertSliceOp> {
|
|
SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
if (&opOperand != &op->getOpOperand(1) /*dest*/)
|
|
return {};
|
|
|
|
// ParallelInsertSliceOp itself has no results. Tensors are returned via
|
|
// the parent op.
|
|
auto foreachThreadOp = op->getParentOfType<ForeachThreadOp>();
|
|
assert(foreachThreadOp &&
|
|
"could not find valid owner of parallel_insert_slice");
|
|
|
|
// The i-th ParallelInsertSliceOp result is returned via the i-th OpResult
|
|
// of the parent ForeachThreadOp.
|
|
Block *block = op->getBlock();
|
|
unsigned int opIdx = 0;
|
|
for (ParallelInsertSliceOp insertOp :
|
|
block->getOps<ParallelInsertSliceOp>()) {
|
|
if (insertOp.getOperation() == op)
|
|
break;
|
|
++opIdx;
|
|
}
|
|
assert(opIdx < foreachThreadOp->getNumResults() &&
|
|
"could not find op inside terminator op");
|
|
|
|
return {foreachThreadOp->getResult(opIdx)};
|
|
}
|
|
|
|
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return true;
|
|
}
|
|
|
|
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return &opOperand == &op->getOpOperand(1) /*dest*/;
|
|
}
|
|
|
|
BufferRelation bufferRelation(Operation *op, OpResult opResult,
|
|
const AnalysisState &state) const {
|
|
return BufferRelation::Equivalent;
|
|
}
|
|
|
|
LogicalResult resolveConflicts(Operation *op, RewriterBase &rewriter,
|
|
const AnalysisState &state) const {
|
|
return success();
|
|
}
|
|
|
|
LogicalResult bufferize(Operation *op, RewriterBase &b,
|
|
const BufferizationOptions &options) const {
|
|
// Will be bufferized as part of ForeachThreadOp.
|
|
return failure();
|
|
}
|
|
|
|
// TODO: This is copied from TensorInterfaceImpl.cpp. Find a way to share
|
|
// the code.
|
|
bool isNotConflicting(Operation *op, OpOperand *uRead,
|
|
OpOperand *uConflictingWrite,
|
|
const AnalysisState &state) const {
|
|
Operation *readingOp = uRead->getOwner();
|
|
Operation *conflictingWritingOp = uConflictingWrite->getOwner();
|
|
|
|
// Special rules for matching ExtractSliceOp/InsertSliceOp pairs. If
|
|
// uRead is an InsertSliceOp...
|
|
if (auto insertSliceOp = dyn_cast<ParallelInsertSliceOp>(readingOp)) {
|
|
// As an example, consider the following IR.
|
|
//
|
|
// %0 = tensor.extract_slice %t[%a, %b][%c, %d][1, 1] {inplace = [true] }
|
|
// %1 = linalg.fill %cst, %0 {inplace= [true] }
|
|
// %2 = tensor.insert_slice %1 into %t[%a, %b][%c, %d][1, 1]
|
|
// {inplace= [true] }
|
|
|
|
// TODO: Use insertSliceOp.getDestOpOperand etc. when available.
|
|
if (uRead == &insertSliceOp->getOpOperand(1) /*dest*/ &&
|
|
hasMatchingExtractSliceOp(state, uConflictingWrite->get(),
|
|
insertSliceOp))
|
|
// Case 1: The main insight is that InsertSliceOp reads only part of
|
|
// the destination tensor. The overwritten area is not read. If
|
|
// uConflictingWrite writes into exactly the memory location that is
|
|
// being read by uRead, this is not a conflict.
|
|
//
|
|
// In the above example:
|
|
// uRead = OpOperand 1 (%t) of tensor.insert_slice
|
|
// uConflictingWrite = OpOperand 1 (%0) of linalg.fill
|
|
//
|
|
// The read of %t does not conflict with the write of the FillOp
|
|
// (same aliases!) because the area that the FillOp operates on is
|
|
// exactly the one that is *not* read via %t.
|
|
return true;
|
|
|
|
if (uRead == &insertSliceOp->getOpOperand(0) /*source*/ &&
|
|
uConflictingWrite == &insertSliceOp->getOpOperand(1) /*dest*/ &&
|
|
hasMatchingExtractSliceOp(state, uRead->get(), insertSliceOp))
|
|
// Case 2: The read of the source tensor and the write to the dest
|
|
// tensor via an InsertSliceOp is not a conflict if the read is
|
|
// reading exactly that part of an equivalent tensor that the
|
|
// InsertSliceOp is writing.
|
|
//
|
|
// In the above example:
|
|
// uRead = OpOperand 0 (%1) of tensor.insert_slice
|
|
// uConflictingWrite = OpOperand 1 (%t) of tensor.insert_slice
|
|
return true;
|
|
}
|
|
|
|
// If uConflictingWrite is an InsertSliceOp...
|
|
if (auto insertSliceOp =
|
|
dyn_cast<ParallelInsertSliceOp>(conflictingWritingOp))
|
|
// As an example, consider the following IR.
|
|
//
|
|
// %0 = tensor.extract_slice %t[%a, %b][%c, %d][1, 1] {inplace = [true] }
|
|
// %1 = linalg.fill %cst, %0 {inplace= [true] }
|
|
// %2 = tensor.insert_slice %1 into %t[%a, %b][%c, %d][1, 1]
|
|
// {inplace= [true] }
|
|
// %3 = vector.transfer_read %1, %cst
|
|
//
|
|
// In the above example:
|
|
// uRead = OpOperand 0 (%1) of vector.transfer_read
|
|
// uConflictingWrite = OpOperand 1 (%t) of tensor.insert_slice
|
|
// lastWrite = %1
|
|
//
|
|
// This is not a conflict because the InsertSliceOp overwrites the
|
|
// memory segment of %1 with the exact same data. (Effectively, there
|
|
// is no memory write here.)
|
|
if (uConflictingWrite == &insertSliceOp->getOpOperand(1) /*dest*/ &&
|
|
state.areEquivalentBufferizedValues(uRead->get(),
|
|
insertSliceOp.getSource()) &&
|
|
hasMatchingExtractSliceOp(state, insertSliceOp.getSource(),
|
|
insertSliceOp))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
} // namespace scf
|
|
} // namespace mlir
|
|
|
|
void mlir::scf::registerBufferizableOpInterfaceExternalModels(
|
|
DialectRegistry ®istry) {
|
|
registry.addExtension(+[](MLIRContext *ctx, scf::SCFDialect *dialect) {
|
|
ExecuteRegionOp::attachInterface<ExecuteRegionOpInterface>(*ctx);
|
|
ForOp::attachInterface<ForOpInterface>(*ctx);
|
|
IfOp::attachInterface<IfOpInterface>(*ctx);
|
|
ForeachThreadOp::attachInterface<ForeachThreadOpInterface>(*ctx);
|
|
ParallelInsertSliceOp::attachInterface<ParallelInsertSliceOpInterface>(
|
|
*ctx);
|
|
PerformConcurrentlyOp::attachInterface<PerformConcurrentlyOpInterface>(
|
|
*ctx);
|
|
WhileOp::attachInterface<WhileOpInterface>(*ctx);
|
|
YieldOp::attachInterface<YieldOpInterface>(*ctx);
|
|
});
|
|
}
|