Files
clang-p2996/llvm/lib/Target/SystemZ/SystemZInstrInfo.h
Venkata Ramanaiah Nalamothu f7d8336a2f [llvm] Pass MachineInstr flags to storeRegToStackSlot/loadRegFromStackSlot (NFC) (#120622)
This patch is in preparation to enable setting the MachineInstr::MIFlag
flags, i.e. FrameSetup/FrameDestroy, on callee saved register
spill/reload instructions in prologue/epilogue. This eventually helps in
setting the prologue_end and epilogue_begin markers more accurately.

The DWARF Spec in "6.4 Call Frame Information" says:

The code that allocates space on the call frame stack and performs the
save
operation is called the subroutine’s prologue, and the code that
performs
the restore operation and deallocates the frame is called its epilogue.

which means the callee saved register spills and reloads are part of
prologue (a.k.a frame setup) and epilogue (a.k.a frame destruction),
respectively. And, IIUC, LLVM backend uses FrameSetup/FrameDestroy flags
to identify instructions that are part of call frame setup and
destruction.

In the trunk, while most targets consistently set
FrameSetup/FrameDestroy on save/restore call frame information (CFI)
instructions of callee saved registers, they do not consistently set
those flags on the actual callee saved register spill/reload
instructions.

I believe this patch provides a clean mechanism to set
FrameSetup/FrameDestroy flags on the actual callee saved register
spill/reload instructions as needed. And, by having default argument of
MachineInstr::NoFlags for Flags, this patch is a NFC.

With this patch, the targets have to just pass FrameSetup/FrameDestroy
flag to the storeRegToStackSlot/loadRegFromStackSlot calls from the
target derived spillCalleeSavedRegisters and restoreCalleeSavedRegisters
to set those flags on callee saved register spill/reload instructions.

Also, this patch makes it very easy to set the source line information
on callee saved register spill/reload instructions which is needed by
the DwarfDebug.cpp implementation to set prologue_end and epilogue_begin
markers more accurately.

As per DwarfDebug.cpp implementation:

prologue_end is the first known non-DBG_VALUE and non-FrameSetup
location
    that marks the beginning of the function body

epilogue_begin is the first FrameDestroy location that has been seen in
the
    epilogue basic block

With this patch, the targets have to just do the following to set the
source line information on callee saved register spill/reload
instructions, without hampering the LLVM's efforts to avoid adding
source line information on the artificial code generated by the
compiler.

    <Foo>InstrInfo::storeRegToStackSlot() {
    ...
      DebugLoc DL =
Flags & MachineInstr::FrameSetup ? DebugLoc() : MBB.findDebugLoc(I);
    ...
    }

    <Foo>InstrInfo::loadRegFromStackSlot() {
    ...
      DebugLoc DL =
Flags & MachineInstr::FrameDestroy ? MBB.findDebugLoc(I) : DebugLoc();
    ...
    }

While I understand this patch would break out-of-tree backend builds, I
think it is in the right direction.

One immediate use case that can benefit from this patch is fixing
#120553 becomes simpler.
2025-01-22 13:36:39 +05:30

394 lines
16 KiB
C++

//===-- SystemZInstrInfo.h - SystemZ instruction information ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the SystemZ implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZINSTRINFO_H
#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZINSTRINFO_H
#include "SystemZ.h"
#include "SystemZRegisterInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include <cstdint>
#define GET_INSTRINFO_HEADER
#include "SystemZGenInstrInfo.inc"
namespace llvm {
class SystemZSubtarget;
namespace SystemZII {
enum {
// See comments in SystemZInstrFormats.td.
SimpleBDXLoad = (1 << 0),
SimpleBDXStore = (1 << 1),
Has20BitOffset = (1 << 2),
HasIndex = (1 << 3),
Is128Bit = (1 << 4),
AccessSizeMask = (31 << 5),
AccessSizeShift = 5,
CCValuesMask = (15 << 10),
CCValuesShift = 10,
CompareZeroCCMaskMask = (15 << 14),
CompareZeroCCMaskShift = 14,
CCMaskFirst = (1 << 18),
CCMaskLast = (1 << 19),
IsLogical = (1 << 20),
CCIfNoSignedWrap = (1 << 21)
};
static inline unsigned getAccessSize(unsigned int Flags) {
return (Flags & AccessSizeMask) >> AccessSizeShift;
}
static inline unsigned getCCValues(unsigned int Flags) {
return (Flags & CCValuesMask) >> CCValuesShift;
}
static inline unsigned getCompareZeroCCMask(unsigned int Flags) {
return (Flags & CompareZeroCCMaskMask) >> CompareZeroCCMaskShift;
}
// SystemZ MachineOperand target flags.
enum {
// Masks out the bits for the access model.
MO_SYMBOL_MODIFIER = (3 << 0),
// @GOT (aka @GOTENT)
MO_GOT = (1 << 0),
// @INDNTPOFF
MO_INDNTPOFF = (2 << 0)
};
// z/OS XPLink specific: classifies the types of
// accesses to the ADA (Associated Data Area).
// These enums contains values that overlap with the above MO_ enums,
// but that's fine since the above enums are used with ELF,
// while these values are used with z/OS.
enum {
MO_ADA_DATA_SYMBOL_ADDR = 1,
MO_ADA_INDIRECT_FUNC_DESC,
MO_ADA_DIRECT_FUNC_DESC,
};
// Classifies a branch.
enum BranchType {
// An instruction that branches on the current value of CC.
BranchNormal,
// An instruction that peforms a 32-bit signed comparison and branches
// on the result.
BranchC,
// An instruction that peforms a 32-bit unsigned comparison and branches
// on the result.
BranchCL,
// An instruction that peforms a 64-bit signed comparison and branches
// on the result.
BranchCG,
// An instruction that peforms a 64-bit unsigned comparison and branches
// on the result.
BranchCLG,
// An instruction that decrements a 32-bit register and branches if
// the result is nonzero.
BranchCT,
// An instruction that decrements a 64-bit register and branches if
// the result is nonzero.
BranchCTG,
// An instruction representing an asm goto statement.
AsmGoto
};
// Information about a branch instruction.
class Branch {
// The target of the branch. In case of INLINEASM_BR, this is nullptr.
const MachineOperand *Target;
public:
// The type of the branch.
BranchType Type;
// CCMASK_<N> is set if CC might be equal to N.
unsigned CCValid;
// CCMASK_<N> is set if the branch should be taken when CC == N.
unsigned CCMask;
Branch(BranchType type, unsigned ccValid, unsigned ccMask,
const MachineOperand *target)
: Target(target), Type(type), CCValid(ccValid), CCMask(ccMask) {}
bool isIndirect() { return Target != nullptr && Target->isReg(); }
bool hasMBBTarget() { return Target != nullptr && Target->isMBB(); }
MachineBasicBlock *getMBBTarget() {
return hasMBBTarget() ? Target->getMBB() : nullptr;
}
};
// Kinds of fused compares in compare-and-* instructions. Together with type
// of the converted compare, this identifies the compare-and-*
// instruction.
enum FusedCompareType {
// Relative branch - CRJ etc.
CompareAndBranch,
// Indirect branch, used for return - CRBReturn etc.
CompareAndReturn,
// Indirect branch, used for sibcall - CRBCall etc.
CompareAndSibcall,
// Trap
CompareAndTrap
};
} // end namespace SystemZII
namespace SystemZ {
int getTwoOperandOpcode(uint16_t Opcode);
int getTargetMemOpcode(uint16_t Opcode);
// Return a version of comparison CC mask CCMask in which the LT and GT
// actions are swapped.
unsigned reverseCCMask(unsigned CCMask);
// Create a new basic block after MBB.
MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB);
// Split MBB after MI and return the new block (the one that contains
// instructions after MI).
MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
MachineBasicBlock *MBB);
// Split MBB before MI and return the new block (the one that contains MI).
MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
MachineBasicBlock *MBB);
}
class SystemZInstrInfo : public SystemZGenInstrInfo {
const SystemZRegisterInfo RI;
SystemZSubtarget &STI;
void splitMove(MachineBasicBlock::iterator MI, unsigned NewOpcode) const;
void splitAdjDynAlloc(MachineBasicBlock::iterator MI) const;
void expandRIPseudo(MachineInstr &MI, unsigned LowOpcode, unsigned HighOpcode,
bool ConvertHigh) const;
void expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode,
unsigned LowOpcodeK, unsigned HighOpcode) const;
void expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode,
unsigned HighOpcode) const;
void expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode,
unsigned HighOpcode) const;
void expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode,
unsigned Size) const;
void expandLoadStackGuard(MachineInstr *MI) const;
MachineInstrBuilder
emitGRX32Move(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
const DebugLoc &DL, unsigned DestReg, unsigned SrcReg,
unsigned LowLowOpcode, unsigned Size, bool KillSrc,
bool UndefSrc) const;
virtual void anchor();
protected:
/// Commutes the operands in the given instruction by changing the operands
/// order and/or changing the instruction's opcode and/or the immediate value
/// operand.
///
/// The arguments 'CommuteOpIdx1' and 'CommuteOpIdx2' specify the operands
/// to be commuted.
///
/// Do not call this method for a non-commutable instruction or
/// non-commutable operands.
/// Even though the instruction is commutable, the method may still
/// fail to commute the operands, null pointer is returned in such cases.
MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
unsigned CommuteOpIdx1,
unsigned CommuteOpIdx2) const override;
public:
explicit SystemZInstrInfo(SystemZSubtarget &STI);
// Override TargetInstrInfo.
Register isLoadFromStackSlot(const MachineInstr &MI,
int &FrameIndex) const override;
Register isStoreToStackSlot(const MachineInstr &MI,
int &FrameIndex) const override;
bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
int &SrcFrameIndex) const override;
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const override;
unsigned removeBranch(MachineBasicBlock &MBB,
int *BytesRemoved = nullptr) const override;
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
const DebugLoc &DL,
int *BytesAdded = nullptr) const override;
bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
Register &SrcReg2, int64_t &Mask,
int64_t &Value) const override;
bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
Register, Register, Register, int &, int &,
int &) const override;
void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
const DebugLoc &DL, Register DstReg,
ArrayRef<MachineOperand> Cond, Register TrueReg,
Register FalseReg) const override;
MachineInstr *optimizeLoadInstr(MachineInstr &MI,
const MachineRegisterInfo *MRI,
Register &FoldAsLoadDefReg,
MachineInstr *&DefMI) const override;
bool foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg,
MachineRegisterInfo *MRI) const override;
bool isPredicable(const MachineInstr &MI) const override;
bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
unsigned ExtraPredCycles,
BranchProbability Probability) const override;
bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
unsigned NumCyclesT, unsigned ExtraPredCyclesT,
MachineBasicBlock &FMBB,
unsigned NumCyclesF, unsigned ExtraPredCyclesF,
BranchProbability Probability) const override;
bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
BranchProbability Probability) const override;
bool PredicateInstruction(MachineInstr &MI,
ArrayRef<MachineOperand> Pred) const override;
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
bool KillSrc, bool RenamableDest = false,
bool RenamableSrc = false) const override;
void storeRegToStackSlot(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg,
bool isKill, int FrameIndex, const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI, Register VReg,
MachineInstr::MIFlag Flags = MachineInstr::NoFlags) const override;
void loadRegFromStackSlot(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
Register DestReg, int FrameIdx, const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI, Register VReg,
MachineInstr::MIFlag Flags = MachineInstr::NoFlags) const override;
MachineInstr *convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
LiveIntervals *LIS) const override;
bool useMachineCombiner() const override { return true; }
bool isAssociativeAndCommutative(const MachineInstr &Inst,
bool Invert) const override;
std::optional<unsigned> getInverseOpcode(unsigned Opcode) const override;
MachineInstr *
foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
ArrayRef<unsigned> Ops,
MachineBasicBlock::iterator InsertPt, int FrameIndex,
LiveIntervals *LIS = nullptr,
VirtRegMap *VRM = nullptr) const override;
MachineInstr *foldMemoryOperandImpl(
MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
LiveIntervals *LIS = nullptr) const override;
bool expandPostRAPseudo(MachineInstr &MBBI) const override;
bool reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const
override;
// Return the SystemZRegisterInfo, which this class owns.
const SystemZRegisterInfo &getRegisterInfo() const { return RI; }
// Return the size in bytes of MI.
unsigned getInstSizeInBytes(const MachineInstr &MI) const override;
// Return true if MI is a conditional or unconditional branch.
// When returning true, set Cond to the mask of condition-code
// values on which the instruction will branch, and set Target
// to the operand that contains the branch target. This target
// can be a register or a basic block.
SystemZII::Branch getBranchInfo(const MachineInstr &MI) const;
// Get the load and store opcodes for a given register class.
void getLoadStoreOpcodes(const TargetRegisterClass *RC,
unsigned &LoadOpcode, unsigned &StoreOpcode) const;
// Opcode is the opcode of an instruction that has an address operand,
// and the caller wants to perform that instruction's operation on an
// address that has displacement Offset. Return the opcode of a suitable
// instruction (which might be Opcode itself) or 0 if no such instruction
// exists. MI may be passed in order to allow examination of physical
// register operands (i.e. if a VR32/64 reg ended up as an FP or Vector reg).
unsigned getOpcodeForOffset(unsigned Opcode, int64_t Offset,
const MachineInstr *MI = nullptr) const;
// Return true if Opcode has a mapping in 12 <-> 20 bit displacements.
bool hasDisplacementPairInsn(unsigned Opcode) const;
// If Opcode is a load instruction that has a LOAD AND TEST form,
// return the opcode for the testing form, otherwise return 0.
unsigned getLoadAndTest(unsigned Opcode) const;
// Return true if ROTATE AND ... SELECTED BITS can be used to select bits
// Mask of the R2 operand, given that only the low BitSize bits of Mask are
// significant. Set Start and End to the I3 and I4 operands if so.
bool isRxSBGMask(uint64_t Mask, unsigned BitSize,
unsigned &Start, unsigned &End) const;
// If Opcode is a COMPARE opcode for which an associated fused COMPARE AND *
// operation exists, return the opcode for the latter, otherwise return 0.
// MI, if nonnull, is the compare instruction.
unsigned getFusedCompare(unsigned Opcode,
SystemZII::FusedCompareType Type,
const MachineInstr *MI = nullptr) const;
// Try to find all CC users of the compare instruction (MBBI) and update
// all of them to maintain equivalent behavior after swapping the compare
// operands. Return false if not all users can be conclusively found and
// handled. The compare instruction is *not* changed.
bool prepareCompareSwapOperands(MachineBasicBlock::iterator MBBI) const;
// If Opcode is a LOAD opcode for with an associated LOAD AND TRAP
// operation exists, returh the opcode for the latter, otherwise return 0.
unsigned getLoadAndTrap(unsigned Opcode) const;
// Emit code before MBBI in MI to move immediate value Value into
// physical register Reg.
void loadImmediate(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
unsigned Reg, uint64_t Value) const;
// Perform target specific instruction verification.
bool verifyInstruction(const MachineInstr &MI,
StringRef &ErrInfo) const override;
// Sometimes, it is possible for the target to tell, even without
// aliasing information, that two MIs access different memory
// addresses. This function returns true if two MIs access different
// memory addresses and false otherwise.
bool
areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
const MachineInstr &MIb) const override;
bool getConstValDefinedInReg(const MachineInstr &MI, const Register Reg,
int64_t &ImmVal) const override;
};
} // end namespace llvm
#endif // LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZINSTRINFO_H