Files
clang-p2996/llvm/lib/Transforms/Utils/VNCoercion.cpp
David Green 775d0f36f7 [GVN] Handle scalable vectors with the same size in VNCoercion (#123984)
This allows us to forward to a load even if the types do not match
(nxv4i32 vs nxv2i64 for example). Scalable types are allowed in
canCoerceMustAliasedValueToLoad so long as the size (minelts *
scalarsize) is the same, and some follow-on code is adjusted to make
sure it handles scalable sizes correctly. Methods like
analyzeLoadFromClobberingWrite and analyzeLoadFromClobberingStore still
do nothing for scalable vectors, as Offsets and mismatching types are
not supported.
2025-01-23 18:43:50 +00:00

447 lines
18 KiB
C++

#include "llvm/Transforms/Utils/VNCoercion.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#define DEBUG_TYPE "vncoerce"
namespace llvm {
namespace VNCoercion {
static bool isFirstClassAggregateOrScalableType(Type *Ty) {
return Ty->isStructTy() || Ty->isArrayTy() || isa<ScalableVectorType>(Ty);
}
/// Return true if coerceAvailableValueToLoadType will succeed.
bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy,
const DataLayout &DL) {
Type *StoredTy = StoredVal->getType();
if (StoredTy == LoadTy)
return true;
if (isa<ScalableVectorType>(StoredTy) && isa<ScalableVectorType>(LoadTy) &&
DL.getTypeSizeInBits(StoredTy) == DL.getTypeSizeInBits(LoadTy))
return true;
// If the loaded/stored value is a first class array/struct, or scalable type,
// don't try to transform them. We need to be able to bitcast to integer.
if (isFirstClassAggregateOrScalableType(LoadTy) ||
isFirstClassAggregateOrScalableType(StoredTy))
return false;
uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy).getFixedValue();
// The store size must be byte-aligned to support future type casts.
if (llvm::alignTo(StoreSize, 8) != StoreSize)
return false;
// The store has to be at least as big as the load.
if (StoreSize < DL.getTypeSizeInBits(LoadTy).getFixedValue())
return false;
bool StoredNI = DL.isNonIntegralPointerType(StoredTy->getScalarType());
bool LoadNI = DL.isNonIntegralPointerType(LoadTy->getScalarType());
// Don't coerce non-integral pointers to integers or vice versa.
if (StoredNI != LoadNI) {
// As a special case, allow coercion of memset used to initialize
// an array w/null. Despite non-integral pointers not generally having a
// specific bit pattern, we do assume null is zero.
if (auto *CI = dyn_cast<Constant>(StoredVal))
return CI->isNullValue();
return false;
} else if (StoredNI && LoadNI &&
StoredTy->getPointerAddressSpace() !=
LoadTy->getPointerAddressSpace()) {
return false;
}
// The implementation below uses inttoptr for vectors of unequal size; we
// can't allow this for non integral pointers. We could teach it to extract
// exact subvectors if desired.
if (StoredNI && StoreSize != DL.getTypeSizeInBits(LoadTy).getFixedValue())
return false;
if (StoredTy->isTargetExtTy() || LoadTy->isTargetExtTy())
return false;
return true;
}
/// If we saw a store of a value to memory, and
/// then a load from a must-aliased pointer of a different type, try to coerce
/// the stored value. LoadedTy is the type of the load we want to replace.
/// IRB is IRBuilder used to insert new instructions.
///
/// If we can't do it, return null.
Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
IRBuilderBase &Helper,
const DataLayout &DL) {
assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
"precondition violation - materialization can't fail");
if (auto *C = dyn_cast<Constant>(StoredVal))
StoredVal = ConstantFoldConstant(C, DL);
// If this is already the right type, just return it.
Type *StoredValTy = StoredVal->getType();
TypeSize StoredValSize = DL.getTypeSizeInBits(StoredValTy);
TypeSize LoadedValSize = DL.getTypeSizeInBits(LoadedTy);
// If the store and reload are the same size, we can always reuse it.
if (StoredValSize == LoadedValSize) {
// Pointer to Pointer -> use bitcast.
if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) {
StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
} else {
// Convert source pointers to integers, which can be bitcast.
if (StoredValTy->isPtrOrPtrVectorTy()) {
StoredValTy = DL.getIntPtrType(StoredValTy);
StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
}
Type *TypeToCastTo = LoadedTy;
if (TypeToCastTo->isPtrOrPtrVectorTy())
TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
if (StoredValTy != TypeToCastTo)
StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo);
// Cast to pointer if the load needs a pointer type.
if (LoadedTy->isPtrOrPtrVectorTy())
StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
}
if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
StoredVal = ConstantFoldConstant(C, DL);
return StoredVal;
}
// If the loaded value is smaller than the available value, then we can
// extract out a piece from it. If the available value is too small, then we
// can't do anything.
assert(!StoredValSize.isScalable() &&
TypeSize::isKnownGE(StoredValSize, LoadedValSize) &&
"canCoerceMustAliasedValueToLoad fail");
// Convert source pointers to integers, which can be manipulated.
if (StoredValTy->isPtrOrPtrVectorTy()) {
StoredValTy = DL.getIntPtrType(StoredValTy);
StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
}
// Convert vectors and fp to integer, which can be manipulated.
if (!StoredValTy->isIntegerTy()) {
StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy);
}
// If this is a big-endian system, we need to shift the value down to the low
// bits so that a truncate will work.
if (DL.isBigEndian()) {
uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy).getFixedValue() -
DL.getTypeStoreSizeInBits(LoadedTy).getFixedValue();
StoredVal = Helper.CreateLShr(
StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt));
}
// Truncate the integer to the right size now.
Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy);
if (LoadedTy != NewIntTy) {
// If the result is a pointer, inttoptr.
if (LoadedTy->isPtrOrPtrVectorTy())
StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
else
// Otherwise, bitcast.
StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
}
if (auto *C = dyn_cast<Constant>(StoredVal))
StoredVal = ConstantFoldConstant(C, DL);
return StoredVal;
}
/// This function is called when we have a memdep query of a load that ends up
/// being a clobbering memory write (store, memset, memcpy, memmove). This
/// means that the write *may* provide bits used by the load but we can't be
/// sure because the pointers don't must-alias.
///
/// Check this case to see if there is anything more we can do before we give
/// up. This returns -1 if we have to give up, or a byte number in the stored
/// value of the piece that feeds the load.
static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
Value *WritePtr,
uint64_t WriteSizeInBits,
const DataLayout &DL) {
// If the loaded/stored value is a first class array/struct, or scalable type,
// don't try to transform them. We need to be able to bitcast to integer.
if (isFirstClassAggregateOrScalableType(LoadTy))
return -1;
int64_t StoreOffset = 0, LoadOffset = 0;
Value *StoreBase =
GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
if (StoreBase != LoadBase)
return -1;
uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue();
if ((WriteSizeInBits & 7) | (LoadSize & 7))
return -1;
uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes.
LoadSize /= 8;
// If the Load isn't completely contained within the stored bits, we don't
// have all the bits to feed it. We could do something crazy in the future
// (issue a smaller load then merge the bits in) but this seems unlikely to be
// valuable.
if (StoreOffset > LoadOffset ||
StoreOffset + int64_t(StoreSize) < LoadOffset + int64_t(LoadSize))
return -1;
// Okay, we can do this transformation. Return the number of bytes into the
// store that the load is.
return LoadOffset - StoreOffset;
}
/// This function is called when we have a
/// memdep query of a load that ends up being a clobbering store.
int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
StoreInst *DepSI, const DataLayout &DL) {
auto *StoredVal = DepSI->getValueOperand();
// Cannot handle reading from store of first-class aggregate or scalable type.
if (isFirstClassAggregateOrScalableType(StoredVal->getType()))
return -1;
if (!canCoerceMustAliasedValueToLoad(StoredVal, LoadTy, DL))
return -1;
Value *StorePtr = DepSI->getPointerOperand();
uint64_t StoreSize =
DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()).getFixedValue();
return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize,
DL);
}
/// This function is called when we have a
/// memdep query of a load that ends up being clobbered by another load. See if
/// the other load can feed into the second load.
int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI,
const DataLayout &DL) {
// Cannot handle reading from store of first-class aggregate yet.
if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
return -1;
if (!canCoerceMustAliasedValueToLoad(DepLI, LoadTy, DL))
return -1;
Value *DepPtr = DepLI->getPointerOperand();
uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()).getFixedValue();
return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
}
int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
MemIntrinsic *MI, const DataLayout &DL) {
// If the mem operation is a non-constant size, we can't handle it.
ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
if (!SizeCst)
return -1;
uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8;
// If this is memset, we just need to see if the offset is valid in the size
// of the memset..
if (const auto *memset_inst = dyn_cast<MemSetInst>(MI)) {
if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
auto *CI = dyn_cast<ConstantInt>(memset_inst->getValue());
if (!CI || !CI->isZero())
return -1;
}
return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
MemSizeInBits, DL);
}
// If we have a memcpy/memmove, the only case we can handle is if this is a
// copy from constant memory. In that case, we can read directly from the
// constant memory.
MemTransferInst *MTI = cast<MemTransferInst>(MI);
Constant *Src = dyn_cast<Constant>(MTI->getSource());
if (!Src)
return -1;
GlobalVariable *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(Src));
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
return -1;
// See if the access is within the bounds of the transfer.
int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
MemSizeInBits, DL);
if (Offset == -1)
return Offset;
// Otherwise, see if we can constant fold a load from the constant with the
// offset applied as appropriate.
unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
if (ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset), DL))
return Offset;
return -1;
}
static Value *getStoreValueForLoadHelper(Value *SrcVal, unsigned Offset,
Type *LoadTy, IRBuilderBase &Builder,
const DataLayout &DL) {
LLVMContext &Ctx = SrcVal->getType()->getContext();
// If two pointers are in the same address space, they have the same size,
// so we don't need to do any truncation, etc. This avoids introducing
// ptrtoint instructions for pointers that may be non-integral.
if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() &&
cast<PointerType>(SrcVal->getType())->getAddressSpace() ==
cast<PointerType>(LoadTy)->getAddressSpace()) {
return SrcVal;
}
// Return scalable values directly to avoid needing to bitcast to integer
// types, as we do not support non-zero Offsets.
if (isa<ScalableVectorType>(LoadTy)) {
assert(Offset == 0 && "Expected a zero offset for scalable types");
return SrcVal;
}
uint64_t StoreSize =
(DL.getTypeSizeInBits(SrcVal->getType()).getFixedValue() + 7) / 8;
uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy).getFixedValue() + 7) / 8;
// Compute which bits of the stored value are being used by the load. Convert
// to an integer type to start with.
if (SrcVal->getType()->isPtrOrPtrVectorTy())
SrcVal =
Builder.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType()));
if (!SrcVal->getType()->isIntegerTy())
SrcVal =
Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8));
// Shift the bits to the least significant depending on endianness.
unsigned ShiftAmt;
if (DL.isLittleEndian())
ShiftAmt = Offset * 8;
else
ShiftAmt = (StoreSize - LoadSize - Offset) * 8;
if (ShiftAmt)
SrcVal = Builder.CreateLShr(SrcVal,
ConstantInt::get(SrcVal->getType(), ShiftAmt));
if (LoadSize != StoreSize)
SrcVal = Builder.CreateTruncOrBitCast(SrcVal,
IntegerType::get(Ctx, LoadSize * 8));
return SrcVal;
}
Value *getValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy,
Instruction *InsertPt, const DataLayout &DL) {
#ifndef NDEBUG
TypeSize SrcValSize = DL.getTypeStoreSize(SrcVal->getType());
TypeSize LoadSize = DL.getTypeStoreSize(LoadTy);
assert(SrcValSize.isScalable() == LoadSize.isScalable());
assert((SrcValSize.isScalable() || Offset + LoadSize <= SrcValSize) &&
"Expected Offset + LoadSize <= SrcValSize");
assert(
(!SrcValSize.isScalable() || (Offset == 0 && LoadSize == SrcValSize)) &&
"Expected scalable type sizes to match");
#endif
IRBuilder<> Builder(InsertPt);
SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL);
return coerceAvailableValueToLoadType(SrcVal, LoadTy, Builder, DL);
}
Constant *getConstantValueForLoad(Constant *SrcVal, unsigned Offset,
Type *LoadTy, const DataLayout &DL) {
#ifndef NDEBUG
unsigned SrcValSize = DL.getTypeStoreSize(SrcVal->getType()).getFixedValue();
unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedValue();
assert(Offset + LoadSize <= SrcValSize);
#endif
return ConstantFoldLoadFromConst(SrcVal, LoadTy, APInt(32, Offset), DL);
}
/// This function is called when we have a
/// memdep query of a load that ends up being a clobbering mem intrinsic.
Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
Type *LoadTy, Instruction *InsertPt,
const DataLayout &DL) {
LLVMContext &Ctx = LoadTy->getContext();
uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue() / 8;
IRBuilder<> Builder(InsertPt);
// We know that this method is only called when the mem transfer fully
// provides the bits for the load.
if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
// memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
// independently of what the offset is.
Value *Val = MSI->getValue();
if (LoadSize != 1)
Val =
Builder.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8));
Value *OneElt = Val;
// Splat the value out to the right number of bits.
for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) {
// If we can double the number of bytes set, do it.
if (NumBytesSet * 2 <= LoadSize) {
Value *ShVal = Builder.CreateShl(
Val, ConstantInt::get(Val->getType(), NumBytesSet * 8));
Val = Builder.CreateOr(Val, ShVal);
NumBytesSet <<= 1;
continue;
}
// Otherwise insert one byte at a time.
Value *ShVal =
Builder.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8));
Val = Builder.CreateOr(OneElt, ShVal);
++NumBytesSet;
}
return coerceAvailableValueToLoadType(Val, LoadTy, Builder, DL);
}
// Otherwise, this is a memcpy/memmove from a constant global.
MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
Constant *Src = cast<Constant>(MTI->getSource());
unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
return ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset),
DL);
}
Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
Type *LoadTy, const DataLayout &DL) {
LLVMContext &Ctx = LoadTy->getContext();
uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue() / 8;
// We know that this method is only called when the mem transfer fully
// provides the bits for the load.
if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
auto *Val = dyn_cast<ConstantInt>(MSI->getValue());
if (!Val)
return nullptr;
Val = ConstantInt::get(Ctx, APInt::getSplat(LoadSize * 8, Val->getValue()));
return ConstantFoldLoadFromConst(Val, LoadTy, DL);
}
// Otherwise, this is a memcpy/memmove from a constant global.
MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
Constant *Src = cast<Constant>(MTI->getSource());
unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
return ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset),
DL);
}
} // namespace VNCoercion
} // namespace llvm