Files
clang-p2996/mlir/lib/Target/LLVMIR/ModuleTranslation.cpp
Kiran Chandramohan 92a295eb39 [MLIR, OpenMP] Translation of OpenMP barrier construct to LLVM IR
Summary:
This patch adds support for translation of the OpenMP barrier construct to LLVM
IR. The OpenMP IRBuilder is used for this translation. In this patch the code
for translation is added to the existing LLVM dialect translation to LLVM IR.

The patch includes code changes and a testcase.

Reviewers: jdoerfert, nicolasvasilache, ftynse, rriddle, mehdi_amini

Reviewed By: ftynse, rriddle, mehdi_amini

Differential Revision: https://reviews.llvm.org/D72962
2020-03-05 11:59:36 +00:00

672 lines
26 KiB
C++

//===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the translation between an MLIR LLVM dialect module and
// the corresponding LLVMIR module. It only handles core LLVM IR operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
#include "DebugTranslation.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/Cloning.h"
using namespace mlir;
using namespace mlir::LLVM;
using namespace mlir::LLVM::detail;
#include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
/// Builds a constant of a sequential LLVM type `type`, potentially containing
/// other sequential types recursively, from the individual constant values
/// provided in `constants`. `shape` contains the number of elements in nested
/// sequential types. Reports errors at `loc` and returns nullptr on error.
static llvm::Constant *
buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
ArrayRef<int64_t> shape, llvm::Type *type,
Location loc) {
if (shape.empty()) {
llvm::Constant *result = constants.front();
constants = constants.drop_front();
return result;
}
if (!isa<llvm::SequentialType>(type)) {
emitError(loc) << "expected sequential LLVM types wrapping a scalar";
return nullptr;
}
llvm::Type *elementType = type->getSequentialElementType();
SmallVector<llvm::Constant *, 8> nested;
nested.reserve(shape.front());
for (int64_t i = 0; i < shape.front(); ++i) {
nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
elementType, loc));
if (!nested.back())
return nullptr;
}
if (shape.size() == 1 && type->isVectorTy())
return llvm::ConstantVector::get(nested);
return llvm::ConstantArray::get(
llvm::ArrayType::get(elementType, shape.front()), nested);
}
/// Returns the first non-sequential type nested in sequential types.
static llvm::Type *getInnermostElementType(llvm::Type *type) {
while (isa<llvm::SequentialType>(type))
type = type->getSequentialElementType();
return type;
}
/// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
/// This currently supports integer, floating point, splat and dense element
/// attributes and combinations thereof. In case of error, report it to `loc`
/// and return nullptr.
llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType,
Attribute attr,
Location loc) {
if (!attr)
return llvm::UndefValue::get(llvmType);
if (llvmType->isStructTy()) {
emitError(loc, "struct types are not supported in constants");
return nullptr;
}
if (auto intAttr = attr.dyn_cast<IntegerAttr>())
return llvm::ConstantInt::get(llvmType, intAttr.getValue());
if (auto floatAttr = attr.dyn_cast<FloatAttr>())
return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>())
return functionMapping.lookup(funcAttr.getValue());
if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) {
auto *sequentialType = cast<llvm::SequentialType>(llvmType);
auto elementType = sequentialType->getElementType();
uint64_t numElements = sequentialType->getNumElements();
// Splat value is a scalar. Extract it only if the element type is not
// another sequence type. The recursion terminates because each step removes
// one outer sequential type.
llvm::Constant *child = getLLVMConstant(
elementType,
isa<llvm::SequentialType>(elementType) ? splatAttr
: splatAttr.getSplatValue(),
loc);
if (!child)
return nullptr;
if (llvmType->isVectorTy())
return llvm::ConstantVector::getSplat(numElements, child);
if (llvmType->isArrayTy()) {
auto arrayType = llvm::ArrayType::get(elementType, numElements);
SmallVector<llvm::Constant *, 8> constants(numElements, child);
return llvm::ConstantArray::get(arrayType, constants);
}
}
if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) {
assert(elementsAttr.getType().hasStaticShape());
assert(elementsAttr.getNumElements() != 0 &&
"unexpected empty elements attribute");
assert(!elementsAttr.getType().getShape().empty() &&
"unexpected empty elements attribute shape");
SmallVector<llvm::Constant *, 8> constants;
constants.reserve(elementsAttr.getNumElements());
llvm::Type *innermostType = getInnermostElementType(llvmType);
for (auto n : elementsAttr.getValues<Attribute>()) {
constants.push_back(getLLVMConstant(innermostType, n, loc));
if (!constants.back())
return nullptr;
}
ArrayRef<llvm::Constant *> constantsRef = constants;
llvm::Constant *result = buildSequentialConstant(
constantsRef, elementsAttr.getType().getShape(), llvmType, loc);
assert(constantsRef.empty() && "did not consume all elemental constants");
return result;
}
if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
return llvm::ConstantDataArray::get(
llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(),
stringAttr.getValue().size()});
}
emitError(loc, "unsupported constant value");
return nullptr;
}
/// Convert MLIR integer comparison predicate to LLVM IR comparison predicate.
static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) {
switch (p) {
case LLVM::ICmpPredicate::eq:
return llvm::CmpInst::Predicate::ICMP_EQ;
case LLVM::ICmpPredicate::ne:
return llvm::CmpInst::Predicate::ICMP_NE;
case LLVM::ICmpPredicate::slt:
return llvm::CmpInst::Predicate::ICMP_SLT;
case LLVM::ICmpPredicate::sle:
return llvm::CmpInst::Predicate::ICMP_SLE;
case LLVM::ICmpPredicate::sgt:
return llvm::CmpInst::Predicate::ICMP_SGT;
case LLVM::ICmpPredicate::sge:
return llvm::CmpInst::Predicate::ICMP_SGE;
case LLVM::ICmpPredicate::ult:
return llvm::CmpInst::Predicate::ICMP_ULT;
case LLVM::ICmpPredicate::ule:
return llvm::CmpInst::Predicate::ICMP_ULE;
case LLVM::ICmpPredicate::ugt:
return llvm::CmpInst::Predicate::ICMP_UGT;
case LLVM::ICmpPredicate::uge:
return llvm::CmpInst::Predicate::ICMP_UGE;
}
llvm_unreachable("incorrect comparison predicate");
}
static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) {
switch (p) {
case LLVM::FCmpPredicate::_false:
return llvm::CmpInst::Predicate::FCMP_FALSE;
case LLVM::FCmpPredicate::oeq:
return llvm::CmpInst::Predicate::FCMP_OEQ;
case LLVM::FCmpPredicate::ogt:
return llvm::CmpInst::Predicate::FCMP_OGT;
case LLVM::FCmpPredicate::oge:
return llvm::CmpInst::Predicate::FCMP_OGE;
case LLVM::FCmpPredicate::olt:
return llvm::CmpInst::Predicate::FCMP_OLT;
case LLVM::FCmpPredicate::ole:
return llvm::CmpInst::Predicate::FCMP_OLE;
case LLVM::FCmpPredicate::one:
return llvm::CmpInst::Predicate::FCMP_ONE;
case LLVM::FCmpPredicate::ord:
return llvm::CmpInst::Predicate::FCMP_ORD;
case LLVM::FCmpPredicate::ueq:
return llvm::CmpInst::Predicate::FCMP_UEQ;
case LLVM::FCmpPredicate::ugt:
return llvm::CmpInst::Predicate::FCMP_UGT;
case LLVM::FCmpPredicate::uge:
return llvm::CmpInst::Predicate::FCMP_UGE;
case LLVM::FCmpPredicate::ult:
return llvm::CmpInst::Predicate::FCMP_ULT;
case LLVM::FCmpPredicate::ule:
return llvm::CmpInst::Predicate::FCMP_ULE;
case LLVM::FCmpPredicate::une:
return llvm::CmpInst::Predicate::FCMP_UNE;
case LLVM::FCmpPredicate::uno:
return llvm::CmpInst::Predicate::FCMP_UNO;
case LLVM::FCmpPredicate::_true:
return llvm::CmpInst::Predicate::FCMP_TRUE;
}
llvm_unreachable("incorrect comparison predicate");
}
static llvm::AtomicRMWInst::BinOp getLLVMAtomicBinOp(AtomicBinOp op) {
switch (op) {
case LLVM::AtomicBinOp::xchg:
return llvm::AtomicRMWInst::BinOp::Xchg;
case LLVM::AtomicBinOp::add:
return llvm::AtomicRMWInst::BinOp::Add;
case LLVM::AtomicBinOp::sub:
return llvm::AtomicRMWInst::BinOp::Sub;
case LLVM::AtomicBinOp::_and:
return llvm::AtomicRMWInst::BinOp::And;
case LLVM::AtomicBinOp::nand:
return llvm::AtomicRMWInst::BinOp::Nand;
case LLVM::AtomicBinOp::_or:
return llvm::AtomicRMWInst::BinOp::Or;
case LLVM::AtomicBinOp::_xor:
return llvm::AtomicRMWInst::BinOp::Xor;
case LLVM::AtomicBinOp::max:
return llvm::AtomicRMWInst::BinOp::Max;
case LLVM::AtomicBinOp::min:
return llvm::AtomicRMWInst::BinOp::Min;
case LLVM::AtomicBinOp::umax:
return llvm::AtomicRMWInst::BinOp::UMax;
case LLVM::AtomicBinOp::umin:
return llvm::AtomicRMWInst::BinOp::UMin;
case LLVM::AtomicBinOp::fadd:
return llvm::AtomicRMWInst::BinOp::FAdd;
case LLVM::AtomicBinOp::fsub:
return llvm::AtomicRMWInst::BinOp::FSub;
}
llvm_unreachable("incorrect atomic binary operator");
}
static llvm::AtomicOrdering getLLVMAtomicOrdering(AtomicOrdering ordering) {
switch (ordering) {
case LLVM::AtomicOrdering::not_atomic:
return llvm::AtomicOrdering::NotAtomic;
case LLVM::AtomicOrdering::unordered:
return llvm::AtomicOrdering::Unordered;
case LLVM::AtomicOrdering::monotonic:
return llvm::AtomicOrdering::Monotonic;
case LLVM::AtomicOrdering::acquire:
return llvm::AtomicOrdering::Acquire;
case LLVM::AtomicOrdering::release:
return llvm::AtomicOrdering::Release;
case LLVM::AtomicOrdering::acq_rel:
return llvm::AtomicOrdering::AcquireRelease;
case LLVM::AtomicOrdering::seq_cst:
return llvm::AtomicOrdering::SequentiallyConsistent;
}
llvm_unreachable("incorrect atomic ordering");
}
ModuleTranslation::ModuleTranslation(Operation *module,
std::unique_ptr<llvm::Module> llvmModule)
: mlirModule(module), llvmModule(std::move(llvmModule)),
debugTranslation(
std::make_unique<DebugTranslation>(module, *this->llvmModule)),
ompDialect(
module->getContext()->getRegisteredDialect<omp::OpenMPDialect>()) {
assert(satisfiesLLVMModule(mlirModule) &&
"mlirModule should honor LLVM's module semantics.");
}
ModuleTranslation::~ModuleTranslation() {}
/// Given a single MLIR operation, create the corresponding LLVM IR operation
/// using the `builder`. LLVM IR Builder does not have a generic interface so
/// this has to be a long chain of `if`s calling different functions with a
/// different number of arguments.
LogicalResult ModuleTranslation::convertOperation(Operation &opInst,
llvm::IRBuilder<> &builder) {
auto extractPosition = [](ArrayAttr attr) {
SmallVector<unsigned, 4> position;
position.reserve(attr.size());
for (Attribute v : attr)
position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue());
return position;
};
#include "mlir/Dialect/LLVMIR/LLVMConversions.inc"
// Emit function calls. If the "callee" attribute is present, this is a
// direct function call and we also need to look up the remapped function
// itself. Otherwise, this is an indirect call and the callee is the first
// operand, look it up as a normal value. Return the llvm::Value representing
// the function result, which may be of llvm::VoidTy type.
auto convertCall = [this, &builder](Operation &op) -> llvm::Value * {
auto operands = lookupValues(op.getOperands());
ArrayRef<llvm::Value *> operandsRef(operands);
if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) {
return builder.CreateCall(functionMapping.lookup(attr.getValue()),
operandsRef);
} else {
return builder.CreateCall(operandsRef.front(), operandsRef.drop_front());
}
};
// Emit calls. If the called function has a result, remap the corresponding
// value. Note that LLVM IR dialect CallOp has either 0 or 1 result.
if (isa<LLVM::CallOp>(opInst)) {
llvm::Value *result = convertCall(opInst);
if (opInst.getNumResults() != 0) {
valueMapping[opInst.getResult(0)] = result;
return success();
}
// Check that LLVM call returns void for 0-result functions.
return success(result->getType()->isVoidTy());
}
if (auto invOp = dyn_cast<LLVM::InvokeOp>(opInst)) {
auto operands = lookupValues(opInst.getOperands());
ArrayRef<llvm::Value *> operandsRef(operands);
if (auto attr = opInst.getAttrOfType<FlatSymbolRefAttr>("callee"))
builder.CreateInvoke(functionMapping.lookup(attr.getValue()),
blockMapping[invOp.getSuccessor(0)],
blockMapping[invOp.getSuccessor(1)], operandsRef);
else
builder.CreateInvoke(
operandsRef.front(), blockMapping[invOp.getSuccessor(0)],
blockMapping[invOp.getSuccessor(1)], operandsRef.drop_front());
return success();
}
if (auto lpOp = dyn_cast<LLVM::LandingpadOp>(opInst)) {
llvm::Type *ty = lpOp.getType().dyn_cast<LLVMType>().getUnderlyingType();
llvm::LandingPadInst *lpi =
builder.CreateLandingPad(ty, lpOp.getNumOperands());
// Add clauses
for (auto operand : lookupValues(lpOp.getOperands())) {
// All operands should be constant - checked by verifier
if (auto constOperand = dyn_cast<llvm::Constant>(operand))
lpi->addClause(constOperand);
}
return success();
}
// Emit branches. We need to look up the remapped blocks and ignore the block
// arguments that were transformed into PHI nodes.
if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) {
builder.CreateBr(blockMapping[brOp.getSuccessor(0)]);
return success();
}
if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) {
builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)),
blockMapping[condbrOp.getSuccessor(0)],
blockMapping[condbrOp.getSuccessor(1)]);
return success();
}
// Emit addressof. We need to look up the global value referenced by the
// operation and store it in the MLIR-to-LLVM value mapping. This does not
// emit any LLVM instruction.
if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) {
LLVM::GlobalOp global = addressOfOp.getGlobal();
// The verifier should not have allowed this.
assert(global && "referencing an undefined global");
valueMapping[addressOfOp.getResult()] = globalsMapping.lookup(global);
return success();
}
if (opInst.getDialect() == ompDialect) {
if (!ompBuilder) {
ompBuilder =
std::move(std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule));
ompBuilder->initialize();
}
if (isa<omp::BarrierOp>(opInst)) {
ompBuilder->CreateBarrier(builder.saveIP(), llvm::omp::OMPD_barrier);
return success();
}
return opInst.emitError("unsupported OpenMP operation: ")
<< opInst.getName();
}
return opInst.emitError("unsupported or non-LLVM operation: ")
<< opInst.getName();
}
/// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes
/// to define values corresponding to the MLIR block arguments. These nodes
/// are not connected to the source basic blocks, which may not exist yet.
LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) {
llvm::IRBuilder<> builder(blockMapping[&bb]);
auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
// Before traversing operations, make block arguments available through
// value remapping and PHI nodes, but do not add incoming edges for the PHI
// nodes just yet: those values may be defined by this or following blocks.
// This step is omitted if "ignoreArguments" is set. The arguments of the
// first block have been already made available through the remapping of
// LLVM function arguments.
if (!ignoreArguments) {
auto predecessors = bb.getPredecessors();
unsigned numPredecessors =
std::distance(predecessors.begin(), predecessors.end());
for (auto arg : bb.getArguments()) {
auto wrappedType = arg.getType().dyn_cast<LLVM::LLVMType>();
if (!wrappedType)
return emitError(bb.front().getLoc(),
"block argument does not have an LLVM type");
llvm::Type *type = wrappedType.getUnderlyingType();
llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
valueMapping[arg] = phi;
}
}
// Traverse operations.
for (auto &op : bb) {
// Set the current debug location within the builder.
builder.SetCurrentDebugLocation(
debugTranslation->translateLoc(op.getLoc(), subprogram));
if (failed(convertOperation(op, builder)))
return failure();
}
return success();
}
/// Create named global variables that correspond to llvm.mlir.global
/// definitions.
LogicalResult ModuleTranslation::convertGlobals() {
for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
llvm::Type *type = op.getType().getUnderlyingType();
llvm::Constant *cst = llvm::UndefValue::get(type);
if (op.getValueOrNull()) {
// String attributes are treated separately because they cannot appear as
// in-function constants and are thus not supported by getLLVMConstant.
if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) {
cst = llvm::ConstantDataArray::getString(
llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
type = cst->getType();
} else if (!(cst = getLLVMConstant(type, op.getValueOrNull(),
op.getLoc()))) {
return failure();
}
} else if (Block *initializer = op.getInitializerBlock()) {
llvm::IRBuilder<> builder(llvmModule->getContext());
for (auto &op : initializer->without_terminator()) {
if (failed(convertOperation(op, builder)) ||
!isa<llvm::Constant>(valueMapping.lookup(op.getResult(0))))
return emitError(op.getLoc(), "unemittable constant value");
}
ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0)));
}
auto linkage = convertLinkageToLLVM(op.linkage());
bool anyExternalLinkage =
(linkage == llvm::GlobalVariable::ExternalLinkage ||
linkage == llvm::GlobalVariable::ExternalWeakLinkage);
auto addrSpace = op.addr_space().getLimitedValue();
auto *var = new llvm::GlobalVariable(
*llvmModule, type, op.constant(), linkage,
anyExternalLinkage ? nullptr : cst, op.sym_name(),
/*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace);
globalsMapping.try_emplace(op, var);
}
return success();
}
/// Get the SSA value passed to the current block from the terminator operation
/// of its predecessor.
static Value getPHISourceValue(Block *current, Block *pred,
unsigned numArguments, unsigned index) {
auto &terminator = *pred->getTerminator();
if (isa<LLVM::BrOp>(terminator)) {
return terminator.getOperand(index);
}
// For conditional branches, we need to check if the current block is reached
// through the "true" or the "false" branch and take the relevant operands.
auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator);
assert(condBranchOp &&
"only branch operations can be terminators of a block that "
"has successors");
assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) &&
"successors with arguments in LLVM conditional branches must be "
"different blocks");
return condBranchOp.getSuccessor(0) == current
? terminator.getSuccessorOperand(0, index)
: terminator.getSuccessorOperand(1, index);
}
void ModuleTranslation::connectPHINodes(LLVMFuncOp func) {
// Skip the first block, it cannot be branched to and its arguments correspond
// to the arguments of the LLVM function.
for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) {
Block *bb = &*it;
llvm::BasicBlock *llvmBB = blockMapping.lookup(bb);
auto phis = llvmBB->phis();
auto numArguments = bb->getNumArguments();
assert(numArguments == std::distance(phis.begin(), phis.end()));
for (auto &numberedPhiNode : llvm::enumerate(phis)) {
auto &phiNode = numberedPhiNode.value();
unsigned index = numberedPhiNode.index();
for (auto *pred : bb->getPredecessors()) {
phiNode.addIncoming(valueMapping.lookup(getPHISourceValue(
bb, pred, numArguments, index)),
blockMapping.lookup(pred));
}
}
}
}
// TODO(mlir-team): implement an iterative version
static void topologicalSortImpl(llvm::SetVector<Block *> &blocks, Block *b) {
blocks.insert(b);
for (Block *bb : b->getSuccessors()) {
if (blocks.count(bb) == 0)
topologicalSortImpl(blocks, bb);
}
}
/// Sort function blocks topologically.
static llvm::SetVector<Block *> topologicalSort(LLVMFuncOp f) {
// For each blocks that has not been visited yet (i.e. that has no
// predecessors), add it to the list and traverse its successors in DFS
// preorder.
llvm::SetVector<Block *> blocks;
for (Block &b : f.getBlocks()) {
if (blocks.count(&b) == 0)
topologicalSortImpl(blocks, &b);
}
assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted");
return blocks;
}
LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
// Clear the block and value mappings, they are only relevant within one
// function.
blockMapping.clear();
valueMapping.clear();
llvm::Function *llvmFunc = functionMapping.lookup(func.getName());
// Translate the debug information for this function.
debugTranslation->translate(func, *llvmFunc);
// Add function arguments to the value remapping table.
// If there was noalias info then we decorate each argument accordingly.
unsigned int argIdx = 0;
for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) {
llvm::Argument &llvmArg = std::get<1>(kvp);
BlockArgument mlirArg = std::get<0>(kvp);
if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) {
// NB: Attribute already verified to be boolean, so check if we can indeed
// attach the attribute to this argument, based on its type.
auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>();
if (!argTy.getUnderlyingType()->isPointerTy())
return func.emitError(
"llvm.noalias attribute attached to LLVM non-pointer argument");
if (attr.getValue())
llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias);
}
valueMapping[mlirArg] = &llvmArg;
argIdx++;
}
// First, create all blocks so we can jump to them.
llvm::LLVMContext &llvmContext = llvmFunc->getContext();
for (auto &bb : func) {
auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
llvmBB->insertInto(llvmFunc);
blockMapping[&bb] = llvmBB;
}
// Then, convert blocks one by one in topological order to ensure defs are
// converted before uses.
auto blocks = topologicalSort(func);
for (auto indexedBB : llvm::enumerate(blocks)) {
auto *bb = indexedBB.value();
if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0)))
return failure();
}
// Finally, after all blocks have been traversed and values mapped, connect
// the PHI nodes to the results of preceding blocks.
connectPHINodes(func);
return success();
}
LogicalResult ModuleTranslation::checkSupportedModuleOps(Operation *m) {
for (Operation &o : getModuleBody(m).getOperations())
if (!isa<LLVM::LLVMFuncOp>(&o) && !isa<LLVM::GlobalOp>(&o) &&
!o.isKnownTerminator())
return o.emitOpError("unsupported module-level operation");
return success();
}
LogicalResult ModuleTranslation::convertFunctions() {
// Declare all functions first because there may be function calls that form a
// call graph with cycles.
for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
function.getName(),
cast<llvm::FunctionType>(function.getType().getUnderlyingType()));
assert(isa<llvm::Function>(llvmFuncCst.getCallee()));
functionMapping[function.getName()] =
cast<llvm::Function>(llvmFuncCst.getCallee());
}
// Convert functions.
for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
// Ignore external functions.
if (function.isExternal())
continue;
if (failed(convertOneFunction(function)))
return failure();
}
return success();
}
/// A helper to look up remapped operands in the value remapping table.`
SmallVector<llvm::Value *, 8>
ModuleTranslation::lookupValues(ValueRange values) {
SmallVector<llvm::Value *, 8> remapped;
remapped.reserve(values.size());
for (Value v : values)
remapped.push_back(valueMapping.lookup(v));
return remapped;
}
std::unique_ptr<llvm::Module>
ModuleTranslation::prepareLLVMModule(Operation *m) {
auto *dialect = m->getContext()->getRegisteredDialect<LLVM::LLVMDialect>();
assert(dialect && "LLVM dialect must be registered");
auto llvmModule = llvm::CloneModule(dialect->getLLVMModule());
if (!llvmModule)
return nullptr;
llvm::LLVMContext &llvmContext = llvmModule->getContext();
llvm::IRBuilder<> builder(llvmContext);
// Inject declarations for `malloc` and `free` functions that can be used in
// memref allocation/deallocation coming from standard ops lowering.
llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(),
builder.getInt64Ty());
llvmModule->getOrInsertFunction("free", builder.getVoidTy(),
builder.getInt8PtrTy());
return llvmModule;
}