Previously, an UndoLogEntry was added by addRow but not by addZeroRow. So calling directly into addZeroRow, as LexSimplex::addCut does, was not an undoable operation. In the current usage of addCut this could never lead to an incorrect result, and addZeroRow is protected, so it is not currently possible to add a regression test for this. This bug needs to be fixed for the symbolic integer lexmin algorithm. Reviewed By: Groverkss Differential Revision: https://reviews.llvm.org/D122162
1722 lines
67 KiB
C++
1722 lines
67 KiB
C++
//===- Simplex.cpp - MLIR Simplex Class -----------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Analysis/Presburger/Simplex.h"
|
|
#include "mlir/Analysis/Presburger/Matrix.h"
|
|
#include "mlir/Support/MathExtras.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
|
|
using namespace mlir;
|
|
using namespace presburger;
|
|
|
|
using Direction = Simplex::Direction;
|
|
|
|
const int nullIndex = std::numeric_limits<int>::max();
|
|
|
|
SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM)
|
|
: usingBigM(mustUseBigM), nRow(0), nCol(getNumFixedCols() + nVar),
|
|
nRedundant(0), tableau(0, nCol), empty(false) {
|
|
colUnknown.insert(colUnknown.begin(), getNumFixedCols(), nullIndex);
|
|
for (unsigned i = 0; i < nVar; ++i) {
|
|
var.emplace_back(Orientation::Column, /*restricted=*/false,
|
|
/*pos=*/getNumFixedCols() + i);
|
|
colUnknown.push_back(i);
|
|
}
|
|
}
|
|
|
|
const Simplex::Unknown &SimplexBase::unknownFromIndex(int index) const {
|
|
assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
|
|
return index >= 0 ? var[index] : con[~index];
|
|
}
|
|
|
|
const Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) const {
|
|
assert(col < nCol && "Invalid column");
|
|
return unknownFromIndex(colUnknown[col]);
|
|
}
|
|
|
|
const Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) const {
|
|
assert(row < nRow && "Invalid row");
|
|
return unknownFromIndex(rowUnknown[row]);
|
|
}
|
|
|
|
Simplex::Unknown &SimplexBase::unknownFromIndex(int index) {
|
|
assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
|
|
return index >= 0 ? var[index] : con[~index];
|
|
}
|
|
|
|
Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) {
|
|
assert(col < nCol && "Invalid column");
|
|
return unknownFromIndex(colUnknown[col]);
|
|
}
|
|
|
|
Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) {
|
|
assert(row < nRow && "Invalid row");
|
|
return unknownFromIndex(rowUnknown[row]);
|
|
}
|
|
|
|
unsigned SimplexBase::addZeroRow(bool makeRestricted) {
|
|
++nRow;
|
|
// If the tableau is not big enough to accomodate the extra row, we extend it.
|
|
if (nRow >= tableau.getNumRows())
|
|
tableau.resizeVertically(nRow);
|
|
rowUnknown.push_back(~con.size());
|
|
con.emplace_back(Orientation::Row, makeRestricted, nRow - 1);
|
|
undoLog.push_back(UndoLogEntry::RemoveLastConstraint);
|
|
|
|
// Zero out the new row.
|
|
tableau.fillRow(nRow - 1, 0);
|
|
|
|
tableau(nRow - 1, 0) = 1;
|
|
return con.size() - 1;
|
|
}
|
|
|
|
/// Add a new row to the tableau corresponding to the given constant term and
|
|
/// list of coefficients. The coefficients are specified as a vector of
|
|
/// (variable index, coefficient) pairs.
|
|
unsigned SimplexBase::addRow(ArrayRef<int64_t> coeffs, bool makeRestricted) {
|
|
assert(coeffs.size() == var.size() + 1 &&
|
|
"Incorrect number of coefficients!");
|
|
|
|
addZeroRow(makeRestricted);
|
|
tableau(nRow - 1, 1) = coeffs.back();
|
|
if (usingBigM) {
|
|
// When the lexicographic pivot rule is used, instead of the variables
|
|
//
|
|
// x, y, z ...
|
|
//
|
|
// we internally use the variables
|
|
//
|
|
// M, M + x, M + y, M + z, ...
|
|
//
|
|
// where M is the big M parameter. As such, when the user tries to add
|
|
// a row ax + by + cz + d, we express it in terms of our internal variables
|
|
// as -(a + b + c)M + a(M + x) + b(M + y) + c(M + z) + d.
|
|
int64_t bigMCoeff = 0;
|
|
for (unsigned i = 0; i < coeffs.size() - 1; ++i)
|
|
bigMCoeff -= coeffs[i];
|
|
// The coefficient to the big M parameter is stored in column 2.
|
|
tableau(nRow - 1, 2) = bigMCoeff;
|
|
}
|
|
|
|
// Process each given variable coefficient.
|
|
for (unsigned i = 0; i < var.size(); ++i) {
|
|
unsigned pos = var[i].pos;
|
|
if (coeffs[i] == 0)
|
|
continue;
|
|
|
|
if (var[i].orientation == Orientation::Column) {
|
|
// If a variable is in column position at column col, then we just add the
|
|
// coefficient for that variable (scaled by the common row denominator) to
|
|
// the corresponding entry in the new row.
|
|
tableau(nRow - 1, pos) += coeffs[i] * tableau(nRow - 1, 0);
|
|
continue;
|
|
}
|
|
|
|
// If the variable is in row position, we need to add that row to the new
|
|
// row, scaled by the coefficient for the variable, accounting for the two
|
|
// rows potentially having different denominators. The new denominator is
|
|
// the lcm of the two.
|
|
int64_t lcm = mlir::lcm(tableau(nRow - 1, 0), tableau(pos, 0));
|
|
int64_t nRowCoeff = lcm / tableau(nRow - 1, 0);
|
|
int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0));
|
|
tableau(nRow - 1, 0) = lcm;
|
|
for (unsigned col = 1; col < nCol; ++col)
|
|
tableau(nRow - 1, col) =
|
|
nRowCoeff * tableau(nRow - 1, col) + idxRowCoeff * tableau(pos, col);
|
|
}
|
|
|
|
normalizeRow(nRow - 1);
|
|
// Push to undo log along with the index of the new constraint.
|
|
return con.size() - 1;
|
|
}
|
|
|
|
/// Normalize the row by removing factors that are common between the
|
|
/// denominator and all the numerator coefficients.
|
|
void SimplexBase::normalizeRow(unsigned row) {
|
|
int64_t gcd = 0;
|
|
for (unsigned col = 0; col < nCol; ++col) {
|
|
gcd = llvm::greatestCommonDivisor(gcd, std::abs(tableau(row, col)));
|
|
// If the gcd becomes 1 then the row is already normalized.
|
|
if (gcd == 1)
|
|
return;
|
|
}
|
|
|
|
// Note that the gcd can never become zero since the first element of the row,
|
|
// the denominator, is non-zero.
|
|
assert(gcd != 0);
|
|
for (unsigned col = 0; col < nCol; ++col)
|
|
tableau(row, col) /= gcd;
|
|
}
|
|
|
|
namespace {
|
|
bool signMatchesDirection(int64_t elem, Direction direction) {
|
|
assert(elem != 0 && "elem should not be 0");
|
|
return direction == Direction::Up ? elem > 0 : elem < 0;
|
|
}
|
|
|
|
Direction flippedDirection(Direction direction) {
|
|
return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up;
|
|
}
|
|
} // namespace
|
|
|
|
MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::findRationalLexMin() {
|
|
restoreRationalConsistency();
|
|
return getRationalSample();
|
|
}
|
|
|
|
LogicalResult LexSimplex::addCut(unsigned row) {
|
|
int64_t denom = tableau(row, 0);
|
|
addZeroRow(/*makeRestricted=*/true);
|
|
tableau(nRow - 1, 0) = denom;
|
|
tableau(nRow - 1, 1) = -mod(-tableau(row, 1), denom);
|
|
tableau(nRow - 1, 2) = 0; // M has all factors in it.
|
|
for (unsigned col = 3; col < nCol; ++col)
|
|
tableau(nRow - 1, col) = mod(tableau(row, col), denom);
|
|
return moveRowUnknownToColumn(nRow - 1);
|
|
}
|
|
|
|
Optional<unsigned> LexSimplex::maybeGetNonIntegralVarRow() const {
|
|
for (const Unknown &u : var) {
|
|
if (u.orientation == Orientation::Column)
|
|
continue;
|
|
// If the sample value is of the form (a/d)M + b/d, we need b to be
|
|
// divisible by d. We assume M is very large and contains all possible
|
|
// factors and is divisible by everything.
|
|
unsigned row = u.pos;
|
|
if (tableau(row, 1) % tableau(row, 0) != 0)
|
|
return row;
|
|
}
|
|
return {};
|
|
}
|
|
|
|
MaybeOptimum<SmallVector<int64_t, 8>> LexSimplex::findIntegerLexMin() {
|
|
while (!empty) {
|
|
restoreRationalConsistency();
|
|
if (empty)
|
|
return OptimumKind::Empty;
|
|
|
|
if (Optional<unsigned> maybeRow = maybeGetNonIntegralVarRow()) {
|
|
// Failure occurs when the polytope is integer empty.
|
|
if (failed(addCut(*maybeRow)))
|
|
return OptimumKind::Empty;
|
|
continue;
|
|
}
|
|
|
|
MaybeOptimum<SmallVector<Fraction, 8>> sample = getRationalSample();
|
|
assert(!sample.isEmpty() && "If we reached here the sample should exist!");
|
|
if (sample.isUnbounded())
|
|
return OptimumKind::Unbounded;
|
|
return llvm::to_vector<8>(llvm::map_range(
|
|
*sample, [](const Fraction &f) { return f.getAsInteger(); }));
|
|
}
|
|
|
|
// Polytope is integer empty.
|
|
return OptimumKind::Empty;
|
|
}
|
|
|
|
bool LexSimplex::rowIsViolated(unsigned row) const {
|
|
if (tableau(row, 2) < 0)
|
|
return true;
|
|
if (tableau(row, 2) == 0 && tableau(row, 1) < 0)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
Optional<unsigned> LexSimplex::maybeGetViolatedRow() const {
|
|
for (unsigned row = 0; row < nRow; ++row)
|
|
if (rowIsViolated(row))
|
|
return row;
|
|
return {};
|
|
}
|
|
|
|
// We simply look for violated rows and keep trying to move them to column
|
|
// orientation, which always succeeds unless the constraints have no solution
|
|
// in which case we just give up and return.
|
|
void LexSimplex::restoreRationalConsistency() {
|
|
while (Optional<unsigned> maybeViolatedRow = maybeGetViolatedRow()) {
|
|
LogicalResult status = moveRowUnknownToColumn(*maybeViolatedRow);
|
|
if (failed(status))
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Move the row unknown to column orientation while preserving lexicopositivity
|
|
// of the basis transform.
|
|
//
|
|
// We only consider pivots where the pivot element is positive. Suppose no such
|
|
// pivot exists, i.e., some violated row has no positive coefficient for any
|
|
// basis unknown. The row can be represented as (s + c_1*u_1 + ... + c_n*u_n)/d,
|
|
// where d is the denominator, s is the sample value and the c_i are the basis
|
|
// coefficients. Since any feasible assignment of the basis satisfies u_i >= 0
|
|
// for all i, and we have s < 0 as well as c_i < 0 for all i, any feasible
|
|
// assignment would violate this row and therefore the constraints have no
|
|
// solution.
|
|
//
|
|
// We can preserve lexicopositivity by picking the pivot column with positive
|
|
// pivot element that makes the lexicographically smallest change to the sample
|
|
// point.
|
|
//
|
|
// Proof. Let
|
|
// x = (x_1, ... x_n) be the variables,
|
|
// z = (z_1, ... z_m) be the constraints,
|
|
// y = (y_1, ... y_n) be the current basis, and
|
|
// define w = (x_1, ... x_n, z_1, ... z_m) = B*y + s.
|
|
// B is basically the simplex tableau of our implementation except that instead
|
|
// of only describing the transform to get back the non-basis unknowns, it
|
|
// defines the values of all the unknowns in terms of the basis unknowns.
|
|
// Similarly, s is the column for the sample value.
|
|
//
|
|
// Our goal is to show that each column in B, restricted to the first n
|
|
// rows, is lexicopositive after the pivot if it is so before. This is
|
|
// equivalent to saying the columns in the whole matrix are lexicopositive;
|
|
// there must be some non-zero element in every column in the first n rows since
|
|
// the n variables cannot be spanned without using all the n basis unknowns.
|
|
//
|
|
// Consider a pivot where z_i replaces y_j in the basis. Recall the pivot
|
|
// transform for the tableau derived for SimplexBase::pivot:
|
|
//
|
|
// pivot col other col pivot col other col
|
|
// pivot row a b -> pivot row 1/a -b/a
|
|
// other row c d other row c/a d - bc/a
|
|
//
|
|
// Similarly, a pivot results in B changing to B' and c to c'; the difference
|
|
// between the tableau and these matrices B and B' is that there is no special
|
|
// case for the pivot row, since it continues to represent the same unknown. The
|
|
// same formula applies for all rows:
|
|
//
|
|
// B'.col(j) = B.col(j) / B(i,j)
|
|
// B'.col(k) = B.col(k) - B(i,k) * B.col(j) / B(i,j) for k != j
|
|
// and similarly, s' = s - s_i * B.col(j) / B(i,j).
|
|
//
|
|
// Since the row is violated, we have s_i < 0, so the change in sample value
|
|
// when pivoting with column a is lexicographically smaller than that when
|
|
// pivoting with column b iff B.col(a) / B(i, a) is lexicographically smaller
|
|
// than B.col(b) / B(i, b).
|
|
//
|
|
// Since B(i, j) > 0, column j remains lexicopositive.
|
|
//
|
|
// For the other columns, suppose C.col(k) is not lexicopositive.
|
|
// This means that for some p, for all t < p,
|
|
// C(t,k) = 0 => B(t,k) = B(t,j) * B(i,k) / B(i,j) and
|
|
// C(t,k) < 0 => B(p,k) < B(t,j) * B(i,k) / B(i,j),
|
|
// which is in contradiction to the fact that B.col(j) / B(i,j) must be
|
|
// lexicographically smaller than B.col(k) / B(i,k), since it lexicographically
|
|
// minimizes the change in sample value.
|
|
LogicalResult LexSimplex::moveRowUnknownToColumn(unsigned row) {
|
|
Optional<unsigned> maybeColumn;
|
|
for (unsigned col = 3; col < nCol; ++col) {
|
|
if (tableau(row, col) <= 0)
|
|
continue;
|
|
maybeColumn =
|
|
!maybeColumn ? col : getLexMinPivotColumn(row, *maybeColumn, col);
|
|
}
|
|
|
|
if (!maybeColumn) {
|
|
markEmpty();
|
|
return failure();
|
|
}
|
|
|
|
pivot(row, *maybeColumn);
|
|
return success();
|
|
}
|
|
|
|
unsigned LexSimplex::getLexMinPivotColumn(unsigned row, unsigned colA,
|
|
unsigned colB) const {
|
|
// A pivot causes the following change. (in the diagram the matrix elements
|
|
// are shown as rationals and there is no common denominator used)
|
|
//
|
|
// pivot col big M col const col
|
|
// pivot row a p b
|
|
// other row c q d
|
|
// |
|
|
// v
|
|
//
|
|
// pivot col big M col const col
|
|
// pivot row 1/a -p/a -b/a
|
|
// other row c/a q - pc/a d - bc/a
|
|
//
|
|
// Let the sample value of the pivot row be s = pM + b before the pivot. Since
|
|
// the pivot row represents a violated constraint we know that s < 0.
|
|
//
|
|
// If the variable is a non-pivot column, its sample value is zero before and
|
|
// after the pivot.
|
|
//
|
|
// If the variable is the pivot column, then its sample value goes from 0 to
|
|
// (-p/a)M + (-b/a), i.e. 0 to -(pM + b)/a. Thus the change in the sample
|
|
// value is -s/a.
|
|
//
|
|
// If the variable is the pivot row, it sampel value goes from s to 0, for a
|
|
// change of -s.
|
|
//
|
|
// If the variable is a non-pivot row, its sample value changes from
|
|
// qM + d to qM + d + (-pc/a)M + (-bc/a). Thus the change in sample value
|
|
// is -(pM + b)(c/a) = -sc/a.
|
|
//
|
|
// Thus the change in sample value is either 0, -s/a, -s, or -sc/a. Here -s is
|
|
// fixed for all calls to this function since the row and tableau are fixed.
|
|
// The callee just wants to compare the return values with the return value of
|
|
// other invocations of the same function. So the -s is common for all
|
|
// comparisons involved and can be ignored, since -s is strictly positive.
|
|
//
|
|
// Thus we take away this common factor and just return 0, 1/a, 1, or c/a as
|
|
// appropriate. This allows us to run the entire algorithm without ever having
|
|
// to fix a value of M.
|
|
auto getSampleChangeCoeffForVar = [this, row](unsigned col,
|
|
const Unknown &u) -> Fraction {
|
|
int64_t a = tableau(row, col);
|
|
if (u.orientation == Orientation::Column) {
|
|
// Pivot column case.
|
|
if (u.pos == col)
|
|
return {1, a};
|
|
|
|
// Non-pivot column case.
|
|
return {0, 1};
|
|
}
|
|
|
|
// Pivot row case.
|
|
if (u.pos == row)
|
|
return {1, 1};
|
|
|
|
// Non-pivot row case.
|
|
int64_t c = tableau(u.pos, col);
|
|
return {c, a};
|
|
};
|
|
|
|
for (const Unknown &u : var) {
|
|
Fraction changeA = getSampleChangeCoeffForVar(colA, u);
|
|
Fraction changeB = getSampleChangeCoeffForVar(colB, u);
|
|
if (changeA < changeB)
|
|
return colA;
|
|
if (changeA > changeB)
|
|
return colB;
|
|
}
|
|
|
|
// If we reached here, both result in exactly the same changes, so it
|
|
// doesn't matter which we return.
|
|
return colA;
|
|
}
|
|
|
|
/// Find a pivot to change the sample value of the row in the specified
|
|
/// direction. The returned pivot row will involve `row` if and only if the
|
|
/// unknown is unbounded in the specified direction.
|
|
///
|
|
/// To increase (resp. decrease) the value of a row, we need to find a live
|
|
/// column with a non-zero coefficient. If the coefficient is positive, we need
|
|
/// to increase (decrease) the value of the column, and if the coefficient is
|
|
/// negative, we need to decrease (increase) the value of the column. Also,
|
|
/// we cannot decrease the sample value of restricted columns.
|
|
///
|
|
/// If multiple columns are valid, we break ties by considering a lexicographic
|
|
/// ordering where we prefer unknowns with lower index.
|
|
Optional<SimplexBase::Pivot> Simplex::findPivot(int row,
|
|
Direction direction) const {
|
|
Optional<unsigned> col;
|
|
for (unsigned j = 2; j < nCol; ++j) {
|
|
int64_t elem = tableau(row, j);
|
|
if (elem == 0)
|
|
continue;
|
|
|
|
if (unknownFromColumn(j).restricted &&
|
|
!signMatchesDirection(elem, direction))
|
|
continue;
|
|
if (!col || colUnknown[j] < colUnknown[*col])
|
|
col = j;
|
|
}
|
|
|
|
if (!col)
|
|
return {};
|
|
|
|
Direction newDirection =
|
|
tableau(row, *col) < 0 ? flippedDirection(direction) : direction;
|
|
Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col);
|
|
return Pivot{maybePivotRow.getValueOr(row), *col};
|
|
}
|
|
|
|
/// Swap the associated unknowns for the row and the column.
|
|
///
|
|
/// First we swap the index associated with the row and column. Then we update
|
|
/// the unknowns to reflect their new position and orientation.
|
|
void SimplexBase::swapRowWithCol(unsigned row, unsigned col) {
|
|
std::swap(rowUnknown[row], colUnknown[col]);
|
|
Unknown &uCol = unknownFromColumn(col);
|
|
Unknown &uRow = unknownFromRow(row);
|
|
uCol.orientation = Orientation::Column;
|
|
uRow.orientation = Orientation::Row;
|
|
uCol.pos = col;
|
|
uRow.pos = row;
|
|
}
|
|
|
|
void SimplexBase::pivot(Pivot pair) { pivot(pair.row, pair.column); }
|
|
|
|
/// Pivot pivotRow and pivotCol.
|
|
///
|
|
/// Let R be the pivot row unknown and let C be the pivot col unknown.
|
|
/// Since initially R = a*C + sum b_i * X_i
|
|
/// (where the sum is over the other column's unknowns, x_i)
|
|
/// C = (R - (sum b_i * X_i))/a
|
|
///
|
|
/// Let u be some other row unknown.
|
|
/// u = c*C + sum d_i * X_i
|
|
/// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i
|
|
///
|
|
/// This results in the following transform:
|
|
/// pivot col other col pivot col other col
|
|
/// pivot row a b -> pivot row 1/a -b/a
|
|
/// other row c d other row c/a d - bc/a
|
|
///
|
|
/// Taking into account the common denominators p and q:
|
|
///
|
|
/// pivot col other col pivot col other col
|
|
/// pivot row a/p b/p -> pivot row p/a -b/a
|
|
/// other row c/q d/q other row cp/aq (da - bc)/aq
|
|
///
|
|
/// The pivot row transform is accomplished be swapping a with the pivot row's
|
|
/// common denominator and negating the pivot row except for the pivot column
|
|
/// element.
|
|
void SimplexBase::pivot(unsigned pivotRow, unsigned pivotCol) {
|
|
assert(pivotCol >= getNumFixedCols() && "Refusing to pivot invalid column");
|
|
|
|
swapRowWithCol(pivotRow, pivotCol);
|
|
std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol));
|
|
// We need to negate the whole pivot row except for the pivot column.
|
|
if (tableau(pivotRow, 0) < 0) {
|
|
// If the denominator is negative, we negate the row by simply negating the
|
|
// denominator.
|
|
tableau(pivotRow, 0) = -tableau(pivotRow, 0);
|
|
tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol);
|
|
} else {
|
|
for (unsigned col = 1; col < nCol; ++col) {
|
|
if (col == pivotCol)
|
|
continue;
|
|
tableau(pivotRow, col) = -tableau(pivotRow, col);
|
|
}
|
|
}
|
|
normalizeRow(pivotRow);
|
|
|
|
for (unsigned row = 0; row < nRow; ++row) {
|
|
if (row == pivotRow)
|
|
continue;
|
|
if (tableau(row, pivotCol) == 0) // Nothing to do.
|
|
continue;
|
|
tableau(row, 0) *= tableau(pivotRow, 0);
|
|
for (unsigned j = 1; j < nCol; ++j) {
|
|
if (j == pivotCol)
|
|
continue;
|
|
// Add rather than subtract because the pivot row has been negated.
|
|
tableau(row, j) = tableau(row, j) * tableau(pivotRow, 0) +
|
|
tableau(row, pivotCol) * tableau(pivotRow, j);
|
|
}
|
|
tableau(row, pivotCol) *= tableau(pivotRow, pivotCol);
|
|
normalizeRow(row);
|
|
}
|
|
}
|
|
|
|
/// Perform pivots until the unknown has a non-negative sample value or until
|
|
/// no more upward pivots can be performed. Return success if we were able to
|
|
/// bring the row to a non-negative sample value, and failure otherwise.
|
|
LogicalResult Simplex::restoreRow(Unknown &u) {
|
|
assert(u.orientation == Orientation::Row &&
|
|
"unknown should be in row position");
|
|
|
|
while (tableau(u.pos, 1) < 0) {
|
|
Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up);
|
|
if (!maybePivot)
|
|
break;
|
|
|
|
pivot(*maybePivot);
|
|
if (u.orientation == Orientation::Column)
|
|
return success(); // the unknown is unbounded above.
|
|
}
|
|
return success(tableau(u.pos, 1) >= 0);
|
|
}
|
|
|
|
/// Find a row that can be used to pivot the column in the specified direction.
|
|
/// This returns an empty optional if and only if the column is unbounded in the
|
|
/// specified direction (ignoring skipRow, if skipRow is set).
|
|
///
|
|
/// If skipRow is set, this row is not considered, and (if it is restricted) its
|
|
/// restriction may be violated by the returned pivot. Usually, skipRow is set
|
|
/// because we don't want to move it to column position unless it is unbounded,
|
|
/// and we are either trying to increase the value of skipRow or explicitly
|
|
/// trying to make skipRow negative, so we are not concerned about this.
|
|
///
|
|
/// If the direction is up (resp. down) and a restricted row has a negative
|
|
/// (positive) coefficient for the column, then this row imposes a bound on how
|
|
/// much the sample value of the column can change. Such a row with constant
|
|
/// term c and coefficient f for the column imposes a bound of c/|f| on the
|
|
/// change in sample value (in the specified direction). (note that c is
|
|
/// non-negative here since the row is restricted and the tableau is consistent)
|
|
///
|
|
/// We iterate through the rows and pick the row which imposes the most
|
|
/// stringent bound, since pivoting with a row changes the row's sample value to
|
|
/// 0 and hence saturates the bound it imposes. We break ties between rows that
|
|
/// impose the same bound by considering a lexicographic ordering where we
|
|
/// prefer unknowns with lower index value.
|
|
Optional<unsigned> Simplex::findPivotRow(Optional<unsigned> skipRow,
|
|
Direction direction,
|
|
unsigned col) const {
|
|
Optional<unsigned> retRow;
|
|
// Initialize these to zero in order to silence a warning about retElem and
|
|
// retConst being used uninitialized in the initialization of `diff` below. In
|
|
// reality, these are always initialized when that line is reached since these
|
|
// are set whenever retRow is set.
|
|
int64_t retElem = 0, retConst = 0;
|
|
for (unsigned row = nRedundant; row < nRow; ++row) {
|
|
if (skipRow && row == *skipRow)
|
|
continue;
|
|
int64_t elem = tableau(row, col);
|
|
if (elem == 0)
|
|
continue;
|
|
if (!unknownFromRow(row).restricted)
|
|
continue;
|
|
if (signMatchesDirection(elem, direction))
|
|
continue;
|
|
int64_t constTerm = tableau(row, 1);
|
|
|
|
if (!retRow) {
|
|
retRow = row;
|
|
retElem = elem;
|
|
retConst = constTerm;
|
|
continue;
|
|
}
|
|
|
|
int64_t diff = retConst * elem - constTerm * retElem;
|
|
if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) ||
|
|
(diff != 0 && !signMatchesDirection(diff, direction))) {
|
|
retRow = row;
|
|
retElem = elem;
|
|
retConst = constTerm;
|
|
}
|
|
}
|
|
return retRow;
|
|
}
|
|
|
|
bool SimplexBase::isEmpty() const { return empty; }
|
|
|
|
void SimplexBase::swapRows(unsigned i, unsigned j) {
|
|
if (i == j)
|
|
return;
|
|
tableau.swapRows(i, j);
|
|
std::swap(rowUnknown[i], rowUnknown[j]);
|
|
unknownFromRow(i).pos = i;
|
|
unknownFromRow(j).pos = j;
|
|
}
|
|
|
|
void SimplexBase::swapColumns(unsigned i, unsigned j) {
|
|
assert(i < nCol && j < nCol && "Invalid columns provided!");
|
|
if (i == j)
|
|
return;
|
|
tableau.swapColumns(i, j);
|
|
std::swap(colUnknown[i], colUnknown[j]);
|
|
unknownFromColumn(i).pos = i;
|
|
unknownFromColumn(j).pos = j;
|
|
}
|
|
|
|
/// Mark this tableau empty and push an entry to the undo stack.
|
|
void SimplexBase::markEmpty() {
|
|
// If the set is already empty, then we shouldn't add another UnmarkEmpty log
|
|
// entry, since in that case the Simplex will be erroneously marked as
|
|
// non-empty when rolling back past this point.
|
|
if (empty)
|
|
return;
|
|
undoLog.push_back(UndoLogEntry::UnmarkEmpty);
|
|
empty = true;
|
|
}
|
|
|
|
/// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
|
|
/// is the current number of variables, then the corresponding inequality is
|
|
/// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0.
|
|
///
|
|
/// We add the inequality and mark it as restricted. We then try to make its
|
|
/// sample value non-negative. If this is not possible, the tableau has become
|
|
/// empty and we mark it as such.
|
|
void Simplex::addInequality(ArrayRef<int64_t> coeffs) {
|
|
unsigned conIndex = addRow(coeffs, /*makeRestricted=*/true);
|
|
LogicalResult result = restoreRow(con[conIndex]);
|
|
if (failed(result))
|
|
markEmpty();
|
|
}
|
|
|
|
/// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
|
|
/// is the current number of variables, then the corresponding equality is
|
|
/// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0.
|
|
///
|
|
/// We simply add two opposing inequalities, which force the expression to
|
|
/// be zero.
|
|
void SimplexBase::addEquality(ArrayRef<int64_t> coeffs) {
|
|
addInequality(coeffs);
|
|
SmallVector<int64_t, 8> negatedCoeffs;
|
|
for (int64_t coeff : coeffs)
|
|
negatedCoeffs.emplace_back(-coeff);
|
|
addInequality(negatedCoeffs);
|
|
}
|
|
|
|
unsigned SimplexBase::getNumVariables() const { return var.size(); }
|
|
unsigned SimplexBase::getNumConstraints() const { return con.size(); }
|
|
|
|
/// Return a snapshot of the current state. This is just the current size of the
|
|
/// undo log.
|
|
unsigned SimplexBase::getSnapshot() const { return undoLog.size(); }
|
|
|
|
unsigned SimplexBase::getSnapshotBasis() {
|
|
SmallVector<int, 8> basis;
|
|
for (int index : colUnknown) {
|
|
if (index != nullIndex)
|
|
basis.push_back(index);
|
|
}
|
|
savedBases.push_back(std::move(basis));
|
|
|
|
undoLog.emplace_back(UndoLogEntry::RestoreBasis);
|
|
return undoLog.size() - 1;
|
|
}
|
|
|
|
void SimplexBase::removeLastConstraintRowOrientation() {
|
|
assert(con.back().orientation == Orientation::Row);
|
|
|
|
// Move this unknown to the last row and remove the last row from the
|
|
// tableau.
|
|
swapRows(con.back().pos, nRow - 1);
|
|
// It is not strictly necessary to shrink the tableau, but for now we
|
|
// maintain the invariant that the tableau has exactly nRow rows.
|
|
tableau.resizeVertically(nRow - 1);
|
|
nRow--;
|
|
rowUnknown.pop_back();
|
|
con.pop_back();
|
|
}
|
|
|
|
// This doesn't find a pivot row only if the column has zero
|
|
// coefficients for every row.
|
|
//
|
|
// If the unknown is a constraint, this can't happen, since it was added
|
|
// initially as a row. Such a row could never have been pivoted to a column. So
|
|
// a pivot row will always be found if we have a constraint.
|
|
//
|
|
// If we have a variable, then the column has zero coefficients for every row
|
|
// iff no constraints have been added with a non-zero coefficient for this row.
|
|
Optional<unsigned> SimplexBase::findAnyPivotRow(unsigned col) {
|
|
for (unsigned row = nRedundant; row < nRow; ++row)
|
|
if (tableau(row, col) != 0)
|
|
return row;
|
|
return {};
|
|
}
|
|
|
|
// It's not valid to remove the constraint by deleting the column since this
|
|
// would result in an invalid basis.
|
|
void Simplex::undoLastConstraint() {
|
|
if (con.back().orientation == Orientation::Column) {
|
|
// We try to find any pivot row for this column that preserves tableau
|
|
// consistency (except possibly the column itself, which is going to be
|
|
// deallocated anyway).
|
|
//
|
|
// If no pivot row is found in either direction, then the unknown is
|
|
// unbounded in both directions and we are free to perform any pivot at
|
|
// all. To do this, we just need to find any row with a non-zero
|
|
// coefficient for the column. findAnyPivotRow will always be able to
|
|
// find such a row for a constraint.
|
|
unsigned column = con.back().pos;
|
|
if (Optional<unsigned> maybeRow = findPivotRow({}, Direction::Up, column)) {
|
|
pivot(*maybeRow, column);
|
|
} else if (Optional<unsigned> maybeRow =
|
|
findPivotRow({}, Direction::Down, column)) {
|
|
pivot(*maybeRow, column);
|
|
} else {
|
|
Optional<unsigned> row = findAnyPivotRow(column);
|
|
assert(row.hasValue() && "Pivot should always exist for a constraint!");
|
|
pivot(*row, column);
|
|
}
|
|
}
|
|
removeLastConstraintRowOrientation();
|
|
}
|
|
|
|
// It's not valid to remove the constraint by deleting the column since this
|
|
// would result in an invalid basis.
|
|
void LexSimplex::undoLastConstraint() {
|
|
if (con.back().orientation == Orientation::Column) {
|
|
// When removing the last constraint during a rollback, we just need to find
|
|
// any pivot at all, i.e., any row with non-zero coefficient for the
|
|
// column, because when rolling back a lexicographic simplex, we always
|
|
// end by restoring the exact basis that was present at the time of the
|
|
// snapshot, so what pivots we perform while undoing doesn't matter as
|
|
// long as we get the unknown to row orientation and remove it.
|
|
unsigned column = con.back().pos;
|
|
Optional<unsigned> row = findAnyPivotRow(column);
|
|
assert(row.hasValue() && "Pivot should always exist for a constraint!");
|
|
pivot(*row, column);
|
|
}
|
|
removeLastConstraintRowOrientation();
|
|
}
|
|
|
|
void SimplexBase::undo(UndoLogEntry entry) {
|
|
if (entry == UndoLogEntry::RemoveLastConstraint) {
|
|
// Simplex and LexSimplex handle this differently, so we call out to a
|
|
// virtual function to handle this.
|
|
undoLastConstraint();
|
|
} else if (entry == UndoLogEntry::RemoveLastVariable) {
|
|
// Whenever we are rolling back the addition of a variable, it is guaranteed
|
|
// that the variable will be in column position.
|
|
//
|
|
// We can see this as follows: any constraint that depends on this variable
|
|
// was added after this variable was added, so the addition of such
|
|
// constraints should already have been rolled back by the time we get to
|
|
// rolling back the addition of the variable. Therefore, no constraint
|
|
// currently has a component along the variable, so the variable itself must
|
|
// be part of the basis.
|
|
assert(var.back().orientation == Orientation::Column &&
|
|
"Variable to be removed must be in column orientation!");
|
|
|
|
// Move this variable to the last column and remove the column from the
|
|
// tableau.
|
|
swapColumns(var.back().pos, nCol - 1);
|
|
tableau.resizeHorizontally(nCol - 1);
|
|
var.pop_back();
|
|
colUnknown.pop_back();
|
|
nCol--;
|
|
} else if (entry == UndoLogEntry::UnmarkEmpty) {
|
|
empty = false;
|
|
} else if (entry == UndoLogEntry::UnmarkLastRedundant) {
|
|
nRedundant--;
|
|
} else if (entry == UndoLogEntry::RestoreBasis) {
|
|
assert(!savedBases.empty() && "No bases saved!");
|
|
|
|
SmallVector<int, 8> basis = std::move(savedBases.back());
|
|
savedBases.pop_back();
|
|
|
|
for (int index : basis) {
|
|
Unknown &u = unknownFromIndex(index);
|
|
if (u.orientation == Orientation::Column)
|
|
continue;
|
|
for (unsigned col = getNumFixedCols(); col < nCol; col++) {
|
|
assert(colUnknown[col] != nullIndex &&
|
|
"Column should not be a fixed column!");
|
|
if (std::find(basis.begin(), basis.end(), colUnknown[col]) !=
|
|
basis.end())
|
|
continue;
|
|
if (tableau(u.pos, col) == 0)
|
|
continue;
|
|
pivot(u.pos, col);
|
|
break;
|
|
}
|
|
|
|
assert(u.orientation == Orientation::Column && "No pivot found!");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Rollback to the specified snapshot.
|
|
///
|
|
/// We undo all the log entries until the log size when the snapshot was taken
|
|
/// is reached.
|
|
void SimplexBase::rollback(unsigned snapshot) {
|
|
while (undoLog.size() > snapshot) {
|
|
undo(undoLog.back());
|
|
undoLog.pop_back();
|
|
}
|
|
}
|
|
|
|
void SimplexBase::appendVariable(unsigned count) {
|
|
if (count == 0)
|
|
return;
|
|
var.reserve(var.size() + count);
|
|
colUnknown.reserve(colUnknown.size() + count);
|
|
for (unsigned i = 0; i < count; ++i) {
|
|
nCol++;
|
|
var.emplace_back(Orientation::Column, /*restricted=*/false,
|
|
/*pos=*/nCol - 1);
|
|
colUnknown.push_back(var.size() - 1);
|
|
}
|
|
tableau.resizeHorizontally(nCol);
|
|
undoLog.insert(undoLog.end(), count, UndoLogEntry::RemoveLastVariable);
|
|
}
|
|
|
|
/// Add all the constraints from the given IntegerRelation.
|
|
void SimplexBase::intersectIntegerRelation(const IntegerRelation &rel) {
|
|
assert(rel.getNumIds() == getNumVariables() &&
|
|
"IntegerRelation must have same dimensionality as simplex");
|
|
for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i)
|
|
addInequality(rel.getInequality(i));
|
|
for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i)
|
|
addEquality(rel.getEquality(i));
|
|
}
|
|
|
|
MaybeOptimum<Fraction> Simplex::computeRowOptimum(Direction direction,
|
|
unsigned row) {
|
|
// Keep trying to find a pivot for the row in the specified direction.
|
|
while (Optional<Pivot> maybePivot = findPivot(row, direction)) {
|
|
// If findPivot returns a pivot involving the row itself, then the optimum
|
|
// is unbounded, so we return None.
|
|
if (maybePivot->row == row)
|
|
return OptimumKind::Unbounded;
|
|
pivot(*maybePivot);
|
|
}
|
|
|
|
// The row has reached its optimal sample value, which we return.
|
|
// The sample value is the entry in the constant column divided by the common
|
|
// denominator for this row.
|
|
return Fraction(tableau(row, 1), tableau(row, 0));
|
|
}
|
|
|
|
/// Compute the optimum of the specified expression in the specified direction,
|
|
/// or None if it is unbounded.
|
|
MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction,
|
|
ArrayRef<int64_t> coeffs) {
|
|
if (empty)
|
|
return OptimumKind::Empty;
|
|
unsigned snapshot = getSnapshot();
|
|
unsigned conIndex = addRow(coeffs);
|
|
unsigned row = con[conIndex].pos;
|
|
MaybeOptimum<Fraction> optimum = computeRowOptimum(direction, row);
|
|
rollback(snapshot);
|
|
return optimum;
|
|
}
|
|
|
|
MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction,
|
|
Unknown &u) {
|
|
if (empty)
|
|
return OptimumKind::Empty;
|
|
if (u.orientation == Orientation::Column) {
|
|
unsigned column = u.pos;
|
|
Optional<unsigned> pivotRow = findPivotRow({}, direction, column);
|
|
// If no pivot is returned, the constraint is unbounded in the specified
|
|
// direction.
|
|
if (!pivotRow)
|
|
return OptimumKind::Unbounded;
|
|
pivot(*pivotRow, column);
|
|
}
|
|
|
|
unsigned row = u.pos;
|
|
MaybeOptimum<Fraction> optimum = computeRowOptimum(direction, row);
|
|
if (u.restricted && direction == Direction::Down &&
|
|
(optimum.isUnbounded() || *optimum < Fraction(0, 1))) {
|
|
if (failed(restoreRow(u)))
|
|
llvm_unreachable("Could not restore row!");
|
|
}
|
|
return optimum;
|
|
}
|
|
|
|
bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) {
|
|
assert(!empty && "It is not meaningful to ask whether a direction is bounded "
|
|
"in an empty set.");
|
|
// The constraint's perpendicular is already bounded below, since it is a
|
|
// constraint. If it is also bounded above, we can return true.
|
|
return computeOptimum(Direction::Up, con[constraintIndex]).isBounded();
|
|
}
|
|
|
|
/// Redundant constraints are those that are in row orientation and lie in
|
|
/// rows 0 to nRedundant - 1.
|
|
bool Simplex::isMarkedRedundant(unsigned constraintIndex) const {
|
|
const Unknown &u = con[constraintIndex];
|
|
return u.orientation == Orientation::Row && u.pos < nRedundant;
|
|
}
|
|
|
|
/// Mark the specified row redundant.
|
|
///
|
|
/// This is done by moving the unknown to the end of the block of redundant
|
|
/// rows (namely, to row nRedundant) and incrementing nRedundant to
|
|
/// accomodate the new redundant row.
|
|
void Simplex::markRowRedundant(Unknown &u) {
|
|
assert(u.orientation == Orientation::Row &&
|
|
"Unknown should be in row position!");
|
|
assert(u.pos >= nRedundant && "Unknown is already marked redundant!");
|
|
swapRows(u.pos, nRedundant);
|
|
++nRedundant;
|
|
undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant);
|
|
}
|
|
|
|
/// Find a subset of constraints that is redundant and mark them redundant.
|
|
void Simplex::detectRedundant() {
|
|
// It is not meaningful to talk about redundancy for empty sets.
|
|
if (empty)
|
|
return;
|
|
|
|
// Iterate through the constraints and check for each one if it can attain
|
|
// negative sample values. If it can, it's not redundant. Otherwise, it is.
|
|
// We mark redundant constraints redundant.
|
|
//
|
|
// Constraints that get marked redundant in one iteration are not respected
|
|
// when checking constraints in later iterations. This prevents, for example,
|
|
// two identical constraints both being marked redundant since each is
|
|
// redundant given the other one. In this example, only the first of the
|
|
// constraints that is processed will get marked redundant, as it should be.
|
|
for (Unknown &u : con) {
|
|
if (u.orientation == Orientation::Column) {
|
|
unsigned column = u.pos;
|
|
Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column);
|
|
// If no downward pivot is returned, the constraint is unbounded below
|
|
// and hence not redundant.
|
|
if (!pivotRow)
|
|
continue;
|
|
pivot(*pivotRow, column);
|
|
}
|
|
|
|
unsigned row = u.pos;
|
|
MaybeOptimum<Fraction> minimum = computeRowOptimum(Direction::Down, row);
|
|
if (minimum.isUnbounded() || *minimum < Fraction(0, 1)) {
|
|
// Constraint is unbounded below or can attain negative sample values and
|
|
// hence is not redundant.
|
|
if (failed(restoreRow(u)))
|
|
llvm_unreachable("Could not restore non-redundant row!");
|
|
continue;
|
|
}
|
|
|
|
markRowRedundant(u);
|
|
}
|
|
}
|
|
|
|
bool Simplex::isUnbounded() {
|
|
if (empty)
|
|
return false;
|
|
|
|
SmallVector<int64_t, 8> dir(var.size() + 1);
|
|
for (unsigned i = 0; i < var.size(); ++i) {
|
|
dir[i] = 1;
|
|
|
|
if (computeOptimum(Direction::Up, dir).isUnbounded())
|
|
return true;
|
|
|
|
if (computeOptimum(Direction::Down, dir).isUnbounded())
|
|
return true;
|
|
|
|
dir[i] = 0;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Make a tableau to represent a pair of points in the original tableau.
|
|
///
|
|
/// The product constraints and variables are stored as: first A's, then B's.
|
|
///
|
|
/// The product tableau has row layout:
|
|
/// A's redundant rows, B's redundant rows, A's other rows, B's other rows.
|
|
///
|
|
/// It has column layout:
|
|
/// denominator, constant, A's columns, B's columns.
|
|
Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) {
|
|
unsigned numVar = a.getNumVariables() + b.getNumVariables();
|
|
unsigned numCon = a.getNumConstraints() + b.getNumConstraints();
|
|
Simplex result(numVar);
|
|
|
|
result.tableau.resizeVertically(numCon);
|
|
result.empty = a.empty || b.empty;
|
|
|
|
auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) {
|
|
SmallVector<Unknown, 8> result;
|
|
result.reserve(v.size() + w.size());
|
|
result.insert(result.end(), v.begin(), v.end());
|
|
result.insert(result.end(), w.begin(), w.end());
|
|
return result;
|
|
};
|
|
result.con = concat(a.con, b.con);
|
|
result.var = concat(a.var, b.var);
|
|
|
|
auto indexFromBIndex = [&](int index) {
|
|
return index >= 0 ? a.getNumVariables() + index
|
|
: ~(a.getNumConstraints() + ~index);
|
|
};
|
|
|
|
result.colUnknown.assign(2, nullIndex);
|
|
for (unsigned i = 2; i < a.nCol; ++i) {
|
|
result.colUnknown.push_back(a.colUnknown[i]);
|
|
result.unknownFromIndex(result.colUnknown.back()).pos =
|
|
result.colUnknown.size() - 1;
|
|
}
|
|
for (unsigned i = 2; i < b.nCol; ++i) {
|
|
result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i]));
|
|
result.unknownFromIndex(result.colUnknown.back()).pos =
|
|
result.colUnknown.size() - 1;
|
|
}
|
|
|
|
auto appendRowFromA = [&](unsigned row) {
|
|
for (unsigned col = 0; col < a.nCol; ++col)
|
|
result.tableau(result.nRow, col) = a.tableau(row, col);
|
|
result.rowUnknown.push_back(a.rowUnknown[row]);
|
|
result.unknownFromIndex(result.rowUnknown.back()).pos =
|
|
result.rowUnknown.size() - 1;
|
|
result.nRow++;
|
|
};
|
|
|
|
// Also fixes the corresponding entry in rowUnknown and var/con (as the case
|
|
// may be).
|
|
auto appendRowFromB = [&](unsigned row) {
|
|
result.tableau(result.nRow, 0) = b.tableau(row, 0);
|
|
result.tableau(result.nRow, 1) = b.tableau(row, 1);
|
|
|
|
unsigned offset = a.nCol - 2;
|
|
for (unsigned col = 2; col < b.nCol; ++col)
|
|
result.tableau(result.nRow, offset + col) = b.tableau(row, col);
|
|
result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row]));
|
|
result.unknownFromIndex(result.rowUnknown.back()).pos =
|
|
result.rowUnknown.size() - 1;
|
|
result.nRow++;
|
|
};
|
|
|
|
result.nRedundant = a.nRedundant + b.nRedundant;
|
|
for (unsigned row = 0; row < a.nRedundant; ++row)
|
|
appendRowFromA(row);
|
|
for (unsigned row = 0; row < b.nRedundant; ++row)
|
|
appendRowFromB(row);
|
|
for (unsigned row = a.nRedundant; row < a.nRow; ++row)
|
|
appendRowFromA(row);
|
|
for (unsigned row = b.nRedundant; row < b.nRow; ++row)
|
|
appendRowFromB(row);
|
|
|
|
return result;
|
|
}
|
|
|
|
Optional<SmallVector<Fraction, 8>> Simplex::getRationalSample() const {
|
|
if (empty)
|
|
return {};
|
|
|
|
SmallVector<Fraction, 8> sample;
|
|
sample.reserve(var.size());
|
|
// Push the sample value for each variable into the vector.
|
|
for (const Unknown &u : var) {
|
|
if (u.orientation == Orientation::Column) {
|
|
// If the variable is in column position, its sample value is zero.
|
|
sample.emplace_back(0, 1);
|
|
} else {
|
|
// If the variable is in row position, its sample value is the
|
|
// entry in the constant column divided by the denominator.
|
|
int64_t denom = tableau(u.pos, 0);
|
|
sample.emplace_back(tableau(u.pos, 1), denom);
|
|
}
|
|
}
|
|
return sample;
|
|
}
|
|
|
|
MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::getRationalSample() const {
|
|
if (empty)
|
|
return OptimumKind::Empty;
|
|
|
|
SmallVector<Fraction, 8> sample;
|
|
sample.reserve(var.size());
|
|
// Push the sample value for each variable into the vector.
|
|
for (const Unknown &u : var) {
|
|
// When the big M parameter is being used, each variable x is represented
|
|
// as M + x, so its sample value is finite if and only if it is of the
|
|
// form 1*M + c. If the coefficient of M is not one then the sample value
|
|
// is infinite, and we return an empty optional.
|
|
|
|
if (u.orientation == Orientation::Column) {
|
|
// If the variable is in column position, the sample value of M + x is
|
|
// zero, so x = -M which is unbounded.
|
|
return OptimumKind::Unbounded;
|
|
}
|
|
|
|
// If the variable is in row position, its sample value is the
|
|
// entry in the constant column divided by the denominator.
|
|
int64_t denom = tableau(u.pos, 0);
|
|
if (usingBigM)
|
|
if (tableau(u.pos, 2) != denom)
|
|
return OptimumKind::Unbounded;
|
|
sample.emplace_back(tableau(u.pos, 1), denom);
|
|
}
|
|
return sample;
|
|
}
|
|
|
|
Optional<SmallVector<int64_t, 8>> Simplex::getSamplePointIfIntegral() const {
|
|
// If the tableau is empty, no sample point exists.
|
|
if (empty)
|
|
return {};
|
|
|
|
// The value will always exist since the Simplex is non-empty.
|
|
SmallVector<Fraction, 8> rationalSample = *getRationalSample();
|
|
SmallVector<int64_t, 8> integerSample;
|
|
integerSample.reserve(var.size());
|
|
for (const Fraction &coord : rationalSample) {
|
|
// If the sample is non-integral, return None.
|
|
if (coord.num % coord.den != 0)
|
|
return {};
|
|
integerSample.push_back(coord.num / coord.den);
|
|
}
|
|
return integerSample;
|
|
}
|
|
|
|
/// Given a simplex for a polytope, construct a new simplex whose variables are
|
|
/// identified with a pair of points (x, y) in the original polytope. Supports
|
|
/// some operations needed for generalized basis reduction. In what follows,
|
|
/// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the
|
|
/// dimension of the original polytope.
|
|
///
|
|
/// This supports adding equality constraints dotProduct(dir, x - y) == 0. It
|
|
/// also supports rolling back this addition, by maintaining a snapshot stack
|
|
/// that contains a snapshot of the Simplex's state for each equality, just
|
|
/// before that equality was added.
|
|
class presburger::GBRSimplex {
|
|
using Orientation = Simplex::Orientation;
|
|
|
|
public:
|
|
GBRSimplex(const Simplex &originalSimplex)
|
|
: simplex(Simplex::makeProduct(originalSimplex, originalSimplex)),
|
|
simplexConstraintOffset(simplex.getNumConstraints()) {}
|
|
|
|
/// Add an equality dotProduct(dir, x - y) == 0.
|
|
/// First pushes a snapshot for the current simplex state to the stack so
|
|
/// that this can be rolled back later.
|
|
void addEqualityForDirection(ArrayRef<int64_t> dir) {
|
|
assert(
|
|
std::any_of(dir.begin(), dir.end(), [](int64_t x) { return x != 0; }) &&
|
|
"Direction passed is the zero vector!");
|
|
snapshotStack.push_back(simplex.getSnapshot());
|
|
simplex.addEquality(getCoeffsForDirection(dir));
|
|
}
|
|
/// Compute max(dotProduct(dir, x - y)).
|
|
Fraction computeWidth(ArrayRef<int64_t> dir) {
|
|
MaybeOptimum<Fraction> maybeWidth =
|
|
simplex.computeOptimum(Direction::Up, getCoeffsForDirection(dir));
|
|
assert(maybeWidth.isBounded() && "Width should be bounded!");
|
|
return *maybeWidth;
|
|
}
|
|
|
|
/// Compute max(dotProduct(dir, x - y)) and save the dual variables for only
|
|
/// the direction equalities to `dual`.
|
|
Fraction computeWidthAndDuals(ArrayRef<int64_t> dir,
|
|
SmallVectorImpl<int64_t> &dual,
|
|
int64_t &dualDenom) {
|
|
// We can't just call into computeWidth or computeOptimum since we need to
|
|
// access the state of the tableau after computing the optimum, and these
|
|
// functions rollback the insertion of the objective function into the
|
|
// tableau before returning. We instead add a row for the objective function
|
|
// ourselves, call into computeOptimum, compute the duals from the tableau
|
|
// state, and finally rollback the addition of the row before returning.
|
|
unsigned snap = simplex.getSnapshot();
|
|
unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir));
|
|
unsigned row = simplex.con[conIndex].pos;
|
|
MaybeOptimum<Fraction> maybeWidth =
|
|
simplex.computeRowOptimum(Simplex::Direction::Up, row);
|
|
assert(maybeWidth.isBounded() && "Width should be bounded!");
|
|
dualDenom = simplex.tableau(row, 0);
|
|
dual.clear();
|
|
|
|
// The increment is i += 2 because equalities are added as two inequalities,
|
|
// one positive and one negative. Each iteration processes one equality.
|
|
for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) {
|
|
// The dual variable for an inequality in column orientation is the
|
|
// negative of its coefficient at the objective row. If the inequality is
|
|
// in row orientation, the corresponding dual variable is zero.
|
|
//
|
|
// We want the dual for the original equality, which corresponds to two
|
|
// inequalities: a positive inequality, which has the same coefficients as
|
|
// the equality, and a negative equality, which has negated coefficients.
|
|
//
|
|
// Note that at most one of these inequalities can be in column
|
|
// orientation because the column unknowns should form a basis and hence
|
|
// must be linearly independent. If the positive inequality is in column
|
|
// position, its dual is the dual corresponding to the equality. If the
|
|
// negative inequality is in column position, the negation of its dual is
|
|
// the dual corresponding to the equality. If neither is in column
|
|
// position, then that means that this equality is redundant, and its dual
|
|
// is zero.
|
|
//
|
|
// Note that it is NOT valid to perform pivots during the computation of
|
|
// the duals. This entire dual computation must be performed on the same
|
|
// tableau configuration.
|
|
assert(!(simplex.con[i].orientation == Orientation::Column &&
|
|
simplex.con[i + 1].orientation == Orientation::Column) &&
|
|
"Both inequalities for the equality cannot be in column "
|
|
"orientation!");
|
|
if (simplex.con[i].orientation == Orientation::Column)
|
|
dual.push_back(-simplex.tableau(row, simplex.con[i].pos));
|
|
else if (simplex.con[i + 1].orientation == Orientation::Column)
|
|
dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos));
|
|
else
|
|
dual.push_back(0);
|
|
}
|
|
simplex.rollback(snap);
|
|
return *maybeWidth;
|
|
}
|
|
|
|
/// Remove the last equality that was added through addEqualityForDirection.
|
|
///
|
|
/// We do this by rolling back to the snapshot at the top of the stack, which
|
|
/// should be a snapshot taken just before the last equality was added.
|
|
void removeLastEquality() {
|
|
assert(!snapshotStack.empty() && "Snapshot stack is empty!");
|
|
simplex.rollback(snapshotStack.back());
|
|
snapshotStack.pop_back();
|
|
}
|
|
|
|
private:
|
|
/// Returns coefficients of the expression 'dot_product(dir, x - y)',
|
|
/// i.e., dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n
|
|
/// - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n,
|
|
/// where n is the dimension of the original polytope.
|
|
SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) {
|
|
assert(2 * dir.size() == simplex.getNumVariables() &&
|
|
"Direction vector has wrong dimensionality");
|
|
SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end());
|
|
coeffs.reserve(2 * dir.size());
|
|
for (int64_t coeff : dir)
|
|
coeffs.push_back(-coeff);
|
|
coeffs.push_back(0); // constant term
|
|
return coeffs;
|
|
}
|
|
|
|
Simplex simplex;
|
|
/// The first index of the equality constraints, the index immediately after
|
|
/// the last constraint in the initial product simplex.
|
|
unsigned simplexConstraintOffset;
|
|
/// A stack of snapshots, used for rolling back.
|
|
SmallVector<unsigned, 8> snapshotStack;
|
|
};
|
|
|
|
// Return a + scale*b;
|
|
static SmallVector<int64_t, 8> scaleAndAdd(ArrayRef<int64_t> a, int64_t scale,
|
|
ArrayRef<int64_t> b) {
|
|
assert(a.size() == b.size());
|
|
SmallVector<int64_t, 8> res;
|
|
res.reserve(a.size());
|
|
for (unsigned i = 0, e = a.size(); i < e; ++i)
|
|
res.push_back(a[i] + scale * b[i]);
|
|
return res;
|
|
}
|
|
|
|
/// Reduce the basis to try and find a direction in which the polytope is
|
|
/// "thin". This only works for bounded polytopes.
|
|
///
|
|
/// This is an implementation of the algorithm described in the paper
|
|
/// "An Implementation of Generalized Basis Reduction for Integer Programming"
|
|
/// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross.
|
|
///
|
|
/// Let b_{level}, b_{level + 1}, ... b_n be the current basis.
|
|
/// Let width_i(v) = max <v, x - y> where x and y are points in the original
|
|
/// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i.
|
|
///
|
|
/// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u
|
|
/// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i
|
|
/// be the dual variable associated with the constraint <b_i, x - y> = 0 when
|
|
/// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the
|
|
/// minimizing value of u, if it were allowed to be fractional. Due to
|
|
/// convexity, the minimizing integer value is either floor(dual_i) or
|
|
/// ceil(dual_i), so we just need to check which of these gives a lower
|
|
/// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i.
|
|
///
|
|
/// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new)
|
|
/// b_{i + 1} and decrement i (unless i = level, in which case we stay at the
|
|
/// same i). Otherwise, we increment i.
|
|
///
|
|
/// We keep f values and duals cached and invalidate them when necessary.
|
|
/// Whenever possible, we use them instead of recomputing them. We implement the
|
|
/// algorithm as follows.
|
|
///
|
|
/// In an iteration at i we need to compute:
|
|
/// a) width_i(b_{i + 1})
|
|
/// b) width_i(b_i)
|
|
/// c) the integer u that minimizes width_i(b_{i + 1} + u*b_i)
|
|
///
|
|
/// If width_i(b_i) is not already cached, we compute it.
|
|
///
|
|
/// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and
|
|
/// store the duals from this computation.
|
|
///
|
|
/// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value
|
|
/// of u as explained before, caches the duals from this computation, sets
|
|
/// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}).
|
|
///
|
|
/// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and
|
|
/// decrement i, resulting in the basis
|
|
/// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ...
|
|
/// with corresponding f values
|
|
/// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ...
|
|
/// The values up to i - 1 remain unchanged. We have just gotten the middle
|
|
/// value from updateBasisWithUAndGetFCandidate, so we can update that in the
|
|
/// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from
|
|
/// the cache. The iteration after decrementing needs exactly the duals from the
|
|
/// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache.
|
|
///
|
|
/// When incrementing i, no cached f values get invalidated. However, the cached
|
|
/// duals do get invalidated as the duals for the higher levels are different.
|
|
void Simplex::reduceBasis(Matrix &basis, unsigned level) {
|
|
const Fraction epsilon(3, 4);
|
|
|
|
if (level == basis.getNumRows() - 1)
|
|
return;
|
|
|
|
GBRSimplex gbrSimplex(*this);
|
|
SmallVector<Fraction, 8> width;
|
|
SmallVector<int64_t, 8> dual;
|
|
int64_t dualDenom;
|
|
|
|
// Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the
|
|
// duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns
|
|
// the new value of width_i(b_{i+1}).
|
|
//
|
|
// If dual_i is not an integer, the minimizing value must be either
|
|
// floor(dual_i) or ceil(dual_i). We compute the expression for both and
|
|
// choose the minimizing value.
|
|
//
|
|
// If dual_i is an integer, we don't need to perform these computations. We
|
|
// know that in this case,
|
|
// a) u = dual_i.
|
|
// b) one can show that dual_j for j < i are the same duals we would have
|
|
// gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals
|
|
// are the ones already in the cache.
|
|
// c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i),
|
|
// which
|
|
// one can show is equal to width_{i+1}(b_{i+1}). The latter value must
|
|
// be in the cache, so we get it from there and return it.
|
|
auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction {
|
|
assert(i < level + dual.size() && "dual_i is not known!");
|
|
|
|
int64_t u = floorDiv(dual[i - level], dualDenom);
|
|
basis.addToRow(i, i + 1, u);
|
|
if (dual[i - level] % dualDenom != 0) {
|
|
SmallVector<int64_t, 8> candidateDual[2];
|
|
int64_t candidateDualDenom[2];
|
|
Fraction widthI[2];
|
|
|
|
// Initially u is floor(dual) and basis reflects this.
|
|
widthI[0] = gbrSimplex.computeWidthAndDuals(
|
|
basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]);
|
|
|
|
// Now try ceil(dual), i.e. floor(dual) + 1.
|
|
++u;
|
|
basis.addToRow(i, i + 1, 1);
|
|
widthI[1] = gbrSimplex.computeWidthAndDuals(
|
|
basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]);
|
|
|
|
unsigned j = widthI[0] < widthI[1] ? 0 : 1;
|
|
if (j == 0)
|
|
// Subtract 1 to go from u = ceil(dual) back to floor(dual).
|
|
basis.addToRow(i, i + 1, -1);
|
|
|
|
// width_i(b{i+1} + u*b_i) should be minimized at our value of u.
|
|
// We assert that this holds by checking that the values of width_i at
|
|
// u - 1 and u + 1 are greater than or equal to the value at u. If the
|
|
// width is lesser at either of the adjacent values, then our computed
|
|
// value of u is clearly not the minimizer. Otherwise by convexity the
|
|
// computed value of u is really the minimizer.
|
|
|
|
// Check the value at u - 1.
|
|
assert(gbrSimplex.computeWidth(scaleAndAdd(
|
|
basis.getRow(i + 1), -1, basis.getRow(i))) >= widthI[j] &&
|
|
"Computed u value does not minimize the width!");
|
|
// Check the value at u + 1.
|
|
assert(gbrSimplex.computeWidth(scaleAndAdd(
|
|
basis.getRow(i + 1), +1, basis.getRow(i))) >= widthI[j] &&
|
|
"Computed u value does not minimize the width!");
|
|
|
|
dual = std::move(candidateDual[j]);
|
|
dualDenom = candidateDualDenom[j];
|
|
return widthI[j];
|
|
}
|
|
|
|
assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved");
|
|
// f_i(b_{i+1} + dual*b_i) == width_{i+1}(b_{i+1}) when `dual` minimizes the
|
|
// LHS. (note: the basis has already been updated, so b_{i+1} + dual*b_i in
|
|
// the above expression is equal to basis.getRow(i+1) below.)
|
|
assert(gbrSimplex.computeWidth(basis.getRow(i + 1)) ==
|
|
width[i + 1 - level]);
|
|
return width[i + 1 - level];
|
|
};
|
|
|
|
// In the ith iteration of the loop, gbrSimplex has constraints for directions
|
|
// from `level` to i - 1.
|
|
unsigned i = level;
|
|
while (i < basis.getNumRows() - 1) {
|
|
if (i >= level + width.size()) {
|
|
// We don't even know the value of f_i(b_i), so let's find that first.
|
|
// We have to do this first since later we assume that width already
|
|
// contains values up to and including i.
|
|
|
|
assert((i == 0 || i - 1 < level + width.size()) &&
|
|
"We are at level i but we don't know the value of width_{i-1}");
|
|
|
|
// We don't actually use these duals at all, but it doesn't matter
|
|
// because this case should only occur when i is level, and there are no
|
|
// duals in that case anyway.
|
|
assert(i == level && "This case should only occur when i == level");
|
|
width.push_back(
|
|
gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom));
|
|
}
|
|
|
|
if (i >= level + dual.size()) {
|
|
assert(i + 1 >= level + width.size() &&
|
|
"We don't know dual_i but we know width_{i+1}");
|
|
// We don't know dual for our level, so let's find it.
|
|
gbrSimplex.addEqualityForDirection(basis.getRow(i));
|
|
width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual,
|
|
dualDenom));
|
|
gbrSimplex.removeLastEquality();
|
|
}
|
|
|
|
// This variable stores width_i(b_{i+1} + u*b_i).
|
|
Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i);
|
|
if (widthICandidate < epsilon * width[i - level]) {
|
|
basis.swapRows(i, i + 1);
|
|
width[i - level] = widthICandidate;
|
|
// The values of width_{i+1}(b_{i+1}) and higher may change after the
|
|
// swap, so we remove the cached values here.
|
|
width.resize(i - level + 1);
|
|
if (i == level) {
|
|
dual.clear();
|
|
continue;
|
|
}
|
|
|
|
gbrSimplex.removeLastEquality();
|
|
i--;
|
|
continue;
|
|
}
|
|
|
|
// Invalidate duals since the higher level needs to recompute its own duals.
|
|
dual.clear();
|
|
gbrSimplex.addEqualityForDirection(basis.getRow(i));
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/// Search for an integer sample point using a branch and bound algorithm.
|
|
///
|
|
/// Each row in the basis matrix is a vector, and the set of basis vectors
|
|
/// should span the space. Initially this is the identity matrix,
|
|
/// i.e., the basis vectors are just the variables.
|
|
///
|
|
/// In every level, a value is assigned to the level-th basis vector, as
|
|
/// follows. Compute the minimum and maximum rational values of this direction.
|
|
/// If only one integer point lies in this range, constrain the variable to
|
|
/// have this value and recurse to the next variable.
|
|
///
|
|
/// If the range has multiple values, perform generalized basis reduction via
|
|
/// reduceBasis and then compute the bounds again. Now we try constraining
|
|
/// this direction in the first value in this range and "recurse" to the next
|
|
/// level. If we fail to find a sample, we try assigning the direction the next
|
|
/// value in this range, and so on.
|
|
///
|
|
/// If no integer sample is found from any of the assignments, or if the range
|
|
/// contains no integer value, then of course the polytope is empty for the
|
|
/// current assignment of the values in previous levels, so we return to
|
|
/// the previous level.
|
|
///
|
|
/// If we reach the last level where all the variables have been assigned values
|
|
/// already, then we simply return the current sample point if it is integral,
|
|
/// and go back to the previous level otherwise.
|
|
///
|
|
/// To avoid potentially arbitrarily large recursion depths leading to stack
|
|
/// overflows, this algorithm is implemented iteratively.
|
|
Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() {
|
|
if (empty)
|
|
return {};
|
|
|
|
unsigned nDims = var.size();
|
|
Matrix basis = Matrix::identity(nDims);
|
|
|
|
unsigned level = 0;
|
|
// The snapshot just before constraining a direction to a value at each level.
|
|
SmallVector<unsigned, 8> snapshotStack;
|
|
// The maximum value in the range of the direction for each level.
|
|
SmallVector<int64_t, 8> upperBoundStack;
|
|
// The next value to try constraining the basis vector to at each level.
|
|
SmallVector<int64_t, 8> nextValueStack;
|
|
|
|
snapshotStack.reserve(basis.getNumRows());
|
|
upperBoundStack.reserve(basis.getNumRows());
|
|
nextValueStack.reserve(basis.getNumRows());
|
|
while (level != -1u) {
|
|
if (level == basis.getNumRows()) {
|
|
// We've assigned values to all variables. Return if we have a sample,
|
|
// or go back up to the previous level otherwise.
|
|
if (auto maybeSample = getSamplePointIfIntegral())
|
|
return maybeSample;
|
|
level--;
|
|
continue;
|
|
}
|
|
|
|
if (level >= upperBoundStack.size()) {
|
|
// We haven't populated the stack values for this level yet, so we have
|
|
// just come down a level ("recursed"). Find the lower and upper bounds.
|
|
// If there is more than one integer point in the range, perform
|
|
// generalized basis reduction.
|
|
SmallVector<int64_t, 8> basisCoeffs =
|
|
llvm::to_vector<8>(basis.getRow(level));
|
|
basisCoeffs.push_back(0);
|
|
|
|
MaybeOptimum<int64_t> minRoundedUp, maxRoundedDown;
|
|
std::tie(minRoundedUp, maxRoundedDown) =
|
|
computeIntegerBounds(basisCoeffs);
|
|
|
|
// We don't have any integer values in the range.
|
|
// Pop the stack and return up a level.
|
|
if (minRoundedUp.isEmpty() || maxRoundedDown.isEmpty()) {
|
|
assert((minRoundedUp.isEmpty() && maxRoundedDown.isEmpty()) &&
|
|
"If one bound is empty, both should be.");
|
|
snapshotStack.pop_back();
|
|
nextValueStack.pop_back();
|
|
upperBoundStack.pop_back();
|
|
level--;
|
|
continue;
|
|
}
|
|
|
|
// We already checked the empty case above.
|
|
assert((minRoundedUp.isBounded() && maxRoundedDown.isBounded()) &&
|
|
"Polyhedron should be bounded!");
|
|
|
|
// Heuristic: if the sample point is integral at this point, just return
|
|
// it.
|
|
if (auto maybeSample = getSamplePointIfIntegral())
|
|
return *maybeSample;
|
|
|
|
if (*minRoundedUp < *maxRoundedDown) {
|
|
reduceBasis(basis, level);
|
|
basisCoeffs = llvm::to_vector<8>(basis.getRow(level));
|
|
basisCoeffs.push_back(0);
|
|
std::tie(minRoundedUp, maxRoundedDown) =
|
|
computeIntegerBounds(basisCoeffs);
|
|
}
|
|
|
|
snapshotStack.push_back(getSnapshot());
|
|
// The smallest value in the range is the next value to try.
|
|
// The values in the optionals are guaranteed to exist since we know the
|
|
// polytope is bounded.
|
|
nextValueStack.push_back(*minRoundedUp);
|
|
upperBoundStack.push_back(*maxRoundedDown);
|
|
}
|
|
|
|
assert((snapshotStack.size() - 1 == level &&
|
|
nextValueStack.size() - 1 == level &&
|
|
upperBoundStack.size() - 1 == level) &&
|
|
"Mismatched variable stack sizes!");
|
|
|
|
// Whether we "recursed" or "returned" from a lower level, we rollback
|
|
// to the snapshot of the starting state at this level. (in the "recursed"
|
|
// case this has no effect)
|
|
rollback(snapshotStack.back());
|
|
int64_t nextValue = nextValueStack.back();
|
|
nextValueStack.back()++;
|
|
if (nextValue > upperBoundStack.back()) {
|
|
// We have exhausted the range and found no solution. Pop the stack and
|
|
// return up a level.
|
|
snapshotStack.pop_back();
|
|
nextValueStack.pop_back();
|
|
upperBoundStack.pop_back();
|
|
level--;
|
|
continue;
|
|
}
|
|
|
|
// Try the next value in the range and "recurse" into the next level.
|
|
SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(),
|
|
basis.getRow(level).end());
|
|
basisCoeffs.push_back(-nextValue);
|
|
addEquality(basisCoeffs);
|
|
level++;
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
/// Compute the minimum and maximum integer values the expression can take. We
|
|
/// compute each separately.
|
|
std::pair<MaybeOptimum<int64_t>, MaybeOptimum<int64_t>>
|
|
Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) {
|
|
MaybeOptimum<int64_t> minRoundedUp(
|
|
computeOptimum(Simplex::Direction::Down, coeffs).map(ceil));
|
|
MaybeOptimum<int64_t> maxRoundedDown(
|
|
computeOptimum(Simplex::Direction::Up, coeffs).map(floor));
|
|
return {minRoundedUp, maxRoundedDown};
|
|
}
|
|
|
|
void SimplexBase::print(raw_ostream &os) const {
|
|
os << "rows = " << nRow << ", columns = " << nCol << "\n";
|
|
if (empty)
|
|
os << "Simplex marked empty!\n";
|
|
os << "var: ";
|
|
for (unsigned i = 0; i < var.size(); ++i) {
|
|
if (i > 0)
|
|
os << ", ";
|
|
var[i].print(os);
|
|
}
|
|
os << "\ncon: ";
|
|
for (unsigned i = 0; i < con.size(); ++i) {
|
|
if (i > 0)
|
|
os << ", ";
|
|
con[i].print(os);
|
|
}
|
|
os << '\n';
|
|
for (unsigned row = 0; row < nRow; ++row) {
|
|
if (row > 0)
|
|
os << ", ";
|
|
os << "r" << row << ": " << rowUnknown[row];
|
|
}
|
|
os << '\n';
|
|
os << "c0: denom, c1: const";
|
|
for (unsigned col = 2; col < nCol; ++col)
|
|
os << ", c" << col << ": " << colUnknown[col];
|
|
os << '\n';
|
|
for (unsigned row = 0; row < nRow; ++row) {
|
|
for (unsigned col = 0; col < nCol; ++col)
|
|
os << tableau(row, col) << '\t';
|
|
os << '\n';
|
|
}
|
|
os << '\n';
|
|
}
|
|
|
|
void SimplexBase::dump() const { print(llvm::errs()); }
|
|
|
|
bool Simplex::isRationalSubsetOf(const IntegerRelation &rel) {
|
|
if (isEmpty())
|
|
return true;
|
|
|
|
for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i)
|
|
if (findIneqType(rel.getInequality(i)) != IneqType::Redundant)
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i)
|
|
if (!isRedundantEquality(rel.getEquality(i)))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Returns the type of the inequality with coefficients `coeffs`.
|
|
/// Possible types are:
|
|
/// Redundant The inequality is satisfied by all points in the polytope
|
|
/// Cut The inequality is satisfied by some points, but not by others
|
|
/// Separate The inequality is not satisfied by any point
|
|
///
|
|
/// Internally, this computes the minimum and the maximum the inequality with
|
|
/// coefficients `coeffs` can take. If the minimum is >= 0, the inequality holds
|
|
/// for all points in the polytope, so it is redundant. If the minimum is <= 0
|
|
/// and the maximum is >= 0, the points in between the minimum and the
|
|
/// inequality do not satisfy it, the points in between the inequality and the
|
|
/// maximum satisfy it. Hence, it is a cut inequality. If both are < 0, no
|
|
/// points of the polytope satisfy the inequality, which means it is a separate
|
|
/// inequality.
|
|
Simplex::IneqType Simplex::findIneqType(ArrayRef<int64_t> coeffs) {
|
|
MaybeOptimum<Fraction> minimum = computeOptimum(Direction::Down, coeffs);
|
|
if (minimum.isBounded() && *minimum >= Fraction(0, 1)) {
|
|
return IneqType::Redundant;
|
|
}
|
|
MaybeOptimum<Fraction> maximum = computeOptimum(Direction::Up, coeffs);
|
|
if ((!minimum.isBounded() || *minimum <= Fraction(0, 1)) &&
|
|
(!maximum.isBounded() || *maximum >= Fraction(0, 1))) {
|
|
return IneqType::Cut;
|
|
}
|
|
return IneqType::Separate;
|
|
}
|
|
|
|
/// Checks whether the type of the inequality with coefficients `coeffs`
|
|
/// is Redundant.
|
|
bool Simplex::isRedundantInequality(ArrayRef<int64_t> coeffs) {
|
|
assert(!empty &&
|
|
"It is not meaningful to ask about redundancy in an empty set!");
|
|
return findIneqType(coeffs) == IneqType::Redundant;
|
|
}
|
|
|
|
/// Check whether the equality given by `coeffs == 0` is redundant given
|
|
/// the existing constraints. This is redundant when `coeffs` is already
|
|
/// always zero under the existing constraints. `coeffs` is always zero
|
|
/// when the minimum and maximum value that `coeffs` can take are both zero.
|
|
bool Simplex::isRedundantEquality(ArrayRef<int64_t> coeffs) {
|
|
assert(!empty &&
|
|
"It is not meaningful to ask about redundancy in an empty set!");
|
|
MaybeOptimum<Fraction> minimum = computeOptimum(Direction::Down, coeffs);
|
|
MaybeOptimum<Fraction> maximum = computeOptimum(Direction::Up, coeffs);
|
|
assert((!minimum.isEmpty() && !maximum.isEmpty()) &&
|
|
"Optima should be non-empty for a non-empty set");
|
|
return minimum.isBounded() && maximum.isBounded() &&
|
|
*maximum == Fraction(0, 1) && *minimum == Fraction(0, 1);
|
|
}
|