The `linalg.index` operation provides access to the iteration indexes of immediately enclosing linalg operations. It takes a dimension `dim` attribute and returns the iteration index in the given dimension. Having `linalg.index` allows us to unify `linalg.generic` and `linalg.indexed_generic` and also enables index access in named operations. Differential Revision: https://reviews.llvm.org/D100292
820 lines
33 KiB
C++
820 lines
33 KiB
C++
//===- Vectorization.cpp - Implementation of linalg Vectorization ---------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the linalg dialect Vectorization transformations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
|
|
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
|
|
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
|
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
|
|
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
|
|
#include "mlir/Dialect/Vector/EDSC/Intrinsics.h"
|
|
#include "mlir/Dialect/Vector/VectorOps.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
#include "mlir/Transforms/RegionUtils.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <type_traits>
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::edsc;
|
|
using namespace mlir::edsc::intrinsics;
|
|
using namespace mlir::linalg;
|
|
|
|
using llvm::dbgs;
|
|
|
|
#define DEBUG_TYPE "linalg-vectorization"
|
|
|
|
/// Return the unique instance of OpType in `block` if it is indeed unique.
|
|
/// Return null if none or more than 1 instances exist.
|
|
template <typename OpType>
|
|
static OpType getSingleOpOfType(Block &block) {
|
|
OpType res;
|
|
block.walk([&](OpType op) {
|
|
if (res) {
|
|
res = nullptr;
|
|
return WalkResult::interrupt();
|
|
}
|
|
res = op;
|
|
return WalkResult::advance();
|
|
});
|
|
return res;
|
|
}
|
|
|
|
/// Helper data structure to represent the result of vectorization.
|
|
/// In certain specific cases, like terminators, we do not want to propagate/
|
|
enum VectorizationStatus {
|
|
/// Op failed to vectorize.
|
|
Failure = 0,
|
|
/// Op vectorized and custom function took care of replacement logic
|
|
NoReplace,
|
|
/// Op vectorized into a new Op whose results will replace original Op's
|
|
/// results.
|
|
NewOp
|
|
// TODO: support values if Op vectorized to Many-Ops whose results we need to
|
|
// aggregate for replacement.
|
|
};
|
|
struct VectorizationResult {
|
|
/// Return status from vectorizing the current op.
|
|
enum VectorizationStatus status = VectorizationStatus::Failure;
|
|
/// New vectorized operation to replace the current op.
|
|
/// Replacement behavior is specified by `status`.
|
|
Operation *newOp;
|
|
};
|
|
|
|
/// Return a vector type of the same shape and element type as the (assumed)
|
|
/// ShapedType of `v`.
|
|
static VectorType extractVectorTypeFromShapedValue(Value v) {
|
|
auto st = v.getType().cast<ShapedType>();
|
|
if (st.isa<MemRefType>() && st.getShape().empty())
|
|
return VectorType();
|
|
return VectorType::get(st.getShape(), st.getElementType());
|
|
}
|
|
|
|
/// Build a vector.transfer_read from `source` at indices set to all `0`.
|
|
/// If source has rank zero, build an memref.load.
|
|
/// Return the produced value.
|
|
static Value buildVectorRead(OpBuilder &builder, Value source,
|
|
VectorType vectorType, AffineMap map) {
|
|
edsc::ScopedContext scope(builder);
|
|
auto shapedType = source.getType().cast<ShapedType>();
|
|
if (vectorType) {
|
|
SmallVector<Value> indices(shapedType.getRank(), std_constant_index(0));
|
|
if (map)
|
|
return vector_transfer_read(vectorType, source, indices, map);
|
|
return vector_transfer_read(vectorType, source, indices);
|
|
}
|
|
return memref_load(source);
|
|
}
|
|
|
|
/// Build a vector.transfer_write of `value` into `dest` at indices set to all
|
|
/// `0`. If `dest` has null rank, build an memref.store.
|
|
/// Return the produced value or null if no value is produced.
|
|
static Value buildVectorWrite(OpBuilder &builder, Value value, Value dest) {
|
|
edsc::ScopedContext scope(builder);
|
|
Operation *write;
|
|
auto shapedType = dest.getType().cast<ShapedType>();
|
|
if (VectorType vectorType = extractVectorTypeFromShapedValue(dest)) {
|
|
SmallVector<Value> indices(shapedType.getRank(), std_constant_index(0));
|
|
if (vectorType != value.getType())
|
|
value = vector_broadcast(vectorType, value);
|
|
write = vector_transfer_write(value, dest, indices);
|
|
} else {
|
|
write = memref_store(value, dest);
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorized op: " << *write);
|
|
if (!write->getResults().empty())
|
|
return write->getResult(0);
|
|
return Value();
|
|
}
|
|
|
|
/// If value of assumed VectorType has a shape different than `shape`, buil and
|
|
/// return a new vector.broadcast to `shape`.
|
|
/// Otherwise, just return value.
|
|
static Value broadcastIfNeeded(OpBuilder &builder, Value value,
|
|
ArrayRef<int64_t> shape) {
|
|
auto vecType = value.getType().dyn_cast<VectorType>();
|
|
if (shape.empty() || (vecType != nullptr && vecType.getShape() == shape))
|
|
return value;
|
|
auto newVecType = VectorType::get(shape, vecType ? vecType.getElementType()
|
|
: value.getType());
|
|
return builder.create<vector::BroadcastOp>(
|
|
builder.getInsertionPoint()->getLoc(), newVecType, value);
|
|
}
|
|
|
|
// Custom vectorization function type. Produce a vector form of Operation*
|
|
// assuming all its vectorized operands are already in the BlockAndValueMapping.
|
|
// Return nullptr if the Operation cannot be vectorized.
|
|
using CustomVectorizationHook = std::function<VectorizationResult(
|
|
Operation *, const BlockAndValueMapping &)>;
|
|
|
|
/// Helper function to vectorize the terminator of a `linalgOp`. New result
|
|
/// vector values are appended to `newResults`. Return
|
|
/// VectorizationStatus::NoReplace to signal the vectorization algorithm that it
|
|
/// should not try to map produced operations and instead return the results
|
|
/// using the `newResults` vector making them available to the
|
|
/// vectorization algorithm for RAUW. This function is meant to be used as a
|
|
/// CustomVectorizationHook.
|
|
static VectorizationResult
|
|
vectorizeLinalgYield(OpBuilder &builder, Operation *op,
|
|
const BlockAndValueMapping &bvm, LinalgOp linalgOp,
|
|
SmallVectorImpl<Value> &newResults) {
|
|
auto yieldOp = dyn_cast<linalg::YieldOp>(op);
|
|
if (!yieldOp)
|
|
return VectorizationResult{VectorizationStatus::Failure, nullptr};
|
|
for (auto outputs : llvm::enumerate(yieldOp.values())) {
|
|
// TODO: Scan for an opportunity for reuse.
|
|
// TODO: use a map.
|
|
Value vectorValue = bvm.lookup(outputs.value());
|
|
Value newResult = buildVectorWrite(builder, vectorValue,
|
|
linalgOp.getOutput(outputs.index()));
|
|
if (newResult)
|
|
newResults.push_back(newResult);
|
|
}
|
|
return VectorizationResult{VectorizationStatus::NoReplace, nullptr};
|
|
}
|
|
|
|
/// Generic vectorization for a single operation `op`, given already vectorized
|
|
/// operands carried by `bvm`. Vectorization occurs as follows:
|
|
/// 1. Try to apply any of the `customVectorizationHooks` and return its
|
|
/// result on success.
|
|
/// 2. Clone any constant in the current scope without vectorization: each
|
|
/// consumer of the constant will later determine the shape to which the
|
|
/// constant needs to be broadcast to.
|
|
/// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose
|
|
/// of the `customVectorizationHooks` to cover such cases.
|
|
/// 4. Clone `op` in vector form to a vector of shape prescribed by the first
|
|
/// operand of maximal rank. Other operands have smaller rank and are
|
|
/// broadcast accordingly. It is assumed this broadcast is always legal,
|
|
/// otherwise, it means one of the `customVectorizationHooks` is incorrect.
|
|
///
|
|
/// This function assumes all operands of `op` have been vectorized and are in
|
|
/// the `bvm` mapping. As a consequence, this function is meant to be called on
|
|
/// a topologically-sorted list of ops.
|
|
/// This function does not update `bvm` but returns a VectorizationStatus that
|
|
/// instructs the caller what `bvm` update needs to occur.
|
|
static VectorizationResult
|
|
vectorizeOneOp(OpBuilder &builder, Operation *op,
|
|
const BlockAndValueMapping &bvm,
|
|
ArrayRef<CustomVectorizationHook> customVectorizationHooks) {
|
|
LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorize op " << *op);
|
|
|
|
// 1. Try to apply any CustomVectorizationHook.
|
|
if (!customVectorizationHooks.empty()) {
|
|
for (auto &customFunc : customVectorizationHooks) {
|
|
VectorizationResult result = customFunc(op, bvm);
|
|
if (result.status == VectorizationStatus::Failure)
|
|
continue;
|
|
return result;
|
|
}
|
|
}
|
|
|
|
// 2. Constant ops don't get vectorized but rather broadcasted at their users.
|
|
// Clone so that the constant is not confined to the linalgOp block .
|
|
if (isa<ConstantOp>(op))
|
|
return VectorizationResult{VectorizationStatus::NewOp, builder.clone(*op)};
|
|
|
|
// 3. Only ElementwiseMappable are allowed in the generic vectorization.
|
|
if (!OpTrait::hasElementwiseMappableTraits(op))
|
|
return VectorizationResult{VectorizationStatus::Failure, nullptr};
|
|
|
|
// 4. Generic vectorization path for ElementwiseMappable ops.
|
|
// a. first get the first max ranked shape.
|
|
SmallVector<int64_t, 4> firstMaxRankedShape;
|
|
for (Value operand : op->getOperands()) {
|
|
auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>();
|
|
if (vt && firstMaxRankedShape.size() < vt.getShape().size())
|
|
firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end());
|
|
}
|
|
// b. broadcast each op if needed.
|
|
auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) {
|
|
return firstMaxRankedShape.empty()
|
|
? bvm.lookup(v)
|
|
: broadcastIfNeeded(builder, bvm.lookup(v), firstMaxRankedShape);
|
|
});
|
|
// c. for elementwise, the result is the vector with the firstMaxRankedShape
|
|
auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) {
|
|
return firstMaxRankedShape.empty()
|
|
? t
|
|
: VectorType::get(firstMaxRankedShape, t);
|
|
});
|
|
|
|
// Build and return the new op.
|
|
OperationState state(op->getLoc(), op->getName());
|
|
state.addAttributes(op->getAttrs());
|
|
state.addOperands(llvm::to_vector<4>(vectorizedOperands));
|
|
state.addTypes(llvm::to_vector<4>(returnTypes));
|
|
return VectorizationResult{VectorizationStatus::NewOp,
|
|
builder.createOperation(state)};
|
|
}
|
|
|
|
/// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp.
|
|
static bool hasOnlyScalarElementwiseOp(Region &r) {
|
|
if (!llvm::hasSingleElement(r))
|
|
return false;
|
|
for (Operation &op : r.front()) {
|
|
if (!(isa<ConstantOp, linalg::YieldOp>(op) ||
|
|
OpTrait::hasElementwiseMappableTraits(&op)) ||
|
|
llvm::any_of(op.getResultTypes(),
|
|
[](Type type) { return !type.isIntOrIndexOrFloat(); }))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Return true if the op is an element-wise linalg op.
|
|
static bool isElementwise(Operation *op) {
|
|
auto linalgOp = dyn_cast<linalg::LinalgOp>(op);
|
|
if (!linalgOp)
|
|
return false;
|
|
if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops())
|
|
return false;
|
|
// TODO: relax the restrictions on indexing map.
|
|
for (unsigned i = 0, e = linalgOp.getNumOutputs(); i < e; i++) {
|
|
if (!linalgOp.getOutputIndexingMap(i).isIdentity())
|
|
return false;
|
|
}
|
|
if (linalgOp->getNumRegions() != 1)
|
|
return false;
|
|
return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0));
|
|
}
|
|
|
|
// Calculate the map to apply to transfer_read to convert the input shape into
|
|
// the output shape.
|
|
static AffineMap getTransferReadMap(LinalgOp linalgOp, unsigned argIndex) {
|
|
AffineMap linalgMap = linalgOp.getIndexingMap(argIndex);
|
|
MLIRContext *context = linalgMap.getContext();
|
|
AffineExpr zero = mlir::getAffineConstantExpr(0, context);
|
|
SmallVector<AffineExpr, 4> exprs(linalgMap.getNumInputs(), zero);
|
|
for (unsigned i : llvm::seq(unsigned(0), linalgMap.getNumResults())) {
|
|
exprs[linalgMap.getDimPosition(i)] = getAffineDimExpr(i, context);
|
|
}
|
|
return AffineMap::get(linalgMap.getNumResults(), /*symbolCount=*/0, exprs,
|
|
context);
|
|
}
|
|
|
|
/// Generic vectorization function that rewrites the body of a `linalgOp` into
|
|
/// vector form. Generic vectorization proceeds as follows:
|
|
/// 1. Verify the `linalgOp` has one non-empty region.
|
|
/// 2. Values defined above the region are mapped to themselves and will be
|
|
/// broadcasted on a per-need basis by their consumers.
|
|
/// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d
|
|
/// load).
|
|
/// TODO: Reuse opportunities for RAR dependencies.
|
|
/// 4. Register CustomVectorizationHook for YieldOp to capture the results.
|
|
/// 5. Iteratively call vectorizeOneOp on the region operations.
|
|
LogicalResult vectorizeAsLinalgGeneric(
|
|
OpBuilder &builder, LinalgOp linalgOp, SmallVectorImpl<Value> &newResults,
|
|
ArrayRef<CustomVectorizationHook> customVectorizationHooks = {}) {
|
|
// 1. Fail to vectorize if the operation does not have one non-empty region.
|
|
if (linalgOp->getNumRegions() != 1 || linalgOp->getRegion(0).empty())
|
|
return failure();
|
|
auto &block = linalgOp->getRegion(0).front();
|
|
|
|
BlockAndValueMapping bvm;
|
|
// 2. Values defined above the region can only be broadcast for now. Make them
|
|
// map to themselves.
|
|
llvm::SetVector<Value> valuesSet;
|
|
mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet);
|
|
bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef());
|
|
|
|
// 3. Turn all BBArgs into vector.transfer_read / load.
|
|
SmallVector<AffineMap> indexings;
|
|
for (auto bbarg : block.getArguments()) {
|
|
Value vectorArg = linalgOp.getShapedOperand(bbarg.getArgNumber());
|
|
AffineMap map;
|
|
VectorType vectorType = extractVectorTypeFromShapedValue(vectorArg);
|
|
if (isElementwise(linalgOp) &&
|
|
!linalgOp.getIndexingMap(bbarg.getArgNumber()).isMinorIdentity()) {
|
|
// Currently assume we don't support output permutations.
|
|
assert(linalgOp.getNumOutputs() > 0 &&
|
|
linalgOp.getOutputIndexingMap(0).isIdentity());
|
|
ArrayRef<int64_t> outputShape =
|
|
linalgOp.getOutputShapedType(0).getShape();
|
|
vectorType = VectorType::get(outputShape, vectorType.getElementType());
|
|
map = getTransferReadMap(linalgOp, bbarg.getArgNumber());
|
|
}
|
|
Value vectorRead = buildVectorRead(builder, vectorArg, vectorType, map);
|
|
LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vectorized bbarg("
|
|
<< bbarg.getArgNumber() << "): " << vectorRead);
|
|
bvm.map(bbarg, vectorRead);
|
|
bvm.map(vectorArg, vectorRead);
|
|
}
|
|
|
|
// 4. Register CustomVectorizationHook for yieldOp.
|
|
CustomVectorizationHook vectorizeYield =
|
|
[&](Operation *op,
|
|
const BlockAndValueMapping &bvm) -> VectorizationResult {
|
|
return vectorizeLinalgYield(builder, op, bvm, linalgOp, newResults);
|
|
};
|
|
// Append the vectorizeYield hook.
|
|
auto hooks = llvm::to_vector<4>(customVectorizationHooks);
|
|
hooks.push_back(vectorizeYield);
|
|
|
|
// 5. Iteratively call `vectorizeOneOp` to each op in the slice.
|
|
for (Operation &op : block.getOperations()) {
|
|
VectorizationResult result = vectorizeOneOp(builder, &op, bvm, hooks);
|
|
if (result.status == VectorizationStatus::Failure) {
|
|
LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: failed to vectorize: " << op);
|
|
return failure();
|
|
}
|
|
if (result.status == VectorizationStatus::NewOp) {
|
|
LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vector op: "
|
|
<< *result.newOp;);
|
|
bvm.map(op.getResults(), result.newOp->getResults());
|
|
}
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult vectorizeContraction(OpBuilder &builder, LinalgOp linalgOp,
|
|
SmallVectorImpl<Value> &newResults) {
|
|
assert(isaContractionOpInterface(linalgOp) &&
|
|
"expected vectorizeContraction preconditions to be met");
|
|
Location loc = linalgOp.getLoc();
|
|
// Vectorize other ops as vector contraction.
|
|
// TODO: interface.
|
|
LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: "
|
|
<< "Rewrite linalg op as vector.contract: ";
|
|
linalgOp.dump());
|
|
// Special function that describes how to vectorize the multiplication op in a
|
|
// linalg contraction.
|
|
CustomVectorizationHook vectorizeContraction =
|
|
[&](Operation *op,
|
|
const BlockAndValueMapping &bvm) -> VectorizationResult {
|
|
if (!isa<MulIOp, MulFOp>(op))
|
|
return VectorizationResult{VectorizationStatus::Failure, nullptr};
|
|
auto outShape = linalgOp.getOutputShapedType(0).getShape();
|
|
auto vType = outShape.empty()
|
|
? op->getResult(0).getType()
|
|
: VectorType::get(outShape, op->getResult(0).getType());
|
|
auto zero =
|
|
builder.create<ConstantOp>(loc, vType, builder.getZeroAttr(vType));
|
|
Operation *contract = builder.create<vector::ContractionOp>(
|
|
loc, bvm.lookup(op->getOperand(0)), bvm.lookup(op->getOperand(1)), zero,
|
|
linalgOp.indexing_maps(), linalgOp.iterator_types());
|
|
return VectorizationResult{VectorizationStatus::NewOp, contract};
|
|
};
|
|
return vectorizeAsLinalgGeneric(builder, linalgOp, newResults,
|
|
{vectorizeContraction});
|
|
}
|
|
|
|
LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) {
|
|
auto linalgOp = cast<linalg::LinalgOp>(op);
|
|
// All types must be static shape to go to vector.
|
|
for (Value operand : linalgOp.getShapedOperands())
|
|
if (!operand.getType().cast<ShapedType>().hasStaticShape())
|
|
return failure();
|
|
for (Type outputTensorType : linalgOp.getOutputTensorTypes())
|
|
if (!outputTensorType.cast<ShapedType>().hasStaticShape())
|
|
return failure();
|
|
// TODO: remove once index ops are supported.
|
|
if (linalgOp.hasIndexSemantics())
|
|
return failure();
|
|
if (isElementwise(op))
|
|
return success();
|
|
return success(isaContractionOpInterface(linalgOp));
|
|
}
|
|
|
|
LogicalResult
|
|
mlir::linalg::vectorizeLinalgOp(OpBuilder &builder, Operation *op,
|
|
SmallVectorImpl<Value> &newResults) {
|
|
if (failed(vectorizeLinalgOpPrecondition(op)))
|
|
return failure();
|
|
|
|
edsc::ScopedContext scope(builder, op->getLoc());
|
|
if (isElementwise(op)) {
|
|
LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: "
|
|
<< "Vectorize linalg op as a generic: " << *op);
|
|
return vectorizeAsLinalgGeneric(builder, cast<LinalgOp>(op), newResults);
|
|
}
|
|
|
|
return vectorizeContraction(builder, cast<LinalgOp>(op), newResults);
|
|
}
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// Misc. vectorization patterns.
|
|
//----------------------------------------------------------------------------//
|
|
|
|
/// Rewrite a PadTensorOp into a sequence of InitTensorOp, TransferReadOp and
|
|
/// TransferWriteOp. For now, this only applies when all low and high paddings
|
|
/// are determined to be zero.
|
|
LogicalResult PadTensorOpVectorizationPattern::matchAndRewrite(
|
|
linalg::PadTensorOp padOp, PatternRewriter &rewriter) const {
|
|
// Helper function to determine whether an OpFoldResult is not a zero Index.
|
|
auto isNotZeroIndex = [](OpFoldResult ofr) {
|
|
if (Attribute attr = ofr.dyn_cast<Attribute>())
|
|
return attr.cast<IntegerAttr>().getInt() != 0;
|
|
Value v = ofr.get<Value>();
|
|
if (auto constOp = v.getDefiningOp<ConstantOp>())
|
|
if (auto intAttr = constOp.getValue().dyn_cast<IntegerAttr>())
|
|
return intAttr.getValue().getSExtValue() != 0;
|
|
return true;
|
|
};
|
|
|
|
auto resultShapedType = padOp.result().getType().cast<ShapedType>();
|
|
// Bail on non-static shapes.
|
|
if (!resultShapedType.hasStaticShape())
|
|
return failure();
|
|
|
|
// If any pad_low is not a static 0, needs a mask. Bail for now.
|
|
if (llvm::any_of(padOp.getMixedLowPad(), isNotZeroIndex))
|
|
return failure();
|
|
VectorType vectorType = extractVectorTypeFromShapedValue(padOp.result());
|
|
if (!vectorType)
|
|
return failure();
|
|
|
|
// Only support padding with a constant for now, i.e. either:
|
|
// 1. A BBarg from a different block.
|
|
// 2. A value defined outside of the current block.
|
|
Block &block = padOp.region().front();
|
|
auto yieldOp = cast<YieldOp>(block.getTerminator());
|
|
assert(yieldOp.getNumOperands() == 1 && "expected single operand yield");
|
|
Value padValue = yieldOp.values().front();
|
|
Operation *definingOp = padValue.getDefiningOp();
|
|
if (definingOp && definingOp->getBlock() == &block)
|
|
return failure();
|
|
if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block)
|
|
return failure();
|
|
|
|
// TODO: if any pad_high is not a static 0, needs a mask. For now, just bail.
|
|
if (llvm::any_of(padOp.getMixedHighPad(),
|
|
[&](OpFoldResult ofr) { return isNotZeroIndex(ofr); }))
|
|
return failure();
|
|
|
|
// Now we can rewrite as InitTensorOp + TransferReadOp@[0..0] +
|
|
// TransferWriteOp@[0..0].
|
|
SmallVector<Value> indices(
|
|
resultShapedType.getRank(),
|
|
rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0));
|
|
Value read = rewriter.create<vector::TransferReadOp>(
|
|
padOp.getLoc(), vectorType, padOp.source(), indices, padValue);
|
|
Value init =
|
|
rewriter.create<InitTensorOp>(padOp.getLoc(), resultShapedType.getShape(),
|
|
resultShapedType.getElementType());
|
|
rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(padOp, read, init,
|
|
indices);
|
|
|
|
return success();
|
|
}
|
|
|
|
// TODO: cleanup all the convolution vectorization patterns.
|
|
template <class ConvOp, int N>
|
|
LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite(
|
|
ConvOp op, PatternRewriter &rewriter) const {
|
|
Location loc = op.getLoc();
|
|
MLIRContext *context = op.getContext();
|
|
edsc::ScopedContext scope(rewriter, loc);
|
|
|
|
ShapedType inShapeType = op.getInputShapedType(0);
|
|
ShapedType kShapeType = op.getInputShapedType(1);
|
|
|
|
ArrayRef<int64_t> inShape = inShapeType.getShape();
|
|
ArrayRef<int64_t> kShape = kShapeType.getShape();
|
|
|
|
if (!inShapeType.hasStaticShape() || !kShapeType.hasStaticShape())
|
|
return failure();
|
|
|
|
SmallVector<AffineExpr, 4> mapping;
|
|
SmallVector<int64_t, 4> vectorDims;
|
|
// Fail to apply when the size of not vectorized dimension is not 1.
|
|
for (unsigned i = 0; i < N; i++) {
|
|
if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1))
|
|
return failure();
|
|
|
|
if (mask[i] && inShape[i] != kShape[i])
|
|
return failure();
|
|
|
|
if (mask[i]) {
|
|
mapping.push_back(getAffineDimExpr(i, context));
|
|
vectorDims.push_back(inShape[i]);
|
|
}
|
|
}
|
|
|
|
Value input = op.getInput(0);
|
|
Value kernel = op.getInput(1);
|
|
Value output = op.getOutputBuffer(0);
|
|
|
|
unsigned rank = inShapeType.getRank();
|
|
unsigned numDims = mapping.size();
|
|
Type elemType = inShapeType.getElementType();
|
|
|
|
auto map = AffineMap::get(rank, 0, mapping, context);
|
|
SmallVector<Value, 4> zeros(rank, std_constant_index(0));
|
|
auto vecType = VectorType::get(vectorDims, elemType);
|
|
|
|
auto inputVec = vector_transfer_read(vecType, input, zeros, map);
|
|
auto kernelVec = vector_transfer_read(vecType, kernel, zeros, map);
|
|
|
|
auto acc = std_constant(elemType, rewriter.getZeroAttr(elemType));
|
|
|
|
std::array<AffineMap, 3> indexingMaps{
|
|
AffineMap::getMultiDimIdentityMap(numDims, context),
|
|
AffineMap::getMultiDimIdentityMap(numDims, context),
|
|
AffineMap::get(numDims, 0, {}, context)};
|
|
|
|
std::vector<StringRef> iteratorTypes(numDims, "reduction");
|
|
|
|
auto result = rewriter.create<vector::ContractionOp>(
|
|
loc, inputVec, kernelVec, acc,
|
|
rewriter.getAffineMapArrayAttr(indexingMaps),
|
|
rewriter.getStrArrayAttr(iteratorTypes));
|
|
|
|
rewriter.create<memref::StoreOp>(loc, result, output, ValueRange(zeros));
|
|
rewriter.eraseOp(op);
|
|
return success();
|
|
}
|
|
|
|
using ConvOpConst = ConvOpVectorization<ConvWOp, 1>;
|
|
|
|
/// Inserts tiling, promotion and vectorization pattern for ConvOp
|
|
/// conversion into corresponding pattern lists.
|
|
template <typename ConvOp, unsigned N>
|
|
static void populateVectorizationPatterns(
|
|
RewritePatternSet &tilingPatterns, RewritePatternSet &promotionPatterns,
|
|
RewritePatternSet &vectorizationPatterns, ArrayRef<int64_t> tileSizes) {
|
|
auto *context = tilingPatterns.getContext();
|
|
if (tileSizes.size() < N)
|
|
return;
|
|
|
|
constexpr static StringRef kTiledMarker = "TILED";
|
|
constexpr static StringRef kPromotedMarker = "PROMOTED";
|
|
tilingPatterns.add<LinalgTilingPattern<ConvOp>>(
|
|
context, LinalgTilingOptions().setTileSizes(tileSizes),
|
|
LinalgTransformationFilter(ArrayRef<Identifier>{},
|
|
Identifier::get(kTiledMarker, context)));
|
|
|
|
promotionPatterns.add<LinalgPromotionPattern<ConvOp>>(
|
|
context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true),
|
|
LinalgTransformationFilter(Identifier::get(kTiledMarker, context),
|
|
Identifier::get(kPromotedMarker, context)));
|
|
|
|
SmallVector<bool, 4> mask(N);
|
|
int offset = tileSizes.size() - N;
|
|
std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(),
|
|
[](int64_t i) -> bool { return i > 1; });
|
|
|
|
vectorizationPatterns.add<ConvOpVectorization<ConvOp, N>>(context, mask);
|
|
}
|
|
|
|
void mlir::linalg::populateConvVectorizationPatterns(
|
|
MLIRContext *context, SmallVectorImpl<RewritePatternSet> &patterns,
|
|
ArrayRef<int64_t> tileSizes) {
|
|
RewritePatternSet tiling(context);
|
|
RewritePatternSet promotion(context);
|
|
RewritePatternSet vectorization(context);
|
|
populateVectorizationPatterns<ConvWOp, 1>(tiling, promotion, vectorization,
|
|
tileSizes);
|
|
|
|
populateVectorizationPatterns<ConvNWCOp, 3>(tiling, promotion, vectorization,
|
|
tileSizes);
|
|
populateVectorizationPatterns<ConvInputNWCFilterWCFOp, 3>(
|
|
tiling, promotion, vectorization, tileSizes);
|
|
|
|
populateVectorizationPatterns<ConvNCWOp, 3>(tiling, promotion, vectorization,
|
|
tileSizes);
|
|
populateVectorizationPatterns<ConvInputNCWFilterWCFOp, 3>(
|
|
tiling, promotion, vectorization, tileSizes);
|
|
|
|
populateVectorizationPatterns<ConvHWOp, 2>(tiling, promotion, vectorization,
|
|
tileSizes);
|
|
|
|
populateVectorizationPatterns<ConvNHWCOp, 4>(tiling, promotion, vectorization,
|
|
tileSizes);
|
|
populateVectorizationPatterns<ConvInputNHWCFilterHWCFOp, 4>(
|
|
tiling, promotion, vectorization, tileSizes);
|
|
|
|
populateVectorizationPatterns<ConvNCHWOp, 4>(tiling, promotion, vectorization,
|
|
tileSizes);
|
|
populateVectorizationPatterns<ConvInputNCHWFilterHWCFOp, 4>(
|
|
tiling, promotion, vectorization, tileSizes);
|
|
|
|
populateVectorizationPatterns<ConvDHWOp, 3>(tiling, promotion, vectorization,
|
|
tileSizes);
|
|
|
|
populateVectorizationPatterns<ConvNDHWCOp, 5>(tiling, promotion,
|
|
vectorization, tileSizes);
|
|
populateVectorizationPatterns<ConvInputNDHWCFilterDHWCFOp, 5>(
|
|
tiling, promotion, vectorization, tileSizes);
|
|
|
|
populateVectorizationPatterns<ConvNCDHWOp, 5>(tiling, promotion,
|
|
vectorization, tileSizes);
|
|
populateVectorizationPatterns<ConvInputNCDHWFilterDHWCFOp, 5>(
|
|
tiling, promotion, vectorization, tileSizes);
|
|
|
|
patterns.push_back(std::move(tiling));
|
|
patterns.push_back(std::move(promotion));
|
|
patterns.push_back(std::move(vectorization));
|
|
}
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// Forwarding patterns
|
|
//----------------------------------------------------------------------------//
|
|
|
|
/// Check whether there is any interleaved use of any `values` between `firstOp`
|
|
/// and `secondOp`. Conservatively return `true` if any op or value is in a
|
|
/// different block.
|
|
static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp,
|
|
ValueRange values) {
|
|
if (firstOp->getBlock() != secondOp->getBlock() ||
|
|
!firstOp->isBeforeInBlock(secondOp)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
|
|
<< "interleavedUses precondition failed, firstOp: "
|
|
<< *firstOp << ", second op: " << *secondOp);
|
|
return true;
|
|
}
|
|
for (auto v : values) {
|
|
for (auto &u : v.getUses()) {
|
|
Operation *owner = u.getOwner();
|
|
if (owner == firstOp || owner == secondOp)
|
|
continue;
|
|
// TODO: this is too conservative, use dominance info in the future.
|
|
if (owner->getBlock() == firstOp->getBlock() &&
|
|
(owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner)))
|
|
continue;
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "\n[" DEBUG_TYPE "]: "
|
|
<< " found interleaved op " << *owner
|
|
<< ", firstOp: " << *firstOp << ", second op: " << *secondOp);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Return the unique subview use of `v` if it is indeed unique, null otherwise.
|
|
static memref::SubViewOp getSubViewUseIfUnique(Value v) {
|
|
memref::SubViewOp subViewOp;
|
|
for (auto &u : v.getUses()) {
|
|
if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) {
|
|
if (subViewOp)
|
|
return memref::SubViewOp();
|
|
subViewOp = newSubViewOp;
|
|
}
|
|
}
|
|
return subViewOp;
|
|
}
|
|
|
|
/// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
|
|
/// when available.
|
|
LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite(
|
|
vector::TransferReadOp xferOp, PatternRewriter &rewriter) const {
|
|
|
|
// Transfer into `view`.
|
|
Value viewOrAlloc = xferOp.source();
|
|
if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
|
|
!viewOrAlloc.getDefiningOp<memref::AllocOp>())
|
|
return failure();
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " << viewOrAlloc);
|
|
|
|
// Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
|
|
memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
|
|
if (!subViewOp)
|
|
return failure();
|
|
Value subView = subViewOp.getResult();
|
|
LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
|
|
<< "with subView " << subView);
|
|
|
|
// Find the copy into `subView` without interleaved uses.
|
|
CopyOp copyOp;
|
|
for (auto &u : subView.getUses()) {
|
|
if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
|
|
if (newCopyOp.getOutputBuffer(0) != subView)
|
|
continue;
|
|
LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
|
|
<< "copy candidate " << *newCopyOp);
|
|
if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView}))
|
|
continue;
|
|
copyOp = newCopyOp;
|
|
break;
|
|
}
|
|
}
|
|
if (!copyOp)
|
|
return failure();
|
|
LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
|
|
<< "with copy " << *copyOp);
|
|
|
|
// Find the fill into `viewOrAlloc` without interleaved uses before the copy.
|
|
FillOp maybeFillOp;
|
|
for (auto &u : viewOrAlloc.getUses()) {
|
|
if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) {
|
|
if (newFillOp.getOutputBuffer(0) != viewOrAlloc)
|
|
continue;
|
|
LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
|
|
<< "fill candidate " << *newFillOp);
|
|
if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView}))
|
|
continue;
|
|
maybeFillOp = newFillOp;
|
|
break;
|
|
}
|
|
}
|
|
// Ensure padding matches.
|
|
if (maybeFillOp && xferOp.padding() != maybeFillOp.value())
|
|
return failure();
|
|
if (maybeFillOp)
|
|
LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
|
|
<< "with maybeFillOp " << *maybeFillOp);
|
|
|
|
// `in` is the subview that linalg.copy reads. Replace it.
|
|
Value in = copyOp.getInput(0);
|
|
|
|
// linalg.copy + linalg.fill can be used to create a padded local buffer.
|
|
// The `masked` attribute is only valid on this padded buffer.
|
|
// When forwarding to vector.transfer_read, the attribute must be reset
|
|
// conservatively.
|
|
Value res = rewriter.create<vector::TransferReadOp>(
|
|
xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(),
|
|
xferOp.permutation_map(), xferOp.padding(), ArrayAttr());
|
|
|
|
if (maybeFillOp)
|
|
rewriter.eraseOp(maybeFillOp);
|
|
rewriter.eraseOp(copyOp);
|
|
rewriter.replaceOp(xferOp, res);
|
|
|
|
return success();
|
|
}
|
|
|
|
/// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
|
|
/// when available.
|
|
LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite(
|
|
vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const {
|
|
// Transfer into `viewOrAlloc`.
|
|
Value viewOrAlloc = xferOp.source();
|
|
if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
|
|
!viewOrAlloc.getDefiningOp<memref::AllocOp>())
|
|
return failure();
|
|
|
|
// Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
|
|
memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
|
|
if (!subViewOp)
|
|
return failure();
|
|
Value subView = subViewOp.getResult();
|
|
|
|
// Find the copy from `subView` without interleaved uses.
|
|
CopyOp copyOp;
|
|
for (auto &u : subViewOp.getResult().getUses()) {
|
|
if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
|
|
if (newCopyOp.getInput(0) != subView)
|
|
continue;
|
|
if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView}))
|
|
continue;
|
|
copyOp = newCopyOp;
|
|
break;
|
|
}
|
|
}
|
|
if (!copyOp)
|
|
return failure();
|
|
|
|
// `out` is the subview copied into that we replace.
|
|
Value out = copyOp.getOutputBuffer(0);
|
|
|
|
// Forward vector.transfer into copy.
|
|
// linalg.copy + linalg.fill can be used to create a padded local buffer.
|
|
// The `masked` attribute is only valid on this padded buffer.
|
|
// When forwarding to vector.transfer_write, the attribute must be reset
|
|
// conservatively.
|
|
rewriter.create<vector::TransferWriteOp>(
|
|
xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(),
|
|
xferOp.permutation_map(), ArrayAttr());
|
|
|
|
rewriter.eraseOp(copyOp);
|
|
rewriter.eraseOp(xferOp);
|
|
|
|
return success();
|
|
}
|