Files
clang-p2996/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
Tobias Gysi 93f9922d65 [mlir][linalg] adding operation to access the iteration index of enclosing linalg ops.
The `linalg.index` operation provides access to the iteration indexes of immediately enclosing linalg operations. It takes a dimension `dim` attribute and returns the iteration index in the given dimension. Having `linalg.index` allows us to unify `linalg.generic` and `linalg.indexed_generic` and also enables index access in named operations.

Differential Revision: https://reviews.llvm.org/D100292
2021-04-12 13:37:17 +00:00

820 lines
33 KiB
C++

//===- Vectorization.cpp - Implementation of linalg Vectorization ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the linalg dialect Vectorization transformations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/EDSC/Intrinsics.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <type_traits>
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::linalg;
using llvm::dbgs;
#define DEBUG_TYPE "linalg-vectorization"
/// Return the unique instance of OpType in `block` if it is indeed unique.
/// Return null if none or more than 1 instances exist.
template <typename OpType>
static OpType getSingleOpOfType(Block &block) {
OpType res;
block.walk([&](OpType op) {
if (res) {
res = nullptr;
return WalkResult::interrupt();
}
res = op;
return WalkResult::advance();
});
return res;
}
/// Helper data structure to represent the result of vectorization.
/// In certain specific cases, like terminators, we do not want to propagate/
enum VectorizationStatus {
/// Op failed to vectorize.
Failure = 0,
/// Op vectorized and custom function took care of replacement logic
NoReplace,
/// Op vectorized into a new Op whose results will replace original Op's
/// results.
NewOp
// TODO: support values if Op vectorized to Many-Ops whose results we need to
// aggregate for replacement.
};
struct VectorizationResult {
/// Return status from vectorizing the current op.
enum VectorizationStatus status = VectorizationStatus::Failure;
/// New vectorized operation to replace the current op.
/// Replacement behavior is specified by `status`.
Operation *newOp;
};
/// Return a vector type of the same shape and element type as the (assumed)
/// ShapedType of `v`.
static VectorType extractVectorTypeFromShapedValue(Value v) {
auto st = v.getType().cast<ShapedType>();
if (st.isa<MemRefType>() && st.getShape().empty())
return VectorType();
return VectorType::get(st.getShape(), st.getElementType());
}
/// Build a vector.transfer_read from `source` at indices set to all `0`.
/// If source has rank zero, build an memref.load.
/// Return the produced value.
static Value buildVectorRead(OpBuilder &builder, Value source,
VectorType vectorType, AffineMap map) {
edsc::ScopedContext scope(builder);
auto shapedType = source.getType().cast<ShapedType>();
if (vectorType) {
SmallVector<Value> indices(shapedType.getRank(), std_constant_index(0));
if (map)
return vector_transfer_read(vectorType, source, indices, map);
return vector_transfer_read(vectorType, source, indices);
}
return memref_load(source);
}
/// Build a vector.transfer_write of `value` into `dest` at indices set to all
/// `0`. If `dest` has null rank, build an memref.store.
/// Return the produced value or null if no value is produced.
static Value buildVectorWrite(OpBuilder &builder, Value value, Value dest) {
edsc::ScopedContext scope(builder);
Operation *write;
auto shapedType = dest.getType().cast<ShapedType>();
if (VectorType vectorType = extractVectorTypeFromShapedValue(dest)) {
SmallVector<Value> indices(shapedType.getRank(), std_constant_index(0));
if (vectorType != value.getType())
value = vector_broadcast(vectorType, value);
write = vector_transfer_write(value, dest, indices);
} else {
write = memref_store(value, dest);
}
LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorized op: " << *write);
if (!write->getResults().empty())
return write->getResult(0);
return Value();
}
/// If value of assumed VectorType has a shape different than `shape`, buil and
/// return a new vector.broadcast to `shape`.
/// Otherwise, just return value.
static Value broadcastIfNeeded(OpBuilder &builder, Value value,
ArrayRef<int64_t> shape) {
auto vecType = value.getType().dyn_cast<VectorType>();
if (shape.empty() || (vecType != nullptr && vecType.getShape() == shape))
return value;
auto newVecType = VectorType::get(shape, vecType ? vecType.getElementType()
: value.getType());
return builder.create<vector::BroadcastOp>(
builder.getInsertionPoint()->getLoc(), newVecType, value);
}
// Custom vectorization function type. Produce a vector form of Operation*
// assuming all its vectorized operands are already in the BlockAndValueMapping.
// Return nullptr if the Operation cannot be vectorized.
using CustomVectorizationHook = std::function<VectorizationResult(
Operation *, const BlockAndValueMapping &)>;
/// Helper function to vectorize the terminator of a `linalgOp`. New result
/// vector values are appended to `newResults`. Return
/// VectorizationStatus::NoReplace to signal the vectorization algorithm that it
/// should not try to map produced operations and instead return the results
/// using the `newResults` vector making them available to the
/// vectorization algorithm for RAUW. This function is meant to be used as a
/// CustomVectorizationHook.
static VectorizationResult
vectorizeLinalgYield(OpBuilder &builder, Operation *op,
const BlockAndValueMapping &bvm, LinalgOp linalgOp,
SmallVectorImpl<Value> &newResults) {
auto yieldOp = dyn_cast<linalg::YieldOp>(op);
if (!yieldOp)
return VectorizationResult{VectorizationStatus::Failure, nullptr};
for (auto outputs : llvm::enumerate(yieldOp.values())) {
// TODO: Scan for an opportunity for reuse.
// TODO: use a map.
Value vectorValue = bvm.lookup(outputs.value());
Value newResult = buildVectorWrite(builder, vectorValue,
linalgOp.getOutput(outputs.index()));
if (newResult)
newResults.push_back(newResult);
}
return VectorizationResult{VectorizationStatus::NoReplace, nullptr};
}
/// Generic vectorization for a single operation `op`, given already vectorized
/// operands carried by `bvm`. Vectorization occurs as follows:
/// 1. Try to apply any of the `customVectorizationHooks` and return its
/// result on success.
/// 2. Clone any constant in the current scope without vectorization: each
/// consumer of the constant will later determine the shape to which the
/// constant needs to be broadcast to.
/// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose
/// of the `customVectorizationHooks` to cover such cases.
/// 4. Clone `op` in vector form to a vector of shape prescribed by the first
/// operand of maximal rank. Other operands have smaller rank and are
/// broadcast accordingly. It is assumed this broadcast is always legal,
/// otherwise, it means one of the `customVectorizationHooks` is incorrect.
///
/// This function assumes all operands of `op` have been vectorized and are in
/// the `bvm` mapping. As a consequence, this function is meant to be called on
/// a topologically-sorted list of ops.
/// This function does not update `bvm` but returns a VectorizationStatus that
/// instructs the caller what `bvm` update needs to occur.
static VectorizationResult
vectorizeOneOp(OpBuilder &builder, Operation *op,
const BlockAndValueMapping &bvm,
ArrayRef<CustomVectorizationHook> customVectorizationHooks) {
LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorize op " << *op);
// 1. Try to apply any CustomVectorizationHook.
if (!customVectorizationHooks.empty()) {
for (auto &customFunc : customVectorizationHooks) {
VectorizationResult result = customFunc(op, bvm);
if (result.status == VectorizationStatus::Failure)
continue;
return result;
}
}
// 2. Constant ops don't get vectorized but rather broadcasted at their users.
// Clone so that the constant is not confined to the linalgOp block .
if (isa<ConstantOp>(op))
return VectorizationResult{VectorizationStatus::NewOp, builder.clone(*op)};
// 3. Only ElementwiseMappable are allowed in the generic vectorization.
if (!OpTrait::hasElementwiseMappableTraits(op))
return VectorizationResult{VectorizationStatus::Failure, nullptr};
// 4. Generic vectorization path for ElementwiseMappable ops.
// a. first get the first max ranked shape.
SmallVector<int64_t, 4> firstMaxRankedShape;
for (Value operand : op->getOperands()) {
auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>();
if (vt && firstMaxRankedShape.size() < vt.getShape().size())
firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end());
}
// b. broadcast each op if needed.
auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) {
return firstMaxRankedShape.empty()
? bvm.lookup(v)
: broadcastIfNeeded(builder, bvm.lookup(v), firstMaxRankedShape);
});
// c. for elementwise, the result is the vector with the firstMaxRankedShape
auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) {
return firstMaxRankedShape.empty()
? t
: VectorType::get(firstMaxRankedShape, t);
});
// Build and return the new op.
OperationState state(op->getLoc(), op->getName());
state.addAttributes(op->getAttrs());
state.addOperands(llvm::to_vector<4>(vectorizedOperands));
state.addTypes(llvm::to_vector<4>(returnTypes));
return VectorizationResult{VectorizationStatus::NewOp,
builder.createOperation(state)};
}
/// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp.
static bool hasOnlyScalarElementwiseOp(Region &r) {
if (!llvm::hasSingleElement(r))
return false;
for (Operation &op : r.front()) {
if (!(isa<ConstantOp, linalg::YieldOp>(op) ||
OpTrait::hasElementwiseMappableTraits(&op)) ||
llvm::any_of(op.getResultTypes(),
[](Type type) { return !type.isIntOrIndexOrFloat(); }))
return false;
}
return true;
}
// Return true if the op is an element-wise linalg op.
static bool isElementwise(Operation *op) {
auto linalgOp = dyn_cast<linalg::LinalgOp>(op);
if (!linalgOp)
return false;
if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops())
return false;
// TODO: relax the restrictions on indexing map.
for (unsigned i = 0, e = linalgOp.getNumOutputs(); i < e; i++) {
if (!linalgOp.getOutputIndexingMap(i).isIdentity())
return false;
}
if (linalgOp->getNumRegions() != 1)
return false;
return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0));
}
// Calculate the map to apply to transfer_read to convert the input shape into
// the output shape.
static AffineMap getTransferReadMap(LinalgOp linalgOp, unsigned argIndex) {
AffineMap linalgMap = linalgOp.getIndexingMap(argIndex);
MLIRContext *context = linalgMap.getContext();
AffineExpr zero = mlir::getAffineConstantExpr(0, context);
SmallVector<AffineExpr, 4> exprs(linalgMap.getNumInputs(), zero);
for (unsigned i : llvm::seq(unsigned(0), linalgMap.getNumResults())) {
exprs[linalgMap.getDimPosition(i)] = getAffineDimExpr(i, context);
}
return AffineMap::get(linalgMap.getNumResults(), /*symbolCount=*/0, exprs,
context);
}
/// Generic vectorization function that rewrites the body of a `linalgOp` into
/// vector form. Generic vectorization proceeds as follows:
/// 1. Verify the `linalgOp` has one non-empty region.
/// 2. Values defined above the region are mapped to themselves and will be
/// broadcasted on a per-need basis by their consumers.
/// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d
/// load).
/// TODO: Reuse opportunities for RAR dependencies.
/// 4. Register CustomVectorizationHook for YieldOp to capture the results.
/// 5. Iteratively call vectorizeOneOp on the region operations.
LogicalResult vectorizeAsLinalgGeneric(
OpBuilder &builder, LinalgOp linalgOp, SmallVectorImpl<Value> &newResults,
ArrayRef<CustomVectorizationHook> customVectorizationHooks = {}) {
// 1. Fail to vectorize if the operation does not have one non-empty region.
if (linalgOp->getNumRegions() != 1 || linalgOp->getRegion(0).empty())
return failure();
auto &block = linalgOp->getRegion(0).front();
BlockAndValueMapping bvm;
// 2. Values defined above the region can only be broadcast for now. Make them
// map to themselves.
llvm::SetVector<Value> valuesSet;
mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet);
bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef());
// 3. Turn all BBArgs into vector.transfer_read / load.
SmallVector<AffineMap> indexings;
for (auto bbarg : block.getArguments()) {
Value vectorArg = linalgOp.getShapedOperand(bbarg.getArgNumber());
AffineMap map;
VectorType vectorType = extractVectorTypeFromShapedValue(vectorArg);
if (isElementwise(linalgOp) &&
!linalgOp.getIndexingMap(bbarg.getArgNumber()).isMinorIdentity()) {
// Currently assume we don't support output permutations.
assert(linalgOp.getNumOutputs() > 0 &&
linalgOp.getOutputIndexingMap(0).isIdentity());
ArrayRef<int64_t> outputShape =
linalgOp.getOutputShapedType(0).getShape();
vectorType = VectorType::get(outputShape, vectorType.getElementType());
map = getTransferReadMap(linalgOp, bbarg.getArgNumber());
}
Value vectorRead = buildVectorRead(builder, vectorArg, vectorType, map);
LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vectorized bbarg("
<< bbarg.getArgNumber() << "): " << vectorRead);
bvm.map(bbarg, vectorRead);
bvm.map(vectorArg, vectorRead);
}
// 4. Register CustomVectorizationHook for yieldOp.
CustomVectorizationHook vectorizeYield =
[&](Operation *op,
const BlockAndValueMapping &bvm) -> VectorizationResult {
return vectorizeLinalgYield(builder, op, bvm, linalgOp, newResults);
};
// Append the vectorizeYield hook.
auto hooks = llvm::to_vector<4>(customVectorizationHooks);
hooks.push_back(vectorizeYield);
// 5. Iteratively call `vectorizeOneOp` to each op in the slice.
for (Operation &op : block.getOperations()) {
VectorizationResult result = vectorizeOneOp(builder, &op, bvm, hooks);
if (result.status == VectorizationStatus::Failure) {
LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: failed to vectorize: " << op);
return failure();
}
if (result.status == VectorizationStatus::NewOp) {
LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vector op: "
<< *result.newOp;);
bvm.map(op.getResults(), result.newOp->getResults());
}
}
return success();
}
static LogicalResult vectorizeContraction(OpBuilder &builder, LinalgOp linalgOp,
SmallVectorImpl<Value> &newResults) {
assert(isaContractionOpInterface(linalgOp) &&
"expected vectorizeContraction preconditions to be met");
Location loc = linalgOp.getLoc();
// Vectorize other ops as vector contraction.
// TODO: interface.
LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: "
<< "Rewrite linalg op as vector.contract: ";
linalgOp.dump());
// Special function that describes how to vectorize the multiplication op in a
// linalg contraction.
CustomVectorizationHook vectorizeContraction =
[&](Operation *op,
const BlockAndValueMapping &bvm) -> VectorizationResult {
if (!isa<MulIOp, MulFOp>(op))
return VectorizationResult{VectorizationStatus::Failure, nullptr};
auto outShape = linalgOp.getOutputShapedType(0).getShape();
auto vType = outShape.empty()
? op->getResult(0).getType()
: VectorType::get(outShape, op->getResult(0).getType());
auto zero =
builder.create<ConstantOp>(loc, vType, builder.getZeroAttr(vType));
Operation *contract = builder.create<vector::ContractionOp>(
loc, bvm.lookup(op->getOperand(0)), bvm.lookup(op->getOperand(1)), zero,
linalgOp.indexing_maps(), linalgOp.iterator_types());
return VectorizationResult{VectorizationStatus::NewOp, contract};
};
return vectorizeAsLinalgGeneric(builder, linalgOp, newResults,
{vectorizeContraction});
}
LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) {
auto linalgOp = cast<linalg::LinalgOp>(op);
// All types must be static shape to go to vector.
for (Value operand : linalgOp.getShapedOperands())
if (!operand.getType().cast<ShapedType>().hasStaticShape())
return failure();
for (Type outputTensorType : linalgOp.getOutputTensorTypes())
if (!outputTensorType.cast<ShapedType>().hasStaticShape())
return failure();
// TODO: remove once index ops are supported.
if (linalgOp.hasIndexSemantics())
return failure();
if (isElementwise(op))
return success();
return success(isaContractionOpInterface(linalgOp));
}
LogicalResult
mlir::linalg::vectorizeLinalgOp(OpBuilder &builder, Operation *op,
SmallVectorImpl<Value> &newResults) {
if (failed(vectorizeLinalgOpPrecondition(op)))
return failure();
edsc::ScopedContext scope(builder, op->getLoc());
if (isElementwise(op)) {
LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: "
<< "Vectorize linalg op as a generic: " << *op);
return vectorizeAsLinalgGeneric(builder, cast<LinalgOp>(op), newResults);
}
return vectorizeContraction(builder, cast<LinalgOp>(op), newResults);
}
//----------------------------------------------------------------------------//
// Misc. vectorization patterns.
//----------------------------------------------------------------------------//
/// Rewrite a PadTensorOp into a sequence of InitTensorOp, TransferReadOp and
/// TransferWriteOp. For now, this only applies when all low and high paddings
/// are determined to be zero.
LogicalResult PadTensorOpVectorizationPattern::matchAndRewrite(
linalg::PadTensorOp padOp, PatternRewriter &rewriter) const {
// Helper function to determine whether an OpFoldResult is not a zero Index.
auto isNotZeroIndex = [](OpFoldResult ofr) {
if (Attribute attr = ofr.dyn_cast<Attribute>())
return attr.cast<IntegerAttr>().getInt() != 0;
Value v = ofr.get<Value>();
if (auto constOp = v.getDefiningOp<ConstantOp>())
if (auto intAttr = constOp.getValue().dyn_cast<IntegerAttr>())
return intAttr.getValue().getSExtValue() != 0;
return true;
};
auto resultShapedType = padOp.result().getType().cast<ShapedType>();
// Bail on non-static shapes.
if (!resultShapedType.hasStaticShape())
return failure();
// If any pad_low is not a static 0, needs a mask. Bail for now.
if (llvm::any_of(padOp.getMixedLowPad(), isNotZeroIndex))
return failure();
VectorType vectorType = extractVectorTypeFromShapedValue(padOp.result());
if (!vectorType)
return failure();
// Only support padding with a constant for now, i.e. either:
// 1. A BBarg from a different block.
// 2. A value defined outside of the current block.
Block &block = padOp.region().front();
auto yieldOp = cast<YieldOp>(block.getTerminator());
assert(yieldOp.getNumOperands() == 1 && "expected single operand yield");
Value padValue = yieldOp.values().front();
Operation *definingOp = padValue.getDefiningOp();
if (definingOp && definingOp->getBlock() == &block)
return failure();
if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block)
return failure();
// TODO: if any pad_high is not a static 0, needs a mask. For now, just bail.
if (llvm::any_of(padOp.getMixedHighPad(),
[&](OpFoldResult ofr) { return isNotZeroIndex(ofr); }))
return failure();
// Now we can rewrite as InitTensorOp + TransferReadOp@[0..0] +
// TransferWriteOp@[0..0].
SmallVector<Value> indices(
resultShapedType.getRank(),
rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0));
Value read = rewriter.create<vector::TransferReadOp>(
padOp.getLoc(), vectorType, padOp.source(), indices, padValue);
Value init =
rewriter.create<InitTensorOp>(padOp.getLoc(), resultShapedType.getShape(),
resultShapedType.getElementType());
rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(padOp, read, init,
indices);
return success();
}
// TODO: cleanup all the convolution vectorization patterns.
template <class ConvOp, int N>
LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite(
ConvOp op, PatternRewriter &rewriter) const {
Location loc = op.getLoc();
MLIRContext *context = op.getContext();
edsc::ScopedContext scope(rewriter, loc);
ShapedType inShapeType = op.getInputShapedType(0);
ShapedType kShapeType = op.getInputShapedType(1);
ArrayRef<int64_t> inShape = inShapeType.getShape();
ArrayRef<int64_t> kShape = kShapeType.getShape();
if (!inShapeType.hasStaticShape() || !kShapeType.hasStaticShape())
return failure();
SmallVector<AffineExpr, 4> mapping;
SmallVector<int64_t, 4> vectorDims;
// Fail to apply when the size of not vectorized dimension is not 1.
for (unsigned i = 0; i < N; i++) {
if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1))
return failure();
if (mask[i] && inShape[i] != kShape[i])
return failure();
if (mask[i]) {
mapping.push_back(getAffineDimExpr(i, context));
vectorDims.push_back(inShape[i]);
}
}
Value input = op.getInput(0);
Value kernel = op.getInput(1);
Value output = op.getOutputBuffer(0);
unsigned rank = inShapeType.getRank();
unsigned numDims = mapping.size();
Type elemType = inShapeType.getElementType();
auto map = AffineMap::get(rank, 0, mapping, context);
SmallVector<Value, 4> zeros(rank, std_constant_index(0));
auto vecType = VectorType::get(vectorDims, elemType);
auto inputVec = vector_transfer_read(vecType, input, zeros, map);
auto kernelVec = vector_transfer_read(vecType, kernel, zeros, map);
auto acc = std_constant(elemType, rewriter.getZeroAttr(elemType));
std::array<AffineMap, 3> indexingMaps{
AffineMap::getMultiDimIdentityMap(numDims, context),
AffineMap::getMultiDimIdentityMap(numDims, context),
AffineMap::get(numDims, 0, {}, context)};
std::vector<StringRef> iteratorTypes(numDims, "reduction");
auto result = rewriter.create<vector::ContractionOp>(
loc, inputVec, kernelVec, acc,
rewriter.getAffineMapArrayAttr(indexingMaps),
rewriter.getStrArrayAttr(iteratorTypes));
rewriter.create<memref::StoreOp>(loc, result, output, ValueRange(zeros));
rewriter.eraseOp(op);
return success();
}
using ConvOpConst = ConvOpVectorization<ConvWOp, 1>;
/// Inserts tiling, promotion and vectorization pattern for ConvOp
/// conversion into corresponding pattern lists.
template <typename ConvOp, unsigned N>
static void populateVectorizationPatterns(
RewritePatternSet &tilingPatterns, RewritePatternSet &promotionPatterns,
RewritePatternSet &vectorizationPatterns, ArrayRef<int64_t> tileSizes) {
auto *context = tilingPatterns.getContext();
if (tileSizes.size() < N)
return;
constexpr static StringRef kTiledMarker = "TILED";
constexpr static StringRef kPromotedMarker = "PROMOTED";
tilingPatterns.add<LinalgTilingPattern<ConvOp>>(
context, LinalgTilingOptions().setTileSizes(tileSizes),
LinalgTransformationFilter(ArrayRef<Identifier>{},
Identifier::get(kTiledMarker, context)));
promotionPatterns.add<LinalgPromotionPattern<ConvOp>>(
context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true),
LinalgTransformationFilter(Identifier::get(kTiledMarker, context),
Identifier::get(kPromotedMarker, context)));
SmallVector<bool, 4> mask(N);
int offset = tileSizes.size() - N;
std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(),
[](int64_t i) -> bool { return i > 1; });
vectorizationPatterns.add<ConvOpVectorization<ConvOp, N>>(context, mask);
}
void mlir::linalg::populateConvVectorizationPatterns(
MLIRContext *context, SmallVectorImpl<RewritePatternSet> &patterns,
ArrayRef<int64_t> tileSizes) {
RewritePatternSet tiling(context);
RewritePatternSet promotion(context);
RewritePatternSet vectorization(context);
populateVectorizationPatterns<ConvWOp, 1>(tiling, promotion, vectorization,
tileSizes);
populateVectorizationPatterns<ConvNWCOp, 3>(tiling, promotion, vectorization,
tileSizes);
populateVectorizationPatterns<ConvInputNWCFilterWCFOp, 3>(
tiling, promotion, vectorization, tileSizes);
populateVectorizationPatterns<ConvNCWOp, 3>(tiling, promotion, vectorization,
tileSizes);
populateVectorizationPatterns<ConvInputNCWFilterWCFOp, 3>(
tiling, promotion, vectorization, tileSizes);
populateVectorizationPatterns<ConvHWOp, 2>(tiling, promotion, vectorization,
tileSizes);
populateVectorizationPatterns<ConvNHWCOp, 4>(tiling, promotion, vectorization,
tileSizes);
populateVectorizationPatterns<ConvInputNHWCFilterHWCFOp, 4>(
tiling, promotion, vectorization, tileSizes);
populateVectorizationPatterns<ConvNCHWOp, 4>(tiling, promotion, vectorization,
tileSizes);
populateVectorizationPatterns<ConvInputNCHWFilterHWCFOp, 4>(
tiling, promotion, vectorization, tileSizes);
populateVectorizationPatterns<ConvDHWOp, 3>(tiling, promotion, vectorization,
tileSizes);
populateVectorizationPatterns<ConvNDHWCOp, 5>(tiling, promotion,
vectorization, tileSizes);
populateVectorizationPatterns<ConvInputNDHWCFilterDHWCFOp, 5>(
tiling, promotion, vectorization, tileSizes);
populateVectorizationPatterns<ConvNCDHWOp, 5>(tiling, promotion,
vectorization, tileSizes);
populateVectorizationPatterns<ConvInputNCDHWFilterDHWCFOp, 5>(
tiling, promotion, vectorization, tileSizes);
patterns.push_back(std::move(tiling));
patterns.push_back(std::move(promotion));
patterns.push_back(std::move(vectorization));
}
//----------------------------------------------------------------------------//
// Forwarding patterns
//----------------------------------------------------------------------------//
/// Check whether there is any interleaved use of any `values` between `firstOp`
/// and `secondOp`. Conservatively return `true` if any op or value is in a
/// different block.
static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp,
ValueRange values) {
if (firstOp->getBlock() != secondOp->getBlock() ||
!firstOp->isBeforeInBlock(secondOp)) {
LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
<< "interleavedUses precondition failed, firstOp: "
<< *firstOp << ", second op: " << *secondOp);
return true;
}
for (auto v : values) {
for (auto &u : v.getUses()) {
Operation *owner = u.getOwner();
if (owner == firstOp || owner == secondOp)
continue;
// TODO: this is too conservative, use dominance info in the future.
if (owner->getBlock() == firstOp->getBlock() &&
(owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner)))
continue;
LLVM_DEBUG(llvm::dbgs()
<< "\n[" DEBUG_TYPE "]: "
<< " found interleaved op " << *owner
<< ", firstOp: " << *firstOp << ", second op: " << *secondOp);
return true;
}
}
return false;
}
/// Return the unique subview use of `v` if it is indeed unique, null otherwise.
static memref::SubViewOp getSubViewUseIfUnique(Value v) {
memref::SubViewOp subViewOp;
for (auto &u : v.getUses()) {
if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) {
if (subViewOp)
return memref::SubViewOp();
subViewOp = newSubViewOp;
}
}
return subViewOp;
}
/// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
/// when available.
LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite(
vector::TransferReadOp xferOp, PatternRewriter &rewriter) const {
// Transfer into `view`.
Value viewOrAlloc = xferOp.source();
if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
!viewOrAlloc.getDefiningOp<memref::AllocOp>())
return failure();
LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " << viewOrAlloc);
// Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
if (!subViewOp)
return failure();
Value subView = subViewOp.getResult();
LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
<< "with subView " << subView);
// Find the copy into `subView` without interleaved uses.
CopyOp copyOp;
for (auto &u : subView.getUses()) {
if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
if (newCopyOp.getOutputBuffer(0) != subView)
continue;
LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
<< "copy candidate " << *newCopyOp);
if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView}))
continue;
copyOp = newCopyOp;
break;
}
}
if (!copyOp)
return failure();
LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
<< "with copy " << *copyOp);
// Find the fill into `viewOrAlloc` without interleaved uses before the copy.
FillOp maybeFillOp;
for (auto &u : viewOrAlloc.getUses()) {
if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) {
if (newFillOp.getOutputBuffer(0) != viewOrAlloc)
continue;
LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
<< "fill candidate " << *newFillOp);
if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView}))
continue;
maybeFillOp = newFillOp;
break;
}
}
// Ensure padding matches.
if (maybeFillOp && xferOp.padding() != maybeFillOp.value())
return failure();
if (maybeFillOp)
LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
<< "with maybeFillOp " << *maybeFillOp);
// `in` is the subview that linalg.copy reads. Replace it.
Value in = copyOp.getInput(0);
// linalg.copy + linalg.fill can be used to create a padded local buffer.
// The `masked` attribute is only valid on this padded buffer.
// When forwarding to vector.transfer_read, the attribute must be reset
// conservatively.
Value res = rewriter.create<vector::TransferReadOp>(
xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(),
xferOp.permutation_map(), xferOp.padding(), ArrayAttr());
if (maybeFillOp)
rewriter.eraseOp(maybeFillOp);
rewriter.eraseOp(copyOp);
rewriter.replaceOp(xferOp, res);
return success();
}
/// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
/// when available.
LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite(
vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const {
// Transfer into `viewOrAlloc`.
Value viewOrAlloc = xferOp.source();
if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
!viewOrAlloc.getDefiningOp<memref::AllocOp>())
return failure();
// Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
if (!subViewOp)
return failure();
Value subView = subViewOp.getResult();
// Find the copy from `subView` without interleaved uses.
CopyOp copyOp;
for (auto &u : subViewOp.getResult().getUses()) {
if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
if (newCopyOp.getInput(0) != subView)
continue;
if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView}))
continue;
copyOp = newCopyOp;
break;
}
}
if (!copyOp)
return failure();
// `out` is the subview copied into that we replace.
Value out = copyOp.getOutputBuffer(0);
// Forward vector.transfer into copy.
// linalg.copy + linalg.fill can be used to create a padded local buffer.
// The `masked` attribute is only valid on this padded buffer.
// When forwarding to vector.transfer_write, the attribute must be reset
// conservatively.
rewriter.create<vector::TransferWriteOp>(
xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(),
xferOp.permutation_map(), ArrayAttr());
rewriter.eraseOp(copyOp);
rewriter.eraseOp(xferOp);
return success();
}