A very elaborate, but also very fun revision because all puzzle pieces are finally "falling in place". 1. replaces lingalg annotations + flags with proper sparse tensor types 2. add rigorous verification on sparse tensor type and sparse primitives 3. removes glue and clutter on opaque pointers in favor of sparse tensor types 4. migrates all tests to use sparse tensor types NOTE: next CL will remove *all* obsoleted sparse code in Linalg Reviewed By: bixia Differential Revision: https://reviews.llvm.org/D102095
141 lines
5.1 KiB
C++
141 lines
5.1 KiB
C++
//===- SparsificationPass.cpp - Pass for autogen spares tensor code -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
|
|
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
|
|
#include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::sparse_tensor;
|
|
|
|
namespace {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Passes declaration.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define GEN_PASS_CLASSES
|
|
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h.inc"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Passes implementation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
struct SparsificationPass : public SparsificationBase<SparsificationPass> {
|
|
|
|
SparsificationPass() = default;
|
|
SparsificationPass(const SparsificationPass &pass) {}
|
|
|
|
Option<int32_t> parallelization{
|
|
*this, "parallelization-strategy",
|
|
llvm::cl::desc("Set the parallelization strategy"), llvm::cl::init(0)};
|
|
|
|
Option<int32_t> vectorization{
|
|
*this, "vectorization-strategy",
|
|
llvm::cl::desc("Set the vectorization strategy"), llvm::cl::init(0)};
|
|
|
|
Option<int32_t> vectorLength{
|
|
*this, "vl", llvm::cl::desc("Set the vector length"), llvm::cl::init(1)};
|
|
|
|
Option<bool> fastOutput{*this, "fast-output",
|
|
llvm::cl::desc("Allows fast output buffers"),
|
|
llvm::cl::init(false)};
|
|
|
|
/// Returns parallelization strategy given on command line.
|
|
SparseParallelizationStrategy parallelOption() {
|
|
switch (parallelization) {
|
|
default:
|
|
return SparseParallelizationStrategy::kNone;
|
|
case 1:
|
|
return SparseParallelizationStrategy::kDenseOuterLoop;
|
|
case 2:
|
|
return SparseParallelizationStrategy::kAnyStorageOuterLoop;
|
|
case 3:
|
|
return SparseParallelizationStrategy::kDenseAnyLoop;
|
|
case 4:
|
|
return SparseParallelizationStrategy::kAnyStorageAnyLoop;
|
|
}
|
|
}
|
|
|
|
/// Returns vectorization strategy given on command line.
|
|
SparseVectorizationStrategy vectorOption() {
|
|
switch (vectorization) {
|
|
default:
|
|
return SparseVectorizationStrategy::kNone;
|
|
case 1:
|
|
return SparseVectorizationStrategy::kDenseInnerLoop;
|
|
case 2:
|
|
return SparseVectorizationStrategy::kAnyStorageInnerLoop;
|
|
}
|
|
}
|
|
|
|
void runOnOperation() override {
|
|
auto *ctx = &getContext();
|
|
RewritePatternSet patterns(ctx);
|
|
// Translate strategy flags to strategy options.
|
|
SparsificationOptions options(parallelOption(), vectorOption(),
|
|
vectorLength, fastOutput);
|
|
// Apply rewriting.
|
|
populateSparsificationPatterns(patterns, options);
|
|
vector::populateVectorToVectorCanonicalizationPatterns(patterns);
|
|
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
|
|
}
|
|
};
|
|
|
|
class SparseTensorTypeConverter : public TypeConverter {
|
|
public:
|
|
SparseTensorTypeConverter() {
|
|
addConversion([](Type type) { return type; });
|
|
addConversion(convertSparseTensorTypes);
|
|
}
|
|
// Maps each sparse tensor type to an opaque pointer.
|
|
static Optional<Type> convertSparseTensorTypes(Type type) {
|
|
if (getSparseTensorEncoding(type) != nullptr)
|
|
return LLVM::LLVMPointerType::get(IntegerType::get(type.getContext(), 8));
|
|
return llvm::None;
|
|
}
|
|
};
|
|
|
|
struct SparseTensorConversionPass
|
|
: public SparseTensorConversionBase<SparseTensorConversionPass> {
|
|
void runOnOperation() override {
|
|
auto *ctx = &getContext();
|
|
RewritePatternSet patterns(ctx);
|
|
SparseTensorTypeConverter converter;
|
|
ConversionTarget target(*ctx);
|
|
target.addIllegalOp<NewOp, ToPointersOp, ToIndicesOp, ToValuesOp>();
|
|
target.addDynamicallyLegalOp<FuncOp>(
|
|
[&](FuncOp op) { return converter.isSignatureLegal(op.getType()); });
|
|
target.addDynamicallyLegalOp<CallOp>([&](CallOp op) {
|
|
return converter.isSignatureLegal(op.getCalleeType());
|
|
});
|
|
target.addDynamicallyLegalOp<ReturnOp>(
|
|
[&](ReturnOp op) { return converter.isLegal(op.getOperandTypes()); });
|
|
target.addLegalOp<ConstantOp>();
|
|
populateFuncOpTypeConversionPattern(patterns, converter);
|
|
populateCallOpTypeConversionPattern(patterns, converter);
|
|
populateSparseTensorConversionPatterns(converter, patterns);
|
|
if (failed(applyPartialConversion(getOperation(), target,
|
|
std::move(patterns))))
|
|
signalPassFailure();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
std::unique_ptr<Pass> mlir::createSparsificationPass() {
|
|
return std::make_unique<SparsificationPass>();
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::createSparseTensorConversionPass() {
|
|
return std::make_unique<SparseTensorConversionPass>();
|
|
}
|