Files
clang-p2996/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
bixia1 974b4bf9fd [mlir][sparse] Add expand_symmetry attribute to the new operator.
The attribute tells the operator to handle symmetric structures for 2D tensors.
By default, the operator assumes the input tensor is not symmetric.

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D138230
2022-11-23 16:32:15 -08:00

799 lines
28 KiB
C++

//===- SparseTensorDialect.cpp - Sparse tensor dialect implementation -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <utility>
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/FormatVariadic.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
//===----------------------------------------------------------------------===//
// TensorDialect Attribute Methods.
//===----------------------------------------------------------------------===//
#define GET_ATTRDEF_CLASSES
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
static bool acceptBitWidth(unsigned bitWidth) {
switch (bitWidth) {
case 0:
case 8:
case 16:
case 32:
case 64:
return true;
default:
return false;
}
}
Attribute SparseTensorEncodingAttr::parse(AsmParser &parser, Type type) {
if (failed(parser.parseLess()))
return {};
// Parse the data as a dictionary.
DictionaryAttr dict;
if (failed(parser.parseAttribute(dict)))
return {};
if (failed(parser.parseGreater()))
return {};
// Process the data from the parsed dictionary value into struct-like data.
SmallVector<DimLevelType> dlt;
AffineMap dimOrd = {};
AffineMap higherOrd = {};
unsigned ptr = 0;
unsigned ind = 0;
for (const NamedAttribute &attr : dict) {
if (attr.getName() == "dimLevelType") {
auto arrayAttr = attr.getValue().dyn_cast<ArrayAttr>();
if (!arrayAttr) {
parser.emitError(parser.getNameLoc(),
"expected an array for dimension level types");
return {};
}
for (auto i : arrayAttr) {
auto strAttr = i.dyn_cast<StringAttr>();
if (!strAttr) {
parser.emitError(parser.getNameLoc(),
"expected a string value in dimension level types");
return {};
}
auto strVal = strAttr.getValue();
if (strVal == "dense") {
dlt.push_back(DimLevelType::Dense);
} else if (strVal == "compressed") {
dlt.push_back(DimLevelType::Compressed);
} else if (strVal == "compressed-nu") {
dlt.push_back(DimLevelType::CompressedNu);
} else if (strVal == "compressed-no") {
dlt.push_back(DimLevelType::CompressedNo);
} else if (strVal == "compressed-nu-no") {
dlt.push_back(DimLevelType::CompressedNuNo);
} else if (strVal == "singleton") {
dlt.push_back(DimLevelType::Singleton);
} else if (strVal == "singleton-nu") {
dlt.push_back(DimLevelType::SingletonNu);
} else if (strVal == "singleton-no") {
dlt.push_back(DimLevelType::SingletonNo);
} else if (strVal == "singleton-nu-no") {
dlt.push_back(DimLevelType::SingletonNuNo);
} else {
parser.emitError(parser.getNameLoc(),
"unexpected dimension level type: ")
<< strVal;
return {};
}
}
} else if (attr.getName() == "dimOrdering") {
auto affineAttr = attr.getValue().dyn_cast<AffineMapAttr>();
if (!affineAttr) {
parser.emitError(parser.getNameLoc(),
"expected an affine map for dimension ordering");
return {};
}
dimOrd = affineAttr.getValue();
} else if (attr.getName() == "higherOrdering") {
auto affineAttr = attr.getValue().dyn_cast<AffineMapAttr>();
if (!affineAttr) {
parser.emitError(parser.getNameLoc(),
"expected an affine map for higher ordering");
return {};
}
higherOrd = affineAttr.getValue();
} else if (attr.getName() == "pointerBitWidth") {
auto intAttr = attr.getValue().dyn_cast<IntegerAttr>();
if (!intAttr) {
parser.emitError(parser.getNameLoc(),
"expected an integral pointer bitwidth");
return {};
}
ptr = intAttr.getInt();
} else if (attr.getName() == "indexBitWidth") {
auto intAttr = attr.getValue().dyn_cast<IntegerAttr>();
if (!intAttr) {
parser.emitError(parser.getNameLoc(),
"expected an integral index bitwidth");
return {};
}
ind = intAttr.getInt();
} else {
parser.emitError(parser.getNameLoc(), "unexpected key: ")
<< attr.getName().strref();
return {};
}
}
// Construct struct-like storage for attribute.
return parser.getChecked<SparseTensorEncodingAttr>(
parser.getContext(), dlt, dimOrd, higherOrd, ptr, ind);
}
void SparseTensorEncodingAttr::print(AsmPrinter &printer) const {
// Print the struct-like storage in dictionary fashion.
printer << "<{ dimLevelType = [ ";
for (unsigned i = 0, e = getDimLevelType().size(); i < e; i++) {
switch (getDimLevelType()[i]) {
case DimLevelType::Undef:
// TODO: should probably raise an error instead of printing it...
printer << "\"undef\"";
break;
case DimLevelType::Dense:
printer << "\"dense\"";
break;
case DimLevelType::Compressed:
printer << "\"compressed\"";
break;
case DimLevelType::CompressedNu:
printer << "\"compressed-nu\"";
break;
case DimLevelType::CompressedNo:
printer << "\"compressed-no\"";
break;
case DimLevelType::CompressedNuNo:
printer << "\"compressed-nu-no\"";
break;
case DimLevelType::Singleton:
printer << "\"singleton\"";
break;
case DimLevelType::SingletonNu:
printer << "\"singleton-nu\"";
break;
case DimLevelType::SingletonNo:
printer << "\"singleton-no\"";
break;
case DimLevelType::SingletonNuNo:
printer << "\"singleton-nu-no\"";
break;
}
if (i != e - 1)
printer << ", ";
}
printer << " ]";
// Print remaining members only for non-default values.
if (getDimOrdering() && !getDimOrdering().isIdentity())
printer << ", dimOrdering = affine_map<" << getDimOrdering() << ">";
if (getHigherOrdering())
printer << ", higherOrdering = affine_map<" << getHigherOrdering() << ">";
if (getPointerBitWidth())
printer << ", pointerBitWidth = " << getPointerBitWidth();
if (getIndexBitWidth())
printer << ", indexBitWidth = " << getIndexBitWidth();
printer << " }>";
}
LogicalResult SparseTensorEncodingAttr::verify(
function_ref<InFlightDiagnostic()> emitError,
ArrayRef<DimLevelType> dimLevelType, AffineMap dimOrdering,
AffineMap higherOrdering, unsigned pointerBitWidth,
unsigned indexBitWidth) {
if (!acceptBitWidth(pointerBitWidth))
return emitError() << "unexpected pointer bitwidth: " << pointerBitWidth;
if (!acceptBitWidth(indexBitWidth))
return emitError() << "unexpected index bitwidth: " << indexBitWidth;
if (dimOrdering) {
if (!dimOrdering.isPermutation())
return emitError()
<< "expected a permutation affine map for dimension ordering";
if (dimOrdering.getNumResults() != dimLevelType.size())
return emitError() << "unexpected mismatch in ordering and dimension "
"level types size";
}
if (higherOrdering) {
if (higherOrdering.getNumDims() >= higherOrdering.getNumResults())
return emitError() << "unexpected higher ordering mapping from "
<< higherOrdering.getNumDims() << " to "
<< higherOrdering.getNumResults();
if (higherOrdering.getNumResults() != dimLevelType.size())
return emitError() << "unexpected mismatch in higher ordering and "
"dimension level types size";
}
return success();
}
LogicalResult SparseTensorEncodingAttr::verifyEncoding(
ArrayRef<int64_t> shape, Type elementType,
function_ref<InFlightDiagnostic()> emitError) const {
// Check structural integrity.
if (failed(verify(emitError, getDimLevelType(), getDimOrdering(),
getHigherOrdering(), getPointerBitWidth(),
getIndexBitWidth())))
return failure();
// Check integrity with tensor type specifics. Dimension ordering is optional,
// but we always should have dimension level types for the full rank.
unsigned size = shape.size();
if (size == 0)
return emitError() << "expected non-scalar sparse tensor";
if (getHigherOrdering()) {
if (getHigherOrdering().getNumDims() != size)
return emitError() << "expected an affine map of size " << size
<< " for higher ordering";
// TODO: verification of higher ordering contents
size = getHigherOrdering().getNumResults(); // higher-order size!
}
if (getDimOrdering() && getDimOrdering().getNumResults() != size)
return emitError() << "expected an affine map of size " << size
<< " for dimension ordering";
if (getDimLevelType().size() != size)
return emitError() << "expected an array of size " << size
<< " for dimension level types";
return success();
}
//===----------------------------------------------------------------------===//
// Convenience Methods.
//===----------------------------------------------------------------------===//
SparseTensorEncodingAttr
mlir::sparse_tensor::getSparseTensorEncoding(Type type) {
if (auto ttp = type.dyn_cast<RankedTensorType>())
return ttp.getEncoding().dyn_cast_or_null<SparseTensorEncodingAttr>();
return nullptr;
}
bool mlir::sparse_tensor::isUniqueCOOType(RankedTensorType tp) {
SparseTensorEncodingAttr enc = getSparseTensorEncoding(tp);
if (!enc)
return false;
if (!isCompressedDim(tp, 0))
return false;
for (uint64_t i = 1, e = tp.getRank(); i < e; ++i)
if (!isSingletonDim(tp, i))
return false;
// This works for rank == 1 (unique the only compressed) and rank > 1 (unique
// on the last singleton).
return isUniqueDim(tp, tp.getRank() - 1);
}
uint64_t mlir::sparse_tensor::toOrigDim(const SparseTensorEncodingAttr &enc,
uint64_t d) {
if (enc) {
auto order = enc.getDimOrdering();
if (order) {
assert(order.isPermutation());
return order.getDimPosition(d);
}
}
return d;
}
uint64_t mlir::sparse_tensor::toStoredDim(const SparseTensorEncodingAttr &enc,
uint64_t d) {
if (enc) {
auto order = enc.getDimOrdering();
if (order) {
assert(order.isPermutation());
return order.getPermutedPosition(d);
}
}
return d;
}
uint64_t mlir::sparse_tensor::toOrigDim(RankedTensorType type, uint64_t d) {
assert(d < static_cast<uint64_t>(type.getRank()));
return toOrigDim(getSparseTensorEncoding(type), d);
}
uint64_t mlir::sparse_tensor::toStoredDim(RankedTensorType type, uint64_t d) {
assert(d < static_cast<uint64_t>(type.getRank()));
return toStoredDim(getSparseTensorEncoding(type), d);
}
//===----------------------------------------------------------------------===//
// TensorDialect Operations.
//===----------------------------------------------------------------------===//
static LogicalResult isInBounds(uint64_t dim, Value tensor) {
uint64_t rank = tensor.getType().cast<RankedTensorType>().getRank();
if (dim >= rank)
return failure();
return success(); // in bounds
}
static LogicalResult isMatchingWidth(Value result, unsigned width) {
Type etp = result.getType().cast<MemRefType>().getElementType();
if ((width == 0 && etp.isIndex()) || (width > 0 && etp.isInteger(width)))
return success();
return failure();
}
LogicalResult NewOp::verify() {
if (getExpandSymmetry() &&
getResult().getType().cast<RankedTensorType>().getRank() != 2)
return emitOpError("expand_symmetry can only be used for 2D tensors");
return success();
}
LogicalResult ConvertOp::verify() {
if (auto tp1 = getSource().getType().dyn_cast<RankedTensorType>()) {
if (auto tp2 = getDest().getType().dyn_cast<RankedTensorType>()) {
if (tp1.getRank() != tp2.getRank())
return emitError("unexpected conversion mismatch in rank");
auto shape1 = tp1.getShape();
auto shape2 = tp2.getShape();
// Accept size matches between the source and the destination type
// (e.g. 10 vs. 10, 10 vs. ?, or ? vs. ?), but reject direct mismatches or
// matches that would need a runtime assert (e.g. 10 vs. 20 or ? vs. 10).
for (unsigned d = 0, rank = tp1.getRank(); d < rank; d++)
if (shape1[d] != shape2[d] && shape2[d] != ShapedType::kDynamic)
return emitError("unexpected conversion mismatch in dimension ") << d;
return success();
}
}
return emitError("unexpected type in convert");
}
OpFoldResult ConvertOp::fold(ArrayRef<Attribute> operands) {
Type dstType = getType();
// Fold trivial dense-to-dense convert and leave trivial sparse-to-sparse
// convert for codegen to remove. This is because we use trivial
// sparse-to-sparse convert to tell bufferization that the sparse codegen
// will expand the tensor buffer into sparse tensor storage.
if (!getSparseTensorEncoding(dstType) && dstType == getSource().getType())
return getSource();
return {};
}
LogicalResult ToPointersOp::verify() {
auto e = getSparseTensorEncoding(getTensor().getType());
if (failed(isInBounds(getDimension().getZExtValue(), getTensor())))
return emitError("requested pointers dimension out of bounds");
if (failed(isMatchingWidth(getResult(), e.getPointerBitWidth())))
return emitError("unexpected type for pointers");
return success();
}
LogicalResult ToIndicesOp::verify() {
auto e = getSparseTensorEncoding(getTensor().getType());
if (failed(isInBounds(getDimension().getZExtValue(), getTensor())))
return emitError("requested indices dimension out of bounds");
if (failed(isMatchingWidth(getResult(), e.getIndexBitWidth())))
return emitError("unexpected type for indices");
return success();
}
LogicalResult ToValuesOp::verify() {
RankedTensorType ttp = getTensor().getType().cast<RankedTensorType>();
MemRefType mtp = getResult().getType().cast<MemRefType>();
if (ttp.getElementType() != mtp.getElementType())
return emitError("unexpected mismatch in element types");
return success();
}
//===----------------------------------------------------------------------===//
// TensorDialect Linalg.Generic Operations.
//===----------------------------------------------------------------------===//
template <class T>
static LogicalResult verifyNumBlockArgs(T *op, Region &region,
const char *regionName,
TypeRange inputTypes, Type outputType) {
unsigned numArgs = region.getNumArguments();
unsigned expectedNum = inputTypes.size();
if (numArgs != expectedNum)
return op->emitError() << regionName << " region must have exactly "
<< expectedNum << " arguments";
for (unsigned i = 0; i < numArgs; i++) {
Type typ = region.getArgument(i).getType();
if (typ != inputTypes[i])
return op->emitError() << regionName << " region argument " << (i + 1)
<< " type mismatch";
}
Operation *term = region.front().getTerminator();
YieldOp yield = dyn_cast<YieldOp>(term);
if (!yield)
return op->emitError() << regionName
<< " region must end with sparse_tensor.yield";
if (!yield.getResult() || yield.getResult().getType() != outputType)
return op->emitError() << regionName << " region yield type mismatch";
return success();
}
LogicalResult BinaryOp::verify() {
NamedAttrList attrs = (*this)->getAttrs();
Type leftType = getX().getType();
Type rightType = getY().getType();
Type outputType = getOutput().getType();
Region &overlap = getOverlapRegion();
Region &left = getLeftRegion();
Region &right = getRightRegion();
// Check correct number of block arguments and return type for each
// non-empty region.
LogicalResult regionResult = success();
if (!overlap.empty()) {
regionResult = verifyNumBlockArgs(
this, overlap, "overlap", TypeRange{leftType, rightType}, outputType);
if (failed(regionResult))
return regionResult;
}
if (!left.empty()) {
regionResult =
verifyNumBlockArgs(this, left, "left", TypeRange{leftType}, outputType);
if (failed(regionResult))
return regionResult;
} else if (getLeftIdentity()) {
if (leftType != outputType)
return emitError("left=identity requires first argument to have the same "
"type as the output");
}
if (!right.empty()) {
regionResult = verifyNumBlockArgs(this, right, "right",
TypeRange{rightType}, outputType);
if (failed(regionResult))
return regionResult;
} else if (getRightIdentity()) {
if (rightType != outputType)
return emitError("right=identity requires second argument to have the "
"same type as the output");
}
return success();
}
LogicalResult UnaryOp::verify() {
Type inputType = getX().getType();
Type outputType = getOutput().getType();
LogicalResult regionResult = success();
// Check correct number of block arguments and return type for each
// non-empty region.
Region &present = getPresentRegion();
if (!present.empty()) {
regionResult = verifyNumBlockArgs(this, present, "present",
TypeRange{inputType}, outputType);
if (failed(regionResult))
return regionResult;
}
Region &absent = getAbsentRegion();
if (!absent.empty()) {
regionResult =
verifyNumBlockArgs(this, absent, "absent", TypeRange{}, outputType);
if (failed(regionResult))
return regionResult;
}
return success();
}
LogicalResult ConcatenateOp::verify() {
auto dstTp = getType().cast<RankedTensorType>();
uint64_t concatDim = getDimension().getZExtValue();
unsigned rank = dstTp.getRank();
if (getInputs().size() <= 1)
return emitError("Need at least two tensors to concatenate.");
for (auto type : getInputs().getTypes()) {
auto shape = type.cast<RankedTensorType>().getShape();
for (auto dim : shape) {
if (ShapedType::isDynamic(dim))
return emitError("Only statically-sized input tensors are supported.");
}
}
if (concatDim >= rank)
return emitError(llvm::formatv(
"Failed to concatentate tensors with rank={0} on dimension={1}.", rank,
concatDim));
for (size_t i = 0, e = getInputs().size(); i < e; i++) {
Value input = getInputs()[i];
auto inputRank = input.getType().cast<RankedTensorType>().getRank();
if (inputRank != rank)
return emitError(
llvm::formatv("The input tensor ${0} has a different rank (rank={1}) "
"from the output tensor (rank={2}).",
i, inputRank, rank));
}
for (unsigned i = 0; i < rank; i++) {
auto dstDim = dstTp.getShape()[i];
if (i == concatDim) {
if (!ShapedType::isDynamic(dstDim)) {
unsigned sumDim = 0;
for (auto src : getInputs()) {
// If we reach here, all inputs should have static shapes.
auto d = src.getType().cast<RankedTensorType>().getShape()[i];
sumDim += d;
}
// If all dimension are statically known, the sum of all the input
// dimensions should be equal to the output dimension.
if (sumDim != dstDim)
return emitError(
"The concatenation dimension of the output tensor should be the "
"sum of all the concatenation dimensions of the input tensors.");
}
} else {
int64_t prev = dstDim;
for (auto src : getInputs()) {
auto d = src.getType().cast<RankedTensorType>().getShape()[i];
if (!ShapedType::isDynamic(prev) && d != prev)
return emitError("All dimensions (expect for the concatenating one) "
"should be equal.");
prev = d;
}
}
}
return success();
}
LogicalResult InsertOp::verify() {
RankedTensorType ttp = getTensor().getType().cast<RankedTensorType>();
if (ttp.getRank() != static_cast<int64_t>(getIndices().size()))
return emitOpError("incorrect number of indices");
return success();
}
void PushBackOp::build(OpBuilder &builder, OperationState &result,
Type outBuffer, Value bufferSizes, Value inBuffer,
Value value, APInt idx) {
build(builder, result, outBuffer, bufferSizes, inBuffer, value,
std::move(idx), Value());
}
LogicalResult PushBackOp::verify() {
Value n = getN();
if (n) {
auto nValue = dyn_cast_or_null<arith::ConstantIndexOp>(n.getDefiningOp());
if (nValue && nValue.value() < 1)
return emitOpError("n must be not less than 1");
}
return success();
}
LogicalResult CompressOp::verify() {
RankedTensorType ttp = getTensor().getType().cast<RankedTensorType>();
if (ttp.getRank() != 1 + static_cast<int64_t>(getIndices().size()))
return emitOpError("incorrect number of indices");
return success();
}
void ForeachOp::build(
OpBuilder &builder, OperationState &result, Value tensor,
function_ref<void(OpBuilder &, Location, ValueRange, Value, ValueRange)>
bodyBuilder) {
build(builder, result, tensor, llvm::None, bodyBuilder);
}
void ForeachOp::build(
OpBuilder &builder, OperationState &result, Value tensor,
ValueRange initArgs,
function_ref<void(OpBuilder &, Location, ValueRange, Value, ValueRange)>
bodyBuilder) {
build(builder, result, initArgs.getTypes(), tensor, initArgs);
// Builds foreach body.
if (!bodyBuilder)
return;
auto rtp = tensor.getType().cast<RankedTensorType>();
int64_t rank = rtp.getRank();
SmallVector<Type> blockArgTypes;
// Starts with n index.
std::fill_n(std::back_inserter(blockArgTypes), rank, builder.getIndexType());
// Followed by one value.
blockArgTypes.push_back(rtp.getElementType());
// Followed by reduction variable.
blockArgTypes.append(initArgs.getTypes().begin(), initArgs.getTypes().end());
SmallVector<Location> blockArgLocs;
std::fill_n(std::back_inserter(blockArgLocs), blockArgTypes.size(),
tensor.getLoc());
OpBuilder::InsertionGuard guard(builder);
auto &region = *result.regions.front();
Block *bodyBlock =
builder.createBlock(&region, region.end(), blockArgTypes, blockArgLocs);
bodyBuilder(builder, result.location,
bodyBlock->getArguments().slice(0, rank),
bodyBlock->getArguments()[rank],
bodyBlock->getArguments().drop_front(rank + 1));
}
LogicalResult ForeachOp::verify() {
auto t = getTensor().getType().cast<RankedTensorType>();
auto args = getBody()->getArguments();
if (static_cast<size_t>(t.getRank()) + 1 + getInitArgs().size() !=
args.size())
return emitError("Unmatched number of arguments in the block");
if (getNumResults() != getInitArgs().size())
return emitError("Mismatch in number of init arguments and results");
if (getResultTypes() != getInitArgs().getTypes())
return emitError("Mismatch in types of init arguments and results");
auto yield = cast<YieldOp>(getBody()->getTerminator());
if (yield.getNumOperands() != getNumResults() ||
yield.getOperands().getTypes() != getResultTypes())
return emitError("Mismatch in types of yield values and results");
for (int64_t i = 0, e = t.getRank(); i < e; i++)
if (args[i].getType() != IndexType::get(getContext()))
emitError(
llvm::formatv("Expecting Index type for argument at index {0}", i));
auto elemTp = t.getElementType();
auto valueTp = args[t.getRank()].getType();
if (elemTp != valueTp)
emitError(llvm::formatv("Unmatched element type between input tensor and "
"block argument, expected:{0}, got: {1}",
elemTp, valueTp));
return success();
}
LogicalResult ReduceOp::verify() {
Type inputType = getX().getType();
LogicalResult regionResult = success();
// Check correct number of block arguments and return type.
Region &formula = getRegion();
regionResult = verifyNumBlockArgs(this, formula, "reduce",
TypeRange{inputType, inputType}, inputType);
if (failed(regionResult))
return regionResult;
return success();
}
LogicalResult SelectOp::verify() {
Builder b(getContext());
Type inputType = getX().getType();
Type boolType = b.getI1Type();
LogicalResult regionResult = success();
// Check correct number of block arguments and return type.
Region &formula = getRegion();
regionResult = verifyNumBlockArgs(this, formula, "select",
TypeRange{inputType}, boolType);
if (failed(regionResult))
return regionResult;
return success();
}
LogicalResult SortOp::verify() {
if (getXs().empty())
return emitError("need at least one xs buffer.");
auto n = getN().getDefiningOp<arith::ConstantIndexOp>();
Type xtp = getXs().front().getType().cast<MemRefType>().getElementType();
auto checkTypes = [&](ValueRange operands,
bool checkEleType = true) -> LogicalResult {
for (Value opnd : operands) {
MemRefType mtp = opnd.getType().cast<MemRefType>();
int64_t dim = mtp.getShape()[0];
// We can't check the size of dynamic dimension at compile-time, but all
// xs and ys should have a dimension not less than n at runtime.
if (n && !ShapedType::isDynamic(dim) && dim < n.value())
return emitError(llvm::formatv("xs and ys need to have a dimension >= n"
": {0} < {1}",
dim, n.value()));
if (checkEleType && xtp != mtp.getElementType())
return emitError("mismatch xs element types");
}
return success();
};
LogicalResult result = checkTypes(getXs());
if (failed(result))
return result;
if (n)
return checkTypes(getYs(), false);
return success();
}
LogicalResult SortCooOp::verify() {
auto cn = getN().getDefiningOp<arith::ConstantIndexOp>();
// We can't check the size of the buffers when n or buffer dimensions aren't
// compile-time constants.
if (!cn)
return success();
uint64_t n = cn.value();
uint64_t nx = 1;
if (auto nxAttr = getNxAttr()) {
nx = nxAttr.getInt();
if (nx < 1)
emitError(llvm::formatv("Expected nx > 1, got {0}", nx));
}
uint64_t ny = 0;
if (auto nyAttr = getNyAttr()) {
ny = nyAttr.getInt();
}
auto checkDim = [&](Value v, uint64_t min, const char *message) {
MemRefType tp = v.getType().cast<MemRefType>();
int64_t dim = tp.getShape()[0];
if (!ShapedType::isDynamic(dim) && dim < (int64_t)min) {
emitError(llvm::formatv("{0} got {1} < {2}", message, dim, min));
}
};
checkDim(getXy(), n * (nx + ny), "Expected dimension(xy) >= n * (nx + ny)");
for (Value opnd : getYs()) {
checkDim(opnd, n, "Expected dimension(y) >= n");
}
return success();
}
LogicalResult YieldOp::verify() {
// Check for compatible parent.
auto *parentOp = (*this)->getParentOp();
if (isa<BinaryOp>(parentOp) || isa<UnaryOp>(parentOp) ||
isa<ReduceOp>(parentOp) || isa<SelectOp>(parentOp) ||
isa<ForeachOp>(parentOp))
return success();
return emitOpError("expected parent op to be sparse_tensor unary, binary, "
"reduce, select or foreach");
}
//===----------------------------------------------------------------------===//
// TensorDialect Methods.
//===----------------------------------------------------------------------===//
void SparseTensorDialect::initialize() {
addAttributes<
#define GET_ATTRDEF_LIST
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
>();
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
>();
}
#define GET_OP_CLASSES
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOpsDialect.cpp.inc"