Files
clang-p2996/lld/lib/ReaderWriter/ELF/ARM/ARMRelocationPass.cpp
Denis Protivensky 575f7d4f1c [ARM] Ability to add GOT and PLTGOT entries for same symbol
These two serve different purpose:
PLTGOT entries are (usually) lazily resolved and serve as trampolines
to correctly call dynamically linked functions. They often have
R_*_JUMP_SLOT dynamic relocation type used.
Simple GOT entries hold other things, one of them may be
R_*_GLOB_DAT to correctly reference global and static data. This
is also used to hold dynamically linked function's address.

To properly handle cases when shared object's function is called
and at the same time its address is taken, we need to be able to have
both GOT and PLTGOT entries bearing different dynamic relocation types
for the same symbol.

llvm-svn: 238015
2015-05-22 11:23:39 +00:00

984 lines
32 KiB
C++

//===--------- lib/ReaderWriter/ELF/ARM/ARMRelocationPass.cpp -------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Defines the relocation processing pass for ARM. This includes
/// GOT and PLT entries, TLS, COPY, and ifunc.
///
/// This also includes additional behavior that gnu-ld and gold implement but
/// which is not specified anywhere.
///
//===----------------------------------------------------------------------===//
#include "ARMRelocationPass.h"
#include "ARMLinkingContext.h"
#include "Atoms.h"
#include "lld/Core/Simple.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
using namespace lld;
using namespace lld::elf;
using namespace llvm::ELF;
namespace {
// ARM B/BL instructions of absolute relocation veneer.
// TODO: consider different instruction set for archs below ARMv5
// (one as for Thumb may be used though it's less optimal).
static const uint8_t Veneer_ARM_B_BL_Abs_a_AtomContent[4] = {
0x04, 0xf0, 0x1f, 0xe5 // ldr pc, [pc, #-4]
};
static const uint8_t Veneer_ARM_B_BL_Abs_d_AtomContent[4] = {
0x00, 0x00, 0x00, 0x00 // <target_symbol_address>
};
// Thumb B/BL instructions of absolute relocation veneer.
// TODO: consider different instruction set for archs above ARMv5
// (one as for ARM may be used since it's more optimal).
static const uint8_t Veneer_THM_B_BL_Abs_t_AtomContent[4] = {
0x78, 0x47, // bx pc
0x00, 0x00 // nop
};
static const uint8_t Veneer_THM_B_BL_Abs_a_AtomContent[4] = {
0xfe, 0xff, 0xff, 0xea // b <target_symbol_address>
};
// .got values
static const uint8_t ARMGotAtomContent[4] = {0};
// .plt value (entry 0)
static const uint8_t ARMPlt0_a_AtomContent[16] = {
0x04, 0xe0, 0x2d, 0xe5, // push {lr}
0x04, 0xe0, 0x9f, 0xe5, // ldr lr, [pc, #4]
0x0e, 0xe0, 0x8f, 0xe0, // add lr, pc, lr
0x00, 0xf0, 0xbe, 0xe5 // ldr pc, [lr, #0]!
};
static const uint8_t ARMPlt0_d_AtomContent[4] = {
0x00, 0x00, 0x00, 0x00 // <got1_symbol_address>
};
// .plt values (other entries)
static const uint8_t ARMPltAtomContent[12] = {
0x00, 0xc0, 0x8f, 0xe2, // add ip, pc, #offset[G0]
0x00, 0xc0, 0x8c, 0xe2, // add ip, ip, #offset[G1]
0x00, 0xf0, 0xbc, 0xe5 // ldr pc, [ip, #offset[G2]]!
};
// Veneer for switching from Thumb to ARM code for PLT entries.
static const uint8_t ARMPltVeneerAtomContent[4] = {
0x78, 0x47, // bx pc
0x00, 0x00 // nop
};
// Determine proper names for mapping symbols.
static std::string getMappingAtomName(DefinedAtom::CodeModel model,
const std::string &part) {
switch (model) {
case DefinedAtom::codeARM_a:
return part.empty() ? "$a" : "$a." + part;
case DefinedAtom::codeARM_d:
return part.empty() ? "$d" : "$d." + part;
case DefinedAtom::codeARM_t:
return part.empty() ? "$t" : "$t." + part;
default:
llvm_unreachable("Wrong code model of mapping atom");
}
}
/// \brief Atoms that hold veneer code.
class VeneerAtom : public SimpleELFDefinedAtom {
StringRef _section;
public:
VeneerAtom(const File &f, StringRef secName, const std::string &name = "")
: SimpleELFDefinedAtom(f), _section(secName), _name(name) {}
Scope scope() const override { return DefinedAtom::scopeTranslationUnit; }
SectionChoice sectionChoice() const override {
return DefinedAtom::sectionBasedOnContent;
}
StringRef customSectionName() const override { return _section; }
ContentType contentType() const override { return DefinedAtom::typeCode; }
uint64_t size() const override { return rawContent().size(); }
ContentPermissions permissions() const override { return permR_X; }
Alignment alignment() const override { return 4; }
StringRef name() const override { return _name; }
private:
std::string _name;
};
/// \brief Atoms that hold veneer for relocated ARM B/BL instructions
/// in absolute code.
class Veneer_ARM_B_BL_Abs_a_Atom : public VeneerAtom {
public:
Veneer_ARM_B_BL_Abs_a_Atom(const File &f, StringRef secName,
const std::string &name)
: VeneerAtom(f, secName, name) {}
ArrayRef<uint8_t> rawContent() const override {
return llvm::makeArrayRef(Veneer_ARM_B_BL_Abs_a_AtomContent);
}
};
class Veneer_ARM_B_BL_Abs_d_Atom : public VeneerAtom {
public:
Veneer_ARM_B_BL_Abs_d_Atom(const File &f, StringRef secName)
: VeneerAtom(f, secName) {}
ArrayRef<uint8_t> rawContent() const override {
return llvm::makeArrayRef(Veneer_ARM_B_BL_Abs_d_AtomContent);
}
};
/// \brief Atoms that hold veneer for relocated Thumb B/BL instructions
/// in absolute code.
class Veneer_THM_B_BL_Abs_t_Atom : public VeneerAtom {
public:
Veneer_THM_B_BL_Abs_t_Atom(const File &f, StringRef secName,
const std::string &name)
: VeneerAtom(f, secName, name) {}
DefinedAtom::CodeModel codeModel() const override {
return DefinedAtom::codeARMThumb;
}
ArrayRef<uint8_t> rawContent() const override {
return llvm::makeArrayRef(Veneer_THM_B_BL_Abs_t_AtomContent);
}
};
class Veneer_THM_B_BL_Abs_a_Atom : public VeneerAtom {
public:
Veneer_THM_B_BL_Abs_a_Atom(const File &f, StringRef secName)
: VeneerAtom(f, secName) {}
ArrayRef<uint8_t> rawContent() const override {
return llvm::makeArrayRef(Veneer_THM_B_BL_Abs_a_AtomContent);
}
};
template <DefinedAtom::CodeModel Model>
class ARMVeneerMappingAtom : public VeneerAtom {
public:
ARMVeneerMappingAtom(const File &f, StringRef secName, StringRef name)
: VeneerAtom(f, secName, getMappingAtomName(Model, name)) {
static_assert((Model == DefinedAtom::codeARM_a ||
Model == DefinedAtom::codeARM_d ||
Model == DefinedAtom::codeARM_t),
"Only mapping atom types are allowed");
}
uint64_t size() const override { return 0; }
ArrayRef<uint8_t> rawContent() const override { return ArrayRef<uint8_t>(); }
DefinedAtom::CodeModel codeModel() const override { return Model; }
};
template <class BaseAtom, DefinedAtom::CodeModel Model>
class BaseMappingAtom : public BaseAtom {
public:
BaseMappingAtom(const File &f, StringRef secName, StringRef name)
: BaseAtom(f, secName) {
static_assert((Model == DefinedAtom::codeARM_a ||
Model == DefinedAtom::codeARM_d ||
Model == DefinedAtom::codeARM_t),
"Only mapping atom types are allowed");
#ifndef NDEBUG
_name = name;
#else
_name = getMappingAtomName(Model, name);
#endif
}
DefinedAtom::CodeModel codeModel() const override {
#ifndef NDEBUG
return isThumbCode(Model) ? DefinedAtom::codeARMThumb : DefinedAtom::codeNA;
#else
return Model;
#endif
}
StringRef name() const override { return _name; }
private:
std::string _name;
};
/// \brief Atoms that are used by ARM dynamic linking
class ARMGOTAtom : public GOTAtom {
public:
ARMGOTAtom(const File &f) : GOTAtom(f, ".got") {}
ArrayRef<uint8_t> rawContent() const override {
return llvm::makeArrayRef(ARMGotAtomContent);
}
Alignment alignment() const override { return 4; }
protected:
// Constructor for PLTGOT atom.
ARMGOTAtom(const File &f, StringRef secName) : GOTAtom(f, secName) {}
};
class ARMGOTPLTAtom : public ARMGOTAtom {
public:
ARMGOTPLTAtom(const File &f) : ARMGOTAtom(f, ".got.plt") {}
};
/// \brief Proxy class to keep type compatibility with PLT0Atom.
class ARMPLT0Atom : public PLT0Atom {
public:
ARMPLT0Atom(const File &f, StringRef) : PLT0Atom(f) {}
};
/// \brief PLT0 entry atom.
/// Serves as a mapping symbol in the release mode.
class ARMPLT0_a_Atom
: public BaseMappingAtom<ARMPLT0Atom, DefinedAtom::codeARM_a> {
public:
ARMPLT0_a_Atom(const File &f, const std::string &name)
: BaseMappingAtom(f, ".plt", name) {}
ArrayRef<uint8_t> rawContent() const override {
return llvm::makeArrayRef(ARMPlt0_a_AtomContent);
}
Alignment alignment() const override { return 4; }
};
class ARMPLT0_d_Atom
: public BaseMappingAtom<ARMPLT0Atom, DefinedAtom::codeARM_d> {
public:
ARMPLT0_d_Atom(const File &f, const std::string &name)
: BaseMappingAtom(f, ".plt", name) {}
ArrayRef<uint8_t> rawContent() const override {
return llvm::makeArrayRef(ARMPlt0_d_AtomContent);
}
Alignment alignment() const override { return 4; }
};
/// \brief PLT entry atom.
/// Serves as a mapping symbol in the release mode.
class ARMPLTAtom : public BaseMappingAtom<PLTAtom, DefinedAtom::codeARM_a> {
public:
ARMPLTAtom(const File &f, const std::string &name)
: BaseMappingAtom(f, ".plt", name) {}
ArrayRef<uint8_t> rawContent() const override {
return llvm::makeArrayRef(ARMPltAtomContent);
}
Alignment alignment() const override { return 4; }
};
/// \brief Veneer atom for PLT entry.
/// Serves as a mapping symbol in the release mode.
class ARMPLTVeneerAtom
: public BaseMappingAtom<PLTAtom, DefinedAtom::codeARM_t> {
public:
ARMPLTVeneerAtom(const File &f, const std::string &name)
: BaseMappingAtom(f, ".plt", name) {}
ArrayRef<uint8_t> rawContent() const override {
return llvm::makeArrayRef(ARMPltVeneerAtomContent);
}
Alignment alignment() const override { return 4; }
};
/// \brief Atom which represents an object for which a COPY relocation will
/// be generated.
class ARMObjectAtom : public ObjectAtom {
public:
ARMObjectAtom(const File &f) : ObjectAtom(f) {}
Alignment alignment() const override { return 4; }
};
class ELFPassFile : public SimpleFile {
public:
ELFPassFile(const ELFLinkingContext &eti) : SimpleFile("ELFPassFile") {
setOrdinal(eti.getNextOrdinalAndIncrement());
}
llvm::BumpPtrAllocator _alloc;
};
/// \brief CRTP base for handling relocations.
template <class Derived> class ARMRelocationPass : public Pass {
/// \brief Handle a specific reference.
void handleReference(const DefinedAtom &atom, const Reference &ref) {
DEBUG_WITH_TYPE(
"ARM", llvm::dbgs() << "\t" << LLVM_FUNCTION_NAME << "()"
<< ": Name of Defined Atom: " << atom.name().str();
llvm::dbgs() << " kindValue: " << ref.kindValue() << "\n");
if (ref.kindNamespace() != Reference::KindNamespace::ELF)
return;
assert(ref.kindArch() == Reference::KindArch::ARM);
switch (ref.kindValue()) {
case R_ARM_ABS32:
case R_ARM_REL32:
case R_ARM_TARGET1:
case R_ARM_MOVW_ABS_NC:
case R_ARM_MOVT_ABS:
case R_ARM_THM_MOVW_ABS_NC:
case R_ARM_THM_MOVT_ABS:
static_cast<Derived *>(this)->handlePlain(isThumbCode(&atom), ref);
break;
case R_ARM_THM_CALL:
case R_ARM_CALL:
case R_ARM_JUMP24:
case R_ARM_THM_JUMP24:
case R_ARM_THM_JUMP11: {
const auto actualModel = actualSourceCodeModel(atom, ref);
const bool fromThumb = isThumbCode(actualModel);
static_cast<Derived *>(this)->handlePlain(fromThumb, ref);
static_cast<Derived *>(this)->handleVeneer(atom, fromThumb, ref);
} break;
case R_ARM_TLS_IE32:
static_cast<Derived *>(this)->handleTLSIE32(ref);
break;
case R_ARM_GOT_BREL:
static_cast<Derived *>(this)->handleGOT(ref);
break;
default:
break;
}
}
protected:
/// \brief Determine source atom's actual code model.
///
/// Actual code model may differ from the existing one if fixup
/// is possible on the later stages for given relocation type.
DefinedAtom::CodeModel actualSourceCodeModel(const DefinedAtom &atom,
const Reference &ref) {
const auto kindValue = ref.kindValue();
if (kindValue != R_ARM_CALL && kindValue != R_ARM_THM_CALL)
return atom.codeModel();
// TODO: For unconditional jump instructions (R_ARM_CALL and R_ARM_THM_CALL)
// fixup isn't possible without veneer generation for archs below ARMv5.
auto actualModel = atom.codeModel();
if (const auto *da = dyn_cast<DefinedAtom>(ref.target())) {
actualModel = da->codeModel();
} else if (const auto *sla = dyn_cast<SharedLibraryAtom>(ref.target())) {
if (sla->type() == SharedLibraryAtom::Type::Code) {
// PLT entry will be generated here - assume we don't want a veneer
// on top of it and prefer instruction fixup if needed.
actualModel = DefinedAtom::codeNA;
}
}
return actualModel;
}
std::error_code handleVeneer(const DefinedAtom &atom, bool fromThumb,
const Reference &ref) {
// Actual instruction mode differs meaning that further fixup will be
// applied.
if (isThumbCode(&atom) != fromThumb)
return std::error_code();
const VeneerAtom *(Derived::*getVeneer)(const DefinedAtom *, StringRef) =
nullptr;
const auto kindValue = ref.kindValue();
switch (kindValue) {
case R_ARM_JUMP24:
getVeneer = &Derived::getVeneer_ARM_B_BL;
break;
case R_ARM_THM_JUMP24:
getVeneer = &Derived::getVeneer_THM_B_BL;
break;
default:
return std::error_code();
}
// Target symbol and relocated place should have different
// instruction sets in order a veneer to be generated in between.
const auto *target = dyn_cast<DefinedAtom>(ref.target());
if (!target || isThumbCode(target) == isThumbCode(&atom))
return std::error_code();
// Veneers may only be generated for STT_FUNC target symbols
// or for symbols located in sections different to the place of relocation.
StringRef secName = atom.customSectionName();
if (DefinedAtom::typeCode != target->contentType() &&
!target->customSectionName().equals(secName)) {
StringRef kindValStr;
if (!this->_ctx.registry().referenceKindToString(
ref.kindNamespace(), ref.kindArch(), kindValue, kindValStr)) {
kindValStr = "unknown";
}
std::string errStr =
(Twine("Reference of type ") + Twine(kindValue) + " (" + kindValStr +
") from " + atom.name() + "+" + Twine(ref.offsetInAtom()) + " to " +
ref.target()->name() + "+" + Twine(ref.addend()) +
" cannot be effected without a veneer").str();
llvm_unreachable(errStr.c_str());
}
assert(getVeneer && "The veneer handler is missing");
const Atom *veneer =
(static_cast<Derived *>(this)->*getVeneer)(target, secName);
assert(veneer && "The veneer is not set");
const_cast<Reference &>(ref).setTarget(veneer);
return std::error_code();
}
/// \brief Get the veneer for ARM B/BL instructions
/// in absolute code.
const VeneerAtom *getVeneer_ARM_B_BL_Abs(const DefinedAtom *da,
StringRef secName) {
auto veneer = _veneerAtoms.lookup(da);
if (!veneer.empty())
return veneer._veneer;
std::string name = "__";
name += da->name();
name += "_from_arm";
// Create parts of veneer with mapping symbols.
auto v_a =
new (_file._alloc) Veneer_ARM_B_BL_Abs_a_Atom(_file, secName, name);
addVeneerWithMapping<DefinedAtom::codeARM_a>(da, v_a, name);
auto v_d = new (_file._alloc) Veneer_ARM_B_BL_Abs_d_Atom(_file, secName);
addVeneerWithMapping<DefinedAtom::codeARM_d>(v_a, v_d, name);
// Fake reference to show connection between parts of veneer.
v_a->addReferenceELF_ARM(R_ARM_NONE, 0, v_d, 0);
// Real reference to fixup.
v_d->addReferenceELF_ARM(R_ARM_ABS32, 0, da, 0);
return v_a;
}
/// \brief Get the veneer for Thumb B/BL instructions
/// in absolute code.
const VeneerAtom *getVeneer_THM_B_BL_Abs(const DefinedAtom *da,
StringRef secName) {
auto veneer = _veneerAtoms.lookup(da);
if (!veneer.empty())
return veneer._veneer;
std::string name = "__";
name += da->name();
name += "_from_thumb";
// Create parts of veneer with mapping symbols.
auto v_t =
new (_file._alloc) Veneer_THM_B_BL_Abs_t_Atom(_file, secName, name);
addVeneerWithMapping<DefinedAtom::codeARM_t>(da, v_t, name);
auto v_a = new (_file._alloc) Veneer_THM_B_BL_Abs_a_Atom(_file, secName);
addVeneerWithMapping<DefinedAtom::codeARM_a>(v_t, v_a, name);
// Fake reference to show connection between parts of veneer.
v_t->addReferenceELF_ARM(R_ARM_NONE, 0, v_a, 0);
// Real reference to fixup.
v_a->addReferenceELF_ARM(R_ARM_JUMP24, 0, da, 0);
return v_t;
}
std::error_code handleTLSIE32(const Reference &ref) {
if (const auto *target = dyn_cast<DefinedAtom>(ref.target())) {
const_cast<Reference &>(ref)
.setTarget(static_cast<Derived *>(this)->getTLSTPOFF32(target));
return std::error_code();
}
llvm_unreachable("R_ARM_TLS_IE32 reloc targets wrong atom type");
}
/// \brief Create a GOT entry for TLS with reloc type and addend specified.
template <Reference::KindValue R_ARM_TLS, Reference::Addend A = 0>
const GOTAtom *getGOTTLSEntry(const DefinedAtom *da) {
StringRef source;
#ifndef NDEBUG
source = "_tls_";
#endif
return getGOT<R_ARM_TLS, A>(da, source);
}
/// \brief Add veneer with mapping symbol.
template <DefinedAtom::CodeModel Model>
void addVeneerWithMapping(const DefinedAtom *da, VeneerAtom *va,
const std::string &name) {
assert(_veneerAtoms.lookup(da).empty() &&
"Veneer or mapping already exists");
auto *ma = new (_file._alloc)
ARMVeneerMappingAtom<Model>(_file, va->customSectionName(), name);
// Fake reference to show connection between the mapping symbol and veneer.
va->addReferenceELF_ARM(R_ARM_NONE, 0, ma, 0);
_veneerAtoms[da] = VeneerWithMapping(va, ma);
}
/// \brief get a veneer for a PLT entry.
const PLTAtom *getPLTVeneer(const Atom *da, PLTAtom *pa, StringRef source) {
std::string name = "__plt_from_thumb";
name += source.empty() ? "_" : source;
name += da->name();
// Create veneer for PLT entry.
auto va = new (_file._alloc) ARMPLTVeneerAtom(_file, name);
// Fake reference to show connection between veneer and PLT entry.
va->addReferenceELF_ARM(R_ARM_NONE, 0, pa, 0);
_pltAtoms[da] = PLTWithVeneer(pa, va);
return va;
}
typedef const GOTAtom *(Derived::*GOTFactory)(const Atom *);
/// \brief get a PLT entry referencing PLTGOT entry.
///
/// If the entry does not exist, both GOT and PLT entry are created.
const PLTAtom *getPLT(const Atom *da, bool fromThumb, GOTFactory gotFactory,
StringRef source = "") {
auto pltVeneer = _pltAtoms.lookup(da);
if (!pltVeneer.empty()) {
// Return clean PLT entry provided it is ARM code.
if (!fromThumb)
return pltVeneer._plt;
// Check if veneer is present for Thumb to ARM transition.
if (pltVeneer._veneer)
return pltVeneer._veneer;
// Create veneer for existing PLT entry.
return getPLTVeneer(da, pltVeneer._plt, source);
}
// Create specific GOT entry.
const auto *ga = (static_cast<Derived *>(this)->*gotFactory)(da);
assert(_gotpltAtoms.lookup(da) == ga &&
"GOT entry should be added to the PLTGOT map");
assert(ga->customSectionName() == ".got.plt" &&
"GOT entry should be in a special section");
std::string name = "__plt";
name += source.empty() ? "_" : source;
name += da->name();
// Create PLT entry for the GOT entry.
auto pa = new (_file._alloc) ARMPLTAtom(_file, name);
pa->addReferenceELF_ARM(R_ARM_ALU_PC_G0_NC, 0, ga, -8);
pa->addReferenceELF_ARM(R_ARM_ALU_PC_G1_NC, 4, ga, -4);
pa->addReferenceELF_ARM(R_ARM_LDR_PC_G2, 8, ga, 0);
// Since all PLT entries are in ARM code, Thumb to ARM
// switching should be added if the relocated place contais Thumb code.
if (fromThumb)
return getPLTVeneer(da, pa, source);
// Otherwise just add PLT entry and return it to the caller.
_pltAtoms[da] = PLTWithVeneer(pa);
return pa;
}
/// \brief Create the GOT entry for a given IFUNC Atom.
const GOTAtom *createIFUNCGOT(const Atom *da) {
assert(!_gotpltAtoms.lookup(da) && "IFUNC GOT entry already exists");
auto g = new (_file._alloc) ARMGOTPLTAtom(_file);
g->addReferenceELF_ARM(R_ARM_ABS32, 0, da, 0);
g->addReferenceELF_ARM(R_ARM_IRELATIVE, 0, da, 0);
#ifndef NDEBUG
g->_name = "__got_ifunc_";
g->_name += da->name();
#endif
_gotpltAtoms[da] = g;
return g;
}
/// \brief get the PLT entry for a given IFUNC Atom.
const PLTAtom *getIFUNCPLTEntry(const DefinedAtom *da, bool fromThumb) {
return getPLT(da, fromThumb, &Derived::createIFUNCGOT, "_ifunc_");
}
/// \brief Redirect the call to the PLT stub for the target IFUNC.
///
/// This create a PLT and GOT entry for the IFUNC if one does not exist. The
/// GOT entry and a IRELATIVE relocation to the original target resolver.
std::error_code handleIFUNC(bool fromThumb, const Reference &ref) {
auto target = dyn_cast<const DefinedAtom>(ref.target());
if (target && target->contentType() == DefinedAtom::typeResolver) {
const_cast<Reference &>(ref)
.setTarget(getIFUNCPLTEntry(target, fromThumb));
}
return std::error_code();
}
/// \brief Create a GOT entry containing 0.
const GOTAtom *getNullGOT() {
if (!_null) {
_null = new (_file._alloc) ARMGOTPLTAtom(_file);
#ifndef NDEBUG
_null->_name = "__got_null";
#endif
}
return _null;
}
/// \brief Create regular GOT entry which cannot be used in PLTGOT operation.
template <Reference::KindValue R_ARM_REL, Reference::Addend A = 0>
const GOTAtom *getGOT(const Atom *da, StringRef source = "") {
if (auto got = _gotAtoms.lookup(da))
return got;
auto g = new (_file._alloc) ARMGOTAtom(_file);
g->addReferenceELF_ARM(R_ARM_REL, 0, da, A);
#ifndef NDEBUG
g->_name = "__got";
g->_name += source.empty() ? "_" : source;
g->_name += da->name();
#endif
_gotAtoms[da] = g;
return g;
}
/// \brief get GOT entry for a regular defined atom.
const GOTAtom *getGOTEntry(const DefinedAtom *da) {
return getGOT<R_ARM_ABS32>(da);
}
std::error_code handleGOT(const Reference &ref) {
if (isa<UndefinedAtom>(ref.target()))
const_cast<Reference &>(ref).setTarget(getNullGOT());
else if (const auto *da = dyn_cast<DefinedAtom>(ref.target()))
const_cast<Reference &>(ref).setTarget(getGOTEntry(da));
return std::error_code();
}
public:
ARMRelocationPass(const ELFLinkingContext &ctx) : _file(ctx), _ctx(ctx) {}
/// \brief Do the pass.
///
/// The goal here is to first process each reference individually. Each call
/// to handleReference may modify the reference itself and/or create new
/// atoms which must be stored in one of the maps below.
///
/// After all references are handled, the atoms created during that are all
/// added to mf.
void perform(std::unique_ptr<SimpleFile> &mf) override {
ScopedTask task(getDefaultDomain(), "ARM GOT/PLT Pass");
DEBUG_WITH_TYPE(
"ARM", llvm::dbgs() << "Undefined Atoms" << "\n";
for (const auto &atom
: mf->undefined()) {
llvm::dbgs() << " Name of Atom: " << atom->name().str() << "\n";
}
llvm::dbgs() << "Shared Library Atoms" << "\n";
for (const auto &atom
: mf->sharedLibrary()) {
llvm::dbgs() << " Name of Atom: " << atom->name().str() << "\n";
}
llvm::dbgs() << "Absolute Atoms" << "\n";
for (const auto &atom
: mf->absolute()) {
llvm::dbgs() << " Name of Atom: " << atom->name().str() << "\n";
}
llvm::dbgs() << "Defined Atoms" << "\n";
for (const auto &atom
: mf->defined()) {
llvm::dbgs() << " Name of Atom: " << atom->name().str() << "\n";
});
// Process all references.
for (const auto &atom : mf->defined()) {
for (const auto &ref : *atom) {
handleReference(*atom, *ref);
}
}
// Add all created atoms to the link.
uint64_t ordinal = 0;
if (_plt0) {
_plt0->setOrdinal(ordinal++);
mf->addAtom(*_plt0);
_plt0_d->setOrdinal(ordinal++);
mf->addAtom(*_plt0_d);
}
for (auto &pltKV : _pltAtoms) {
auto &plt = pltKV.second;
if (auto *v = plt._veneer) {
v->setOrdinal(ordinal++);
mf->addAtom(*v);
}
auto *p = plt._plt;
p->setOrdinal(ordinal++);
mf->addAtom(*p);
}
if (_null) {
_null->setOrdinal(ordinal++);
mf->addAtom(*_null);
}
if (_plt0) {
_got0->setOrdinal(ordinal++);
mf->addAtom(*_got0);
_got1->setOrdinal(ordinal++);
mf->addAtom(*_got1);
}
for (auto &gotKV : _gotAtoms) {
auto &got = gotKV.second;
got->setOrdinal(ordinal++);
mf->addAtom(*got);
}
for (auto &gotKV : _gotpltAtoms) {
auto &got = gotKV.second;
got->setOrdinal(ordinal++);
mf->addAtom(*got);
}
for (auto &objectKV : _objectAtoms) {
auto &obj = objectKV.second;
obj->setOrdinal(ordinal++);
mf->addAtom(*obj);
}
for (auto &veneerKV : _veneerAtoms) {
auto &veneer = veneerKV.second;
auto *m = veneer._mapping;
m->setOrdinal(ordinal++);
mf->addAtom(*m);
auto *v = veneer._veneer;
v->setOrdinal(ordinal++);
mf->addAtom(*v);
}
}
protected:
/// \brief Owner of all the Atoms created by this pass.
ELFPassFile _file;
const ELFLinkingContext &_ctx;
/// \brief Map Atoms to their GOT entries.
llvm::MapVector<const Atom *, GOTAtom *> _gotAtoms;
/// \brief Map Atoms to their PLTGOT entries.
llvm::MapVector<const Atom *, GOTAtom *> _gotpltAtoms;
/// \brief Map Atoms to their Object entries.
llvm::MapVector<const Atom *, ObjectAtom *> _objectAtoms;
/// \brief Map Atoms to their PLT entries depending on the code model.
struct PLTWithVeneer {
PLTWithVeneer(PLTAtom *p = nullptr, PLTAtom *v = nullptr)
: _plt(p), _veneer(v) {}
bool empty() const {
assert((_plt || !_veneer) && "Veneer appears without PLT entry");
return !_plt && !_veneer;
}
PLTAtom *_plt;
PLTAtom *_veneer;
};
llvm::MapVector<const Atom *, PLTWithVeneer> _pltAtoms;
/// \brief Map Atoms to their veneers.
struct VeneerWithMapping {
VeneerWithMapping(VeneerAtom *v = nullptr, VeneerAtom *m = nullptr)
: _veneer(v), _mapping(m) {}
bool empty() const {
assert(((bool)_veneer == (bool)_mapping) &&
"Mapping symbol should always be paired with veneer");
return !_veneer && !_mapping;
}
VeneerAtom *_veneer;
VeneerAtom *_mapping;
};
llvm::MapVector<const Atom *, VeneerWithMapping> _veneerAtoms;
/// \brief GOT entry that is always 0. Used for undefined weaks.
GOTAtom *_null = nullptr;
/// \brief The got and plt entries for .PLT0. This is used to call into the
/// dynamic linker for symbol resolution.
/// @{
PLT0Atom *_plt0 = nullptr;
PLT0Atom *_plt0_d = nullptr;
GOTAtom *_got0 = nullptr;
GOTAtom *_got1 = nullptr;
/// @}
};
/// This implements the static relocation model. Meaning GOT and PLT entries are
/// not created for references that can be directly resolved. These are
/// converted to a direct relocation. For entries that do require a GOT or PLT
/// entry, that entry is statically bound.
///
/// TLS always assumes module 1 and attempts to remove indirection.
class ARMStaticRelocationPass final
: public ARMRelocationPass<ARMStaticRelocationPass> {
public:
ARMStaticRelocationPass(const elf::ARMLinkingContext &ctx)
: ARMRelocationPass(ctx) {}
/// \brief Handle ordinary relocation references.
std::error_code handlePlain(bool fromThumb, const Reference &ref) {
return handleIFUNC(fromThumb, ref);
}
/// \brief Get the veneer for ARM B/BL instructions.
const VeneerAtom *getVeneer_ARM_B_BL(const DefinedAtom *da,
StringRef secName) {
return getVeneer_ARM_B_BL_Abs(da, secName);
}
/// \brief Get the veneer for Thumb B/BL instructions.
const VeneerAtom *getVeneer_THM_B_BL(const DefinedAtom *da,
StringRef secName) {
return getVeneer_THM_B_BL_Abs(da, secName);
}
/// \brief Create a GOT entry for R_ARM_TLS_TPOFF32 reloc.
const GOTAtom *getTLSTPOFF32(const DefinedAtom *da) {
return getGOTTLSEntry<R_ARM_TLS_LE32>(da);
}
};
/// This implements the dynamic relocation model. GOT and PLT entries are
/// created for references that cannot be directly resolved.
class ARMDynamicRelocationPass final
: public ARMRelocationPass<ARMDynamicRelocationPass> {
public:
ARMDynamicRelocationPass(const elf::ARMLinkingContext &ctx)
: ARMRelocationPass(ctx) {}
/// \brief get the PLT entry for a given atom.
const PLTAtom *getPLTEntry(const SharedLibraryAtom *sla, bool fromThumb) {
return getPLT(sla, fromThumb, &ARMDynamicRelocationPass::createPLTGOT);
}
/// \brief Create the GOT entry for a given atom.
const GOTAtom *createPLTGOT(const Atom *da) {
assert(!_gotpltAtoms.lookup(da) && "PLTGOT entry already exists");
auto g = new (_file._alloc) ARMGOTPLTAtom(_file);
g->addReferenceELF_ARM(R_ARM_ABS32, 0, getPLT0(), 0);
g->addReferenceELF_ARM(R_ARM_JUMP_SLOT, 0, da, 0);
#ifndef NDEBUG
g->_name = "__got_plt0_";
g->_name += da->name();
#endif
_gotpltAtoms[da] = g;
return g;
}
const ObjectAtom *getObjectEntry(const SharedLibraryAtom *a) {
if (auto obj = _objectAtoms.lookup(a))
return obj;
auto oa = new (_file._alloc) ARMObjectAtom(_file);
oa->addReferenceELF_ARM(R_ARM_COPY, 0, oa, 0);
oa->_name = a->name();
oa->_size = a->size();
_objectAtoms[a] = oa;
return oa;
}
/// \brief Handle ordinary relocation references.
std::error_code handlePlain(bool fromThumb, const Reference &ref) {
if (auto sla = dyn_cast<SharedLibraryAtom>(ref.target())) {
if (sla->type() == SharedLibraryAtom::Type::Data &&
_ctx.getOutputELFType() == llvm::ELF::ET_EXEC) {
const_cast<Reference &>(ref).setTarget(getObjectEntry(sla));
} else if (sla->type() == SharedLibraryAtom::Type::Code) {
const_cast<Reference &>(ref).setTarget(getPLTEntry(sla, fromThumb));
}
return std::error_code();
}
return handleIFUNC(fromThumb, ref);
}
/// \brief Get the veneer for ARM B/BL instructions.
const VeneerAtom *getVeneer_ARM_B_BL(const DefinedAtom *da,
StringRef secName) {
if (_ctx.getOutputELFType() == llvm::ELF::ET_EXEC) {
return getVeneer_ARM_B_BL_Abs(da, secName);
}
llvm_unreachable("Handle ARM veneer for DSOs");
}
/// \brief Get the veneer for Thumb B/BL instructions.
const VeneerAtom *getVeneer_THM_B_BL(const DefinedAtom *da,
StringRef secName) {
if (_ctx.getOutputELFType() == llvm::ELF::ET_EXEC) {
return getVeneer_THM_B_BL_Abs(da, secName);
}
llvm_unreachable("Handle Thumb veneer for DSOs");
}
/// \brief Create a GOT entry for R_ARM_TLS_TPOFF32 reloc.
const GOTAtom *getTLSTPOFF32(const DefinedAtom *da) {
return getGOTTLSEntry<R_ARM_TLS_TPOFF32>(da);
}
const PLT0Atom *getPLT0() {
if (_plt0)
return _plt0;
// Fill in the null entry.
getNullGOT();
_plt0 = new (_file._alloc) ARMPLT0_a_Atom(_file, "__PLT0");
_plt0_d = new (_file._alloc) ARMPLT0_d_Atom(_file, "__PLT0_d");
_got0 = new (_file._alloc) ARMGOTPLTAtom(_file);
_got1 = new (_file._alloc) ARMGOTPLTAtom(_file);
_plt0_d->addReferenceELF_ARM(R_ARM_REL32, 0, _got1, 0);
// Fake reference to show connection between the GOT and PLT entries.
_plt0->addReferenceELF_ARM(R_ARM_NONE, 0, _got0, 0);
// Fake reference to show connection between parts of PLT entry.
_plt0->addReferenceELF_ARM(R_ARM_NONE, 0, _plt0_d, 0);
#ifndef NDEBUG
_got0->_name = "__got0";
_got1->_name = "__got1";
#endif
return _plt0;
}
const GOTAtom *getSharedGOTEntry(const SharedLibraryAtom *sla) {
return getGOT<R_ARM_GLOB_DAT>(sla);
}
std::error_code handleGOT(const Reference &ref) {
if (const auto sla = dyn_cast<const SharedLibraryAtom>(ref.target())) {
const_cast<Reference &>(ref).setTarget(getSharedGOTEntry(sla));
return std::error_code();
}
return ARMRelocationPass::handleGOT(ref);
}
};
} // end of anon namespace
std::unique_ptr<Pass>
lld::elf::createARMRelocationPass(const ARMLinkingContext &ctx) {
switch (ctx.getOutputELFType()) {
case llvm::ELF::ET_EXEC:
if (ctx.isDynamic())
return llvm::make_unique<ARMDynamicRelocationPass>(ctx);
return llvm::make_unique<ARMStaticRelocationPass>(ctx);
case llvm::ELF::ET_DYN:
return llvm::make_unique<ARMDynamicRelocationPass>(ctx);
default:
llvm_unreachable("Unhandled output file type");
}
}