This was fixed by making the DWARFFormValue contain the compile unit that it needs so it can decode its form value correctly. Any form value that requires a compile unit will now assert. If any of the assertions that were added are triggered, then code that led to the extraction of the form value without properly setting the compile unit must be fixed immediately. <rdar://problem/19035440> llvm-svn: 222602
934 lines
34 KiB
C++
934 lines
34 KiB
C++
//===-- HashedNameToDIE.h ---------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SymbolFileDWARF_HashedNameToDIE_h_
|
|
#define SymbolFileDWARF_HashedNameToDIE_h_
|
|
|
|
#include <vector>
|
|
|
|
#include "DWARFDefines.h"
|
|
#include "DWARFFormValue.h"
|
|
|
|
#include "lldb/lldb-defines.h"
|
|
#include "lldb/Core/dwarf.h"
|
|
#include "lldb/Core/RegularExpression.h"
|
|
#include "lldb/Core/MappedHash.h"
|
|
|
|
|
|
class SymbolFileDWARF;
|
|
class DWARFCompileUnit;
|
|
class DWARFDebugInfoEntry;
|
|
|
|
struct DWARFMappedHash
|
|
{
|
|
struct DIEInfo
|
|
{
|
|
dw_offset_t offset; // The DIE offset
|
|
dw_tag_t tag;
|
|
uint32_t type_flags; // Any flags for this DIEInfo
|
|
uint32_t qualified_name_hash; // A 32 bit hash of the fully qualified name
|
|
|
|
DIEInfo () :
|
|
offset (DW_INVALID_OFFSET),
|
|
tag (0),
|
|
type_flags (0),
|
|
qualified_name_hash (0)
|
|
{
|
|
}
|
|
|
|
DIEInfo (dw_offset_t o, dw_tag_t t, uint32_t f, uint32_t h) :
|
|
offset(o),
|
|
tag (t),
|
|
type_flags (f),
|
|
qualified_name_hash (h)
|
|
{
|
|
}
|
|
|
|
void
|
|
Clear()
|
|
{
|
|
offset = DW_INVALID_OFFSET;
|
|
tag = 0;
|
|
type_flags = 0;
|
|
qualified_name_hash = 0;
|
|
}
|
|
};
|
|
|
|
typedef std::vector<DIEInfo> DIEInfoArray;
|
|
typedef std::vector<uint32_t> DIEArray;
|
|
|
|
static void
|
|
ExtractDIEArray (const DIEInfoArray &die_info_array,
|
|
DIEArray &die_offsets)
|
|
{
|
|
const size_t count = die_info_array.size();
|
|
for (size_t i=0; i<count; ++i)
|
|
{
|
|
die_offsets.push_back (die_info_array[i].offset);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ExtractDIEArray (const DIEInfoArray &die_info_array,
|
|
const dw_tag_t tag,
|
|
DIEArray &die_offsets)
|
|
{
|
|
if (tag == 0)
|
|
{
|
|
ExtractDIEArray (die_info_array, die_offsets);
|
|
}
|
|
else
|
|
{
|
|
const size_t count = die_info_array.size();
|
|
for (size_t i=0; i<count; ++i)
|
|
{
|
|
const dw_tag_t die_tag = die_info_array[i].tag;
|
|
bool tag_matches = die_tag == 0 || tag == die_tag;
|
|
if (!tag_matches)
|
|
{
|
|
if (die_tag == DW_TAG_class_type || die_tag == DW_TAG_structure_type)
|
|
tag_matches = tag == DW_TAG_structure_type || tag == DW_TAG_class_type;
|
|
}
|
|
if (tag_matches)
|
|
die_offsets.push_back (die_info_array[i].offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
ExtractDIEArray (const DIEInfoArray &die_info_array,
|
|
const dw_tag_t tag,
|
|
const uint32_t qualified_name_hash,
|
|
DIEArray &die_offsets)
|
|
{
|
|
if (tag == 0)
|
|
{
|
|
ExtractDIEArray (die_info_array, die_offsets);
|
|
}
|
|
else
|
|
{
|
|
const size_t count = die_info_array.size();
|
|
for (size_t i=0; i<count; ++i)
|
|
{
|
|
if (qualified_name_hash != die_info_array[i].qualified_name_hash)
|
|
continue;
|
|
const dw_tag_t die_tag = die_info_array[i].tag;
|
|
bool tag_matches = die_tag == 0 || tag == die_tag;
|
|
if (!tag_matches)
|
|
{
|
|
if (die_tag == DW_TAG_class_type || die_tag == DW_TAG_structure_type)
|
|
tag_matches = tag == DW_TAG_structure_type || tag == DW_TAG_class_type;
|
|
}
|
|
if (tag_matches)
|
|
die_offsets.push_back (die_info_array[i].offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
enum AtomType
|
|
{
|
|
eAtomTypeNULL = 0u,
|
|
eAtomTypeDIEOffset = 1u, // DIE offset, check form for encoding
|
|
eAtomTypeCUOffset = 2u, // DIE offset of the compiler unit header that contains the item in question
|
|
eAtomTypeTag = 3u, // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2
|
|
eAtomTypeNameFlags = 4u, // Flags from enum NameFlags
|
|
eAtomTypeTypeFlags = 5u, // Flags from enum TypeFlags,
|
|
eAtomTypeQualNameHash = 6u // A 32 bit hash of the full qualified name (since all hash entries are basename only)
|
|
// For example a type like "std::vector<int>::iterator" would have a name of "iterator"
|
|
// and a 32 bit hash for "std::vector<int>::iterator" to allow us to not have to pull
|
|
// in debug info for a type when we know the fully qualified name.
|
|
};
|
|
|
|
// Bit definitions for the eAtomTypeTypeFlags flags
|
|
enum TypeFlags
|
|
{
|
|
// Always set for C++, only set for ObjC if this is the
|
|
// @implementation for class
|
|
eTypeFlagClassIsImplementation = ( 1u << 1 )
|
|
};
|
|
|
|
|
|
static void
|
|
ExtractClassOrStructDIEArray (const DIEInfoArray &die_info_array,
|
|
bool return_implementation_only_if_available,
|
|
DIEArray &die_offsets)
|
|
{
|
|
const size_t count = die_info_array.size();
|
|
for (size_t i=0; i<count; ++i)
|
|
{
|
|
const dw_tag_t die_tag = die_info_array[i].tag;
|
|
if (die_tag == 0 || die_tag == DW_TAG_class_type || die_tag == DW_TAG_structure_type)
|
|
{
|
|
if (die_info_array[i].type_flags & eTypeFlagClassIsImplementation)
|
|
{
|
|
if (return_implementation_only_if_available)
|
|
{
|
|
// We found the one true definition for this class, so
|
|
// only return that
|
|
die_offsets.clear();
|
|
die_offsets.push_back (die_info_array[i].offset);
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
// Put the one true definition as the first entry so it
|
|
// matches first
|
|
die_offsets.insert (die_offsets.begin(), die_info_array[i].offset);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
die_offsets.push_back (die_info_array[i].offset);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
ExtractTypesFromDIEArray (const DIEInfoArray &die_info_array,
|
|
uint32_t type_flag_mask,
|
|
uint32_t type_flag_value,
|
|
DIEArray &die_offsets)
|
|
{
|
|
const size_t count = die_info_array.size();
|
|
for (size_t i=0; i<count; ++i)
|
|
{
|
|
if ((die_info_array[i].type_flags & type_flag_mask) == type_flag_value)
|
|
die_offsets.push_back (die_info_array[i].offset);
|
|
}
|
|
}
|
|
|
|
struct Atom
|
|
{
|
|
uint16_t type;
|
|
dw_form_t form;
|
|
|
|
Atom (uint16_t t = eAtomTypeNULL, dw_form_t f = 0) :
|
|
type (t),
|
|
form (f)
|
|
{
|
|
}
|
|
};
|
|
|
|
typedef std::vector<Atom> AtomArray;
|
|
|
|
static uint32_t
|
|
GetTypeFlags (SymbolFileDWARF *dwarf2Data,
|
|
const DWARFCompileUnit* cu,
|
|
const DWARFDebugInfoEntry* die);
|
|
|
|
|
|
static const char *
|
|
GetAtomTypeName (uint16_t atom)
|
|
{
|
|
switch (atom)
|
|
{
|
|
case eAtomTypeNULL: return "NULL";
|
|
case eAtomTypeDIEOffset: return "die-offset";
|
|
case eAtomTypeCUOffset: return "cu-offset";
|
|
case eAtomTypeTag: return "die-tag";
|
|
case eAtomTypeNameFlags: return "name-flags";
|
|
case eAtomTypeTypeFlags: return "type-flags";
|
|
case eAtomTypeQualNameHash: return "qualified-name-hash";
|
|
}
|
|
return "<invalid>";
|
|
}
|
|
struct Prologue
|
|
{
|
|
// DIE offset base so die offsets in hash_data can be CU relative
|
|
dw_offset_t die_base_offset;
|
|
AtomArray atoms;
|
|
uint32_t atom_mask;
|
|
size_t min_hash_data_byte_size;
|
|
bool hash_data_has_fixed_byte_size;
|
|
|
|
Prologue (dw_offset_t _die_base_offset = 0) :
|
|
die_base_offset (_die_base_offset),
|
|
atoms(),
|
|
atom_mask (0),
|
|
min_hash_data_byte_size(0),
|
|
hash_data_has_fixed_byte_size(true)
|
|
{
|
|
// Define an array of DIE offsets by first defining an array,
|
|
// and then define the atom type for the array, in this case
|
|
// we have an array of DIE offsets
|
|
AppendAtom (eAtomTypeDIEOffset, DW_FORM_data4);
|
|
}
|
|
|
|
virtual ~Prologue()
|
|
{
|
|
}
|
|
|
|
void
|
|
ClearAtoms ()
|
|
{
|
|
hash_data_has_fixed_byte_size = true;
|
|
min_hash_data_byte_size = 0;
|
|
atom_mask = 0;
|
|
atoms.clear();
|
|
}
|
|
|
|
bool
|
|
ContainsAtom (AtomType atom_type) const
|
|
{
|
|
return (atom_mask & (1u << atom_type)) != 0;
|
|
}
|
|
|
|
virtual void
|
|
Clear ()
|
|
{
|
|
die_base_offset = 0;
|
|
ClearAtoms ();
|
|
}
|
|
|
|
void
|
|
AppendAtom (AtomType type, dw_form_t form)
|
|
{
|
|
atoms.push_back (Atom(type, form));
|
|
atom_mask |= 1u << type;
|
|
switch (form)
|
|
{
|
|
case DW_FORM_indirect:
|
|
case DW_FORM_exprloc:
|
|
case DW_FORM_flag_present:
|
|
case DW_FORM_ref_sig8:
|
|
assert (!"Unhandled atom form");
|
|
break;
|
|
|
|
case DW_FORM_string:
|
|
case DW_FORM_block:
|
|
case DW_FORM_block1:
|
|
case DW_FORM_sdata:
|
|
case DW_FORM_udata:
|
|
case DW_FORM_ref_udata:
|
|
hash_data_has_fixed_byte_size = false;
|
|
// Fall through to the cases below...
|
|
case DW_FORM_flag:
|
|
case DW_FORM_data1:
|
|
case DW_FORM_ref1:
|
|
case DW_FORM_sec_offset:
|
|
min_hash_data_byte_size += 1;
|
|
break;
|
|
|
|
case DW_FORM_block2:
|
|
hash_data_has_fixed_byte_size = false;
|
|
// Fall through to the cases below...
|
|
case DW_FORM_data2:
|
|
case DW_FORM_ref2:
|
|
min_hash_data_byte_size += 2;
|
|
break;
|
|
|
|
case DW_FORM_block4:
|
|
hash_data_has_fixed_byte_size = false;
|
|
// Fall through to the cases below...
|
|
case DW_FORM_data4:
|
|
case DW_FORM_ref4:
|
|
case DW_FORM_addr:
|
|
case DW_FORM_ref_addr:
|
|
case DW_FORM_strp:
|
|
min_hash_data_byte_size += 4;
|
|
break;
|
|
|
|
case DW_FORM_data8:
|
|
case DW_FORM_ref8:
|
|
min_hash_data_byte_size += 8;
|
|
break;
|
|
|
|
}
|
|
}
|
|
|
|
// void
|
|
// Dump (std::ostream* ostrm_ptr);
|
|
|
|
lldb::offset_t
|
|
Read (const lldb_private::DataExtractor &data,
|
|
lldb::offset_t offset)
|
|
{
|
|
ClearAtoms ();
|
|
|
|
die_base_offset = data.GetU32 (&offset);
|
|
|
|
const uint32_t atom_count = data.GetU32 (&offset);
|
|
if (atom_count == 0x00060003u)
|
|
{
|
|
// Old format, deal with contents of old pre-release format
|
|
while (data.GetU32(&offset))
|
|
/* do nothing */;
|
|
|
|
// Hardcode to the only known value for now.
|
|
AppendAtom (eAtomTypeDIEOffset, DW_FORM_data4);
|
|
}
|
|
else
|
|
{
|
|
for (uint32_t i=0; i<atom_count; ++i)
|
|
{
|
|
AtomType type = (AtomType)data.GetU16 (&offset);
|
|
dw_form_t form = (dw_form_t)data.GetU16 (&offset);
|
|
AppendAtom (type, form);
|
|
}
|
|
}
|
|
return offset;
|
|
}
|
|
|
|
// virtual void
|
|
// Write (BinaryStreamBuf &s);
|
|
|
|
size_t
|
|
GetByteSize () const
|
|
{
|
|
// Add an extra count to the atoms size for the zero termination Atom that gets
|
|
// written to disk
|
|
return sizeof(die_base_offset) + sizeof(uint32_t) + atoms.size() * sizeof(Atom);
|
|
}
|
|
|
|
size_t
|
|
GetMinimumHashDataByteSize () const
|
|
{
|
|
return min_hash_data_byte_size;
|
|
}
|
|
|
|
bool
|
|
HashDataHasFixedByteSize() const
|
|
{
|
|
return hash_data_has_fixed_byte_size;
|
|
}
|
|
};
|
|
|
|
struct Header : public MappedHash::Header<Prologue>
|
|
{
|
|
Header (dw_offset_t _die_base_offset = 0)
|
|
{
|
|
}
|
|
|
|
virtual
|
|
~Header()
|
|
{
|
|
}
|
|
|
|
virtual size_t
|
|
GetByteSize (const HeaderData &header_data)
|
|
{
|
|
return header_data.GetByteSize();
|
|
}
|
|
|
|
// virtual void
|
|
// Dump (std::ostream* ostrm_ptr);
|
|
//
|
|
virtual lldb::offset_t
|
|
Read (lldb_private::DataExtractor &data, lldb::offset_t offset)
|
|
{
|
|
offset = MappedHash::Header<Prologue>::Read (data, offset);
|
|
if (offset != UINT32_MAX)
|
|
{
|
|
offset = header_data.Read (data, offset);
|
|
}
|
|
return offset;
|
|
}
|
|
|
|
bool
|
|
Read (const lldb_private::DWARFDataExtractor &data,
|
|
lldb::offset_t *offset_ptr,
|
|
DIEInfo &hash_data) const
|
|
{
|
|
const size_t num_atoms = header_data.atoms.size();
|
|
if (num_atoms == 0)
|
|
return false;
|
|
|
|
for (size_t i=0; i<num_atoms; ++i)
|
|
{
|
|
DWARFFormValue form_value (NULL, header_data.atoms[i].form);
|
|
|
|
if (!form_value.ExtractValue(data, offset_ptr))
|
|
return false;
|
|
|
|
switch (header_data.atoms[i].type)
|
|
{
|
|
case eAtomTypeDIEOffset: // DIE offset, check form for encoding
|
|
hash_data.offset = (dw_offset_t)form_value.Reference (header_data.die_base_offset);
|
|
break;
|
|
|
|
case eAtomTypeTag: // DW_TAG value for the DIE
|
|
hash_data.tag = (dw_tag_t)form_value.Unsigned ();
|
|
|
|
case eAtomTypeTypeFlags: // Flags from enum TypeFlags
|
|
hash_data.type_flags = (uint32_t)form_value.Unsigned ();
|
|
break;
|
|
|
|
case eAtomTypeQualNameHash: // Flags from enum TypeFlags
|
|
hash_data.qualified_name_hash = form_value.Unsigned ();
|
|
break;
|
|
|
|
default:
|
|
// We can always skip atoms we don't know about
|
|
break;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void
|
|
Dump (lldb_private::Stream& strm, const DIEInfo &hash_data) const
|
|
{
|
|
const size_t num_atoms = header_data.atoms.size();
|
|
for (size_t i=0; i<num_atoms; ++i)
|
|
{
|
|
if (i > 0)
|
|
strm.PutCString (", ");
|
|
|
|
DWARFFormValue form_value (NULL, header_data.atoms[i].form);
|
|
switch (header_data.atoms[i].type)
|
|
{
|
|
case eAtomTypeDIEOffset: // DIE offset, check form for encoding
|
|
strm.Printf ("{0x%8.8x}", hash_data.offset);
|
|
break;
|
|
|
|
case eAtomTypeTag: // DW_TAG value for the DIE
|
|
{
|
|
const char *tag_cstr = lldb_private::DW_TAG_value_to_name (hash_data.tag);
|
|
if (tag_cstr)
|
|
strm.PutCString (tag_cstr);
|
|
else
|
|
strm.Printf ("DW_TAG_(0x%4.4x)", hash_data.tag);
|
|
}
|
|
break;
|
|
|
|
case eAtomTypeTypeFlags: // Flags from enum TypeFlags
|
|
strm.Printf ("0x%2.2x", hash_data.type_flags);
|
|
if (hash_data.type_flags)
|
|
{
|
|
strm.PutCString (" (");
|
|
if (hash_data.type_flags & eTypeFlagClassIsImplementation)
|
|
strm.PutCString (" implementation");
|
|
strm.PutCString (" )");
|
|
}
|
|
break;
|
|
|
|
case eAtomTypeQualNameHash: // Flags from enum TypeFlags
|
|
strm.Printf ("0x%8.8x", hash_data.qualified_name_hash);
|
|
break;
|
|
|
|
default:
|
|
strm.Printf ("AtomType(0x%x)", header_data.atoms[i].type);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
// class ExportTable
|
|
// {
|
|
// public:
|
|
// ExportTable ();
|
|
//
|
|
// void
|
|
// AppendNames (DWARFDebugPubnamesSet &pubnames_set,
|
|
// StringTable &string_table);
|
|
//
|
|
// void
|
|
// AppendNamesEntry (SymbolFileDWARF *dwarf2Data,
|
|
// const DWARFCompileUnit* cu,
|
|
// const DWARFDebugInfoEntry* die,
|
|
// StringTable &string_table);
|
|
//
|
|
// void
|
|
// AppendTypesEntry (DWARFData *dwarf2Data,
|
|
// const DWARFCompileUnit* cu,
|
|
// const DWARFDebugInfoEntry* die,
|
|
// StringTable &string_table);
|
|
//
|
|
// size_t
|
|
// Save (BinaryStreamBuf &names_data, const StringTable &string_table);
|
|
//
|
|
// void
|
|
// AppendName (const char *name,
|
|
// uint32_t die_offset,
|
|
// StringTable &string_table,
|
|
// dw_offset_t name_debug_str_offset = DW_INVALID_OFFSET); // If "name" has already been looked up, then it can be supplied
|
|
// void
|
|
// AppendType (const char *name,
|
|
// uint32_t die_offset,
|
|
// StringTable &string_table);
|
|
//
|
|
//
|
|
// protected:
|
|
// struct Entry
|
|
// {
|
|
// uint32_t hash;
|
|
// uint32_t str_offset;
|
|
// uint32_t die_offset;
|
|
// };
|
|
//
|
|
// // Map uniqued .debug_str offset to the corresponding DIE offsets
|
|
// typedef std::map<uint32_t, DIEInfoArray> NameInfo;
|
|
// // Map a name hash to one or more name infos
|
|
// typedef std::map<uint32_t, NameInfo> BucketEntry;
|
|
//
|
|
// static uint32_t
|
|
// GetByteSize (const NameInfo &name_info);
|
|
//
|
|
// typedef std::vector<BucketEntry> BucketEntryColl;
|
|
// typedef std::vector<Entry> EntryColl;
|
|
// EntryColl m_entries;
|
|
//
|
|
// };
|
|
|
|
|
|
// A class for reading and using a saved hash table from a block of data
|
|
// in memory
|
|
class MemoryTable : public MappedHash::MemoryTable<uint32_t, DWARFMappedHash::Header, DIEInfoArray>
|
|
{
|
|
public:
|
|
|
|
MemoryTable (lldb_private::DWARFDataExtractor &table_data,
|
|
const lldb_private::DWARFDataExtractor &string_table,
|
|
const char *name) :
|
|
MappedHash::MemoryTable<uint32_t, Header, DIEInfoArray> (table_data),
|
|
m_data (table_data),
|
|
m_string_table (string_table),
|
|
m_name (name)
|
|
{
|
|
}
|
|
|
|
virtual
|
|
~MemoryTable ()
|
|
{
|
|
}
|
|
|
|
virtual const char *
|
|
GetStringForKeyType (KeyType key) const
|
|
{
|
|
// The key in the DWARF table is the .debug_str offset for the string
|
|
return m_string_table.PeekCStr (key);
|
|
}
|
|
|
|
virtual bool
|
|
ReadHashData (uint32_t hash_data_offset,
|
|
HashData &hash_data) const
|
|
{
|
|
lldb::offset_t offset = hash_data_offset;
|
|
offset += 4; // Skip string table offset that contains offset of hash name in .debug_str
|
|
const uint32_t count = m_data.GetU32 (&offset);
|
|
if (count > 0)
|
|
{
|
|
hash_data.resize(count);
|
|
for (uint32_t i=0; i<count; ++i)
|
|
{
|
|
if (!m_header.Read(m_data, &offset, hash_data[i]))
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
hash_data.clear();
|
|
return true;
|
|
}
|
|
|
|
virtual Result
|
|
GetHashDataForName (const char *name,
|
|
lldb::offset_t* hash_data_offset_ptr,
|
|
Pair &pair) const
|
|
{
|
|
pair.key = m_data.GetU32 (hash_data_offset_ptr);
|
|
pair.value.clear();
|
|
|
|
// If the key is zero, this terminates our chain of HashData objects
|
|
// for this hash value.
|
|
if (pair.key == 0)
|
|
return eResultEndOfHashData;
|
|
|
|
// There definitely should be a string for this string offset, if
|
|
// there isn't, there is something wrong, return and error
|
|
const char *strp_cstr = m_string_table.PeekCStr (pair.key);
|
|
if (strp_cstr == NULL)
|
|
{
|
|
*hash_data_offset_ptr = UINT32_MAX;
|
|
return eResultError;
|
|
}
|
|
|
|
const uint32_t count = m_data.GetU32 (hash_data_offset_ptr);
|
|
const size_t min_total_hash_data_size = count * m_header.header_data.GetMinimumHashDataByteSize();
|
|
if (count > 0 && m_data.ValidOffsetForDataOfSize (*hash_data_offset_ptr, min_total_hash_data_size))
|
|
{
|
|
// We have at least one HashData entry, and we have enough
|
|
// data to parse at least "count" HashData entries.
|
|
|
|
// First make sure the entire C string matches...
|
|
const bool match = strcmp (name, strp_cstr) == 0;
|
|
|
|
if (!match && m_header.header_data.HashDataHasFixedByteSize())
|
|
{
|
|
// If the string doesn't match and we have fixed size data,
|
|
// we can just add the total byte size of all HashData objects
|
|
// to the hash data offset and be done...
|
|
*hash_data_offset_ptr += min_total_hash_data_size;
|
|
}
|
|
else
|
|
{
|
|
// If the string does match, or we don't have fixed size data
|
|
// then we need to read the hash data as a stream. If the
|
|
// string matches we also append all HashData objects to the
|
|
// value array.
|
|
for (uint32_t i=0; i<count; ++i)
|
|
{
|
|
DIEInfo die_info;
|
|
if (m_header.Read(m_data, hash_data_offset_ptr, die_info))
|
|
{
|
|
// Only happened if the HashData of the string matched...
|
|
if (match)
|
|
pair.value.push_back (die_info);
|
|
}
|
|
else
|
|
{
|
|
// Something went wrong while reading the data
|
|
*hash_data_offset_ptr = UINT32_MAX;
|
|
return eResultError;
|
|
}
|
|
}
|
|
}
|
|
// Return the correct response depending on if the string matched
|
|
// or not...
|
|
if (match)
|
|
return eResultKeyMatch; // The key (cstring) matches and we have lookup results!
|
|
else
|
|
return eResultKeyMismatch; // The key doesn't match, this function will get called
|
|
// again for the next key/value or the key terminator
|
|
// which in our case is a zero .debug_str offset.
|
|
}
|
|
else
|
|
{
|
|
*hash_data_offset_ptr = UINT32_MAX;
|
|
return eResultError;
|
|
}
|
|
}
|
|
|
|
virtual Result
|
|
AppendHashDataForRegularExpression (const lldb_private::RegularExpression& regex,
|
|
lldb::offset_t* hash_data_offset_ptr,
|
|
Pair &pair) const
|
|
{
|
|
pair.key = m_data.GetU32 (hash_data_offset_ptr);
|
|
// If the key is zero, this terminates our chain of HashData objects
|
|
// for this hash value.
|
|
if (pair.key == 0)
|
|
return eResultEndOfHashData;
|
|
|
|
// There definitely should be a string for this string offset, if
|
|
// there isn't, there is something wrong, return and error
|
|
const char *strp_cstr = m_string_table.PeekCStr (pair.key);
|
|
if (strp_cstr == NULL)
|
|
return eResultError;
|
|
|
|
const uint32_t count = m_data.GetU32 (hash_data_offset_ptr);
|
|
const size_t min_total_hash_data_size = count * m_header.header_data.GetMinimumHashDataByteSize();
|
|
if (count > 0 && m_data.ValidOffsetForDataOfSize (*hash_data_offset_ptr, min_total_hash_data_size))
|
|
{
|
|
const bool match = regex.Execute(strp_cstr);
|
|
|
|
if (!match && m_header.header_data.HashDataHasFixedByteSize())
|
|
{
|
|
// If the regex doesn't match and we have fixed size data,
|
|
// we can just add the total byte size of all HashData objects
|
|
// to the hash data offset and be done...
|
|
*hash_data_offset_ptr += min_total_hash_data_size;
|
|
}
|
|
else
|
|
{
|
|
// If the string does match, or we don't have fixed size data
|
|
// then we need to read the hash data as a stream. If the
|
|
// string matches we also append all HashData objects to the
|
|
// value array.
|
|
for (uint32_t i=0; i<count; ++i)
|
|
{
|
|
DIEInfo die_info;
|
|
if (m_header.Read(m_data, hash_data_offset_ptr, die_info))
|
|
{
|
|
// Only happened if the HashData of the string matched...
|
|
if (match)
|
|
pair.value.push_back (die_info);
|
|
}
|
|
else
|
|
{
|
|
// Something went wrong while reading the data
|
|
*hash_data_offset_ptr = UINT32_MAX;
|
|
return eResultError;
|
|
}
|
|
}
|
|
}
|
|
// Return the correct response depending on if the string matched
|
|
// or not...
|
|
if (match)
|
|
return eResultKeyMatch; // The key (cstring) matches and we have lookup results!
|
|
else
|
|
return eResultKeyMismatch; // The key doesn't match, this function will get called
|
|
// again for the next key/value or the key terminator
|
|
// which in our case is a zero .debug_str offset.
|
|
}
|
|
else
|
|
{
|
|
*hash_data_offset_ptr = UINT32_MAX;
|
|
return eResultError;
|
|
}
|
|
}
|
|
|
|
size_t
|
|
AppendAllDIEsThatMatchingRegex (const lldb_private::RegularExpression& regex,
|
|
DIEInfoArray &die_info_array) const
|
|
{
|
|
const uint32_t hash_count = m_header.hashes_count;
|
|
Pair pair;
|
|
for (uint32_t offset_idx=0; offset_idx<hash_count; ++offset_idx)
|
|
{
|
|
lldb::offset_t hash_data_offset = GetHashDataOffset (offset_idx);
|
|
while (hash_data_offset != UINT32_MAX)
|
|
{
|
|
const lldb::offset_t prev_hash_data_offset = hash_data_offset;
|
|
Result hash_result = AppendHashDataForRegularExpression (regex, &hash_data_offset, pair);
|
|
if (prev_hash_data_offset == hash_data_offset)
|
|
break;
|
|
|
|
// Check the result of getting our hash data
|
|
switch (hash_result)
|
|
{
|
|
case eResultKeyMatch:
|
|
case eResultKeyMismatch:
|
|
// Whether we matches or not, it doesn't matter, we
|
|
// keep looking.
|
|
break;
|
|
|
|
case eResultEndOfHashData:
|
|
case eResultError:
|
|
hash_data_offset = UINT32_MAX;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
die_info_array.swap (pair.value);
|
|
return die_info_array.size();
|
|
}
|
|
|
|
size_t
|
|
AppendAllDIEsInRange (const uint32_t die_offset_start,
|
|
const uint32_t die_offset_end,
|
|
DIEInfoArray &die_info_array) const
|
|
{
|
|
const uint32_t hash_count = m_header.hashes_count;
|
|
for (uint32_t offset_idx=0; offset_idx<hash_count; ++offset_idx)
|
|
{
|
|
bool done = false;
|
|
lldb::offset_t hash_data_offset = GetHashDataOffset (offset_idx);
|
|
while (!done && hash_data_offset != UINT32_MAX)
|
|
{
|
|
KeyType key = m_data.GetU32 (&hash_data_offset);
|
|
// If the key is zero, this terminates our chain of HashData objects
|
|
// for this hash value.
|
|
if (key == 0)
|
|
break;
|
|
|
|
const uint32_t count = m_data.GetU32 (&hash_data_offset);
|
|
for (uint32_t i=0; i<count; ++i)
|
|
{
|
|
DIEInfo die_info;
|
|
if (m_header.Read(m_data, &hash_data_offset, die_info))
|
|
{
|
|
if (die_info.offset == 0)
|
|
done = true;
|
|
if (die_offset_start <= die_info.offset && die_info.offset < die_offset_end)
|
|
die_info_array.push_back(die_info);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return die_info_array.size();
|
|
}
|
|
|
|
size_t
|
|
FindByName (const char *name, DIEArray &die_offsets)
|
|
{
|
|
DIEInfoArray die_info_array;
|
|
if (FindByName(name, die_info_array))
|
|
DWARFMappedHash::ExtractDIEArray (die_info_array, die_offsets);
|
|
return die_info_array.size();
|
|
}
|
|
|
|
size_t
|
|
FindByNameAndTag (const char *name,
|
|
const dw_tag_t tag,
|
|
DIEArray &die_offsets)
|
|
{
|
|
DIEInfoArray die_info_array;
|
|
if (FindByName(name, die_info_array))
|
|
DWARFMappedHash::ExtractDIEArray (die_info_array, tag, die_offsets);
|
|
return die_info_array.size();
|
|
}
|
|
|
|
size_t
|
|
FindByNameAndTagAndQualifiedNameHash (const char *name,
|
|
const dw_tag_t tag,
|
|
const uint32_t qualified_name_hash,
|
|
DIEArray &die_offsets)
|
|
{
|
|
DIEInfoArray die_info_array;
|
|
if (FindByName(name, die_info_array))
|
|
DWARFMappedHash::ExtractDIEArray (die_info_array, tag, qualified_name_hash, die_offsets);
|
|
return die_info_array.size();
|
|
}
|
|
|
|
size_t
|
|
FindCompleteObjCClassByName (const char *name, DIEArray &die_offsets, bool must_be_implementation)
|
|
{
|
|
DIEInfoArray die_info_array;
|
|
if (FindByName(name, die_info_array))
|
|
{
|
|
if (must_be_implementation && GetHeader().header_data.ContainsAtom (eAtomTypeTypeFlags))
|
|
{
|
|
// If we have two atoms, then we have the DIE offset and
|
|
// the type flags so we can find the objective C class
|
|
// efficiently.
|
|
DWARFMappedHash::ExtractTypesFromDIEArray (die_info_array,
|
|
UINT32_MAX,
|
|
eTypeFlagClassIsImplementation,
|
|
die_offsets);
|
|
}
|
|
else
|
|
{
|
|
// We don't only want the one true definition, so try and see
|
|
// what we can find, and only return class or struct DIEs.
|
|
// If we do have the full implementation, then return it alone,
|
|
// else return all possible matches.
|
|
const bool return_implementation_only_if_available = true;
|
|
DWARFMappedHash::ExtractClassOrStructDIEArray (die_info_array,
|
|
return_implementation_only_if_available,
|
|
die_offsets);
|
|
}
|
|
}
|
|
return die_offsets.size();
|
|
}
|
|
|
|
size_t
|
|
FindByName (const char *name, DIEInfoArray &die_info_array)
|
|
{
|
|
Pair kv_pair;
|
|
size_t old_size = die_info_array.size();
|
|
if (Find (name, kv_pair))
|
|
{
|
|
die_info_array.swap(kv_pair.value);
|
|
return die_info_array.size() - old_size;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
protected:
|
|
const lldb_private::DWARFDataExtractor &m_data;
|
|
const lldb_private::DWARFDataExtractor &m_string_table;
|
|
std::string m_name;
|
|
};
|
|
};
|
|
|
|
|
|
#endif // SymbolFileDWARF_HashedNameToDIE_h_
|