Although we have plans to support this, and many other, dimension level type(s), currently the tag is not supported. It will be easy to add this back once support is added. NOTE: based on discussion in https://discourse.llvm.org/t/overcoming-sparsification-limitation-on-level-types/62585 https://github.com/llvm/llvm-project/issues/51658 Reviewed By: Peiming Differential Revision: https://reviews.llvm.org/D131002
401 lines
14 KiB
C++
401 lines
14 KiB
C++
//===- SparseTensorDialect.cpp - Sparse tensor dialect implementation -----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
|
|
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/DialectImplementation.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/OpImplementation.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::sparse_tensor;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TensorDialect Attribute Methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define GET_ATTRDEF_CLASSES
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
|
|
|
|
static bool acceptBitWidth(unsigned bitWidth) {
|
|
switch (bitWidth) {
|
|
case 0:
|
|
case 8:
|
|
case 16:
|
|
case 32:
|
|
case 64:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Attribute SparseTensorEncodingAttr::parse(AsmParser &parser, Type type) {
|
|
if (failed(parser.parseLess()))
|
|
return {};
|
|
// Parse the data as a dictionary.
|
|
DictionaryAttr dict;
|
|
if (failed(parser.parseAttribute(dict)))
|
|
return {};
|
|
if (failed(parser.parseGreater()))
|
|
return {};
|
|
// Process the data from the parsed dictionary value into struct-like data.
|
|
SmallVector<SparseTensorEncodingAttr::DimLevelType, 4> dlt;
|
|
AffineMap map = {};
|
|
unsigned ptr = 0;
|
|
unsigned ind = 0;
|
|
for (const NamedAttribute &attr : dict) {
|
|
if (attr.getName() == "dimLevelType") {
|
|
auto arrayAttr = attr.getValue().dyn_cast<ArrayAttr>();
|
|
if (!arrayAttr) {
|
|
parser.emitError(parser.getNameLoc(),
|
|
"expected an array for dimension level types");
|
|
return {};
|
|
}
|
|
for (auto i : arrayAttr) {
|
|
auto strAttr = i.dyn_cast<StringAttr>();
|
|
if (!strAttr) {
|
|
parser.emitError(parser.getNameLoc(),
|
|
"expected a string value in dimension level types");
|
|
return {};
|
|
}
|
|
auto strVal = strAttr.getValue();
|
|
if (strVal == "dense") {
|
|
dlt.push_back(SparseTensorEncodingAttr::DimLevelType::Dense);
|
|
} else if (strVal == "compressed") {
|
|
dlt.push_back(SparseTensorEncodingAttr::DimLevelType::Compressed);
|
|
} else {
|
|
parser.emitError(parser.getNameLoc(),
|
|
"unexpected dimension level type: ")
|
|
<< strVal;
|
|
return {};
|
|
}
|
|
}
|
|
} else if (attr.getName() == "dimOrdering") {
|
|
auto affineAttr = attr.getValue().dyn_cast<AffineMapAttr>();
|
|
if (!affineAttr) {
|
|
parser.emitError(parser.getNameLoc(),
|
|
"expected an affine map for dimension ordering");
|
|
return {};
|
|
}
|
|
map = affineAttr.getValue();
|
|
} else if (attr.getName() == "pointerBitWidth") {
|
|
auto intAttr = attr.getValue().dyn_cast<IntegerAttr>();
|
|
if (!intAttr) {
|
|
parser.emitError(parser.getNameLoc(),
|
|
"expected an integral pointer bitwidth");
|
|
return {};
|
|
}
|
|
ptr = intAttr.getInt();
|
|
} else if (attr.getName() == "indexBitWidth") {
|
|
auto intAttr = attr.getValue().dyn_cast<IntegerAttr>();
|
|
if (!intAttr) {
|
|
parser.emitError(parser.getNameLoc(),
|
|
"expected an integral index bitwidth");
|
|
return {};
|
|
}
|
|
ind = intAttr.getInt();
|
|
} else {
|
|
parser.emitError(parser.getNameLoc(), "unexpected key: ")
|
|
<< attr.getName().strref();
|
|
return {};
|
|
}
|
|
}
|
|
// Construct struct-like storage for attribute.
|
|
return parser.getChecked<SparseTensorEncodingAttr>(parser.getContext(), dlt,
|
|
map, ptr, ind);
|
|
}
|
|
|
|
void SparseTensorEncodingAttr::print(AsmPrinter &printer) const {
|
|
// Print the struct-like storage in dictionary fashion.
|
|
printer << "<{ dimLevelType = [ ";
|
|
for (unsigned i = 0, e = getDimLevelType().size(); i < e; i++) {
|
|
switch (getDimLevelType()[i]) {
|
|
case DimLevelType::Dense:
|
|
printer << "\"dense\"";
|
|
break;
|
|
case DimLevelType::Compressed:
|
|
printer << "\"compressed\"";
|
|
break;
|
|
}
|
|
if (i != e - 1)
|
|
printer << ", ";
|
|
}
|
|
printer << " ]";
|
|
if (getDimOrdering())
|
|
printer << ", dimOrdering = affine_map<" << getDimOrdering() << ">";
|
|
printer << ", pointerBitWidth = " << getPointerBitWidth()
|
|
<< ", indexBitWidth = " << getIndexBitWidth() << " }>";
|
|
}
|
|
|
|
LogicalResult SparseTensorEncodingAttr::verify(
|
|
function_ref<InFlightDiagnostic()> emitError,
|
|
ArrayRef<DimLevelType> dimLevelType, AffineMap dimOrdering,
|
|
unsigned pointerBitWidth, unsigned indexBitWidth) {
|
|
if (!acceptBitWidth(pointerBitWidth))
|
|
return emitError() << "unexpected pointer bitwidth: " << pointerBitWidth;
|
|
if (!acceptBitWidth(indexBitWidth))
|
|
return emitError() << "unexpected index bitwidth: " << indexBitWidth;
|
|
if (dimOrdering) {
|
|
if (!dimOrdering.isPermutation())
|
|
return emitError()
|
|
<< "expected a permutation affine map for dimension ordering";
|
|
if (dimOrdering.getNumResults() != dimLevelType.size())
|
|
return emitError() << "unexpected mismatch in ordering and dimension "
|
|
"level types size";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult SparseTensorEncodingAttr::verifyEncoding(
|
|
ArrayRef<int64_t> shape, Type elementType,
|
|
function_ref<InFlightDiagnostic()> emitError) const {
|
|
// Check structural integrity.
|
|
if (failed(verify(emitError, getDimLevelType(), getDimOrdering(),
|
|
getPointerBitWidth(), getIndexBitWidth())))
|
|
return failure();
|
|
// Check integrity with tensor type specifics. Dimension ordering is optional,
|
|
// but we always should have dimension level types for the full rank.
|
|
unsigned size = shape.size();
|
|
if (size == 0)
|
|
return emitError() << "expected non-scalar sparse tensor";
|
|
if (getDimOrdering() && getDimOrdering().getNumResults() != size)
|
|
return emitError() << "expected an affine map of size " << size
|
|
<< " for dimension ordering";
|
|
if (getDimLevelType().size() != size)
|
|
return emitError() << "expected an array of size " << size
|
|
<< " for dimension level types";
|
|
return success();
|
|
}
|
|
|
|
SparseTensorEncodingAttr
|
|
mlir::sparse_tensor::getSparseTensorEncoding(Type type) {
|
|
if (auto ttp = type.dyn_cast<RankedTensorType>())
|
|
return ttp.getEncoding().dyn_cast_or_null<SparseTensorEncodingAttr>();
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TensorDialect Operations.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static LogicalResult isInBounds(Value dim, Value tensor) {
|
|
IntegerAttr constantAttr;
|
|
if (matchPattern(dim, m_Constant(&constantAttr))) {
|
|
unsigned d = constantAttr.getInt();
|
|
if (d >= tensor.getType().cast<RankedTensorType>().getRank())
|
|
return failure();
|
|
}
|
|
return success(); // in bounds, or symbolic
|
|
}
|
|
|
|
static LogicalResult isMatchingWidth(Value result, unsigned width) {
|
|
Type etp = result.getType().cast<MemRefType>().getElementType();
|
|
if ((width == 0 && etp.isIndex()) || (width > 0 && etp.isInteger(width)))
|
|
return success();
|
|
return failure();
|
|
}
|
|
|
|
LogicalResult ConvertOp::verify() {
|
|
if (auto tp1 = getSource().getType().dyn_cast<RankedTensorType>()) {
|
|
if (auto tp2 = getDest().getType().dyn_cast<RankedTensorType>()) {
|
|
if (tp1.getRank() != tp2.getRank())
|
|
return emitError("unexpected conversion mismatch in rank");
|
|
auto shape1 = tp1.getShape();
|
|
auto shape2 = tp2.getShape();
|
|
// Accept size matches between the source and the destination type
|
|
// (e.g. 10 vs. 10, 10 vs. ?, or ? vs. ?), but reject direct mismatches or
|
|
// matches that would need a runtime assert (e.g. 10 vs. 20 or ? vs. 10).
|
|
for (unsigned d = 0, rank = tp1.getRank(); d < rank; d++)
|
|
if (shape1[d] != shape2[d] && shape2[d] != ShapedType::kDynamicSize)
|
|
return emitError("unexpected conversion mismatch in dimension ") << d;
|
|
return success();
|
|
}
|
|
}
|
|
return emitError("unexpected type in convert");
|
|
}
|
|
|
|
OpFoldResult ConvertOp::fold(ArrayRef<Attribute> operands) {
|
|
if (getType() == getSource().getType())
|
|
return getSource();
|
|
return {};
|
|
}
|
|
|
|
LogicalResult ToPointersOp::verify() {
|
|
auto e = getSparseTensorEncoding(getTensor().getType());
|
|
if (failed(isInBounds(getDim(), getTensor())))
|
|
return emitError("requested pointers dimension out of bounds");
|
|
if (failed(isMatchingWidth(getResult(), e.getPointerBitWidth())))
|
|
return emitError("unexpected type for pointers");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ToIndicesOp::verify() {
|
|
auto e = getSparseTensorEncoding(getTensor().getType());
|
|
if (failed(isInBounds(getDim(), getTensor())))
|
|
return emitError("requested indices dimension out of bounds");
|
|
if (failed(isMatchingWidth(getResult(), e.getIndexBitWidth())))
|
|
return emitError("unexpected type for indices");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ToValuesOp::verify() {
|
|
RankedTensorType ttp = getTensor().getType().cast<RankedTensorType>();
|
|
MemRefType mtp = getResult().getType().cast<MemRefType>();
|
|
if (ttp.getElementType() != mtp.getElementType())
|
|
return emitError("unexpected mismatch in element types");
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TensorDialect Linalg.Generic Operations.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <class T>
|
|
static LogicalResult verifyNumBlockArgs(T *op, Region ®ion,
|
|
const char *regionName,
|
|
TypeRange inputTypes, Type outputType) {
|
|
unsigned numArgs = region.getNumArguments();
|
|
unsigned expectedNum = inputTypes.size();
|
|
if (numArgs != expectedNum)
|
|
return op->emitError() << regionName << " region must have exactly "
|
|
<< expectedNum << " arguments";
|
|
|
|
for (unsigned i = 0; i < numArgs; i++) {
|
|
Type typ = region.getArgument(i).getType();
|
|
if (typ != inputTypes[i])
|
|
return op->emitError() << regionName << " region argument " << (i + 1)
|
|
<< " type mismatch";
|
|
}
|
|
Operation *term = region.front().getTerminator();
|
|
YieldOp yield = dyn_cast<YieldOp>(term);
|
|
if (!yield)
|
|
return op->emitError() << regionName
|
|
<< " region must end with sparse_tensor.yield";
|
|
if (yield.getOperand().getType() != outputType)
|
|
return op->emitError() << regionName << " region yield type mismatch";
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult BinaryOp::verify() {
|
|
NamedAttrList attrs = (*this)->getAttrs();
|
|
Type leftType = getX().getType();
|
|
Type rightType = getY().getType();
|
|
Type outputType = getOutput().getType();
|
|
Region &overlap = getOverlapRegion();
|
|
Region &left = getLeftRegion();
|
|
Region &right = getRightRegion();
|
|
|
|
// Check correct number of block arguments and return type for each
|
|
// non-empty region.
|
|
LogicalResult regionResult = success();
|
|
if (!overlap.empty()) {
|
|
regionResult = verifyNumBlockArgs(
|
|
this, overlap, "overlap", TypeRange{leftType, rightType}, outputType);
|
|
if (failed(regionResult))
|
|
return regionResult;
|
|
}
|
|
if (!left.empty()) {
|
|
regionResult =
|
|
verifyNumBlockArgs(this, left, "left", TypeRange{leftType}, outputType);
|
|
if (failed(regionResult))
|
|
return regionResult;
|
|
} else if (getLeftIdentity()) {
|
|
if (leftType != outputType)
|
|
return emitError("left=identity requires first argument to have the same "
|
|
"type as the output");
|
|
}
|
|
if (!right.empty()) {
|
|
regionResult = verifyNumBlockArgs(this, right, "right",
|
|
TypeRange{rightType}, outputType);
|
|
if (failed(regionResult))
|
|
return regionResult;
|
|
} else if (getRightIdentity()) {
|
|
if (rightType != outputType)
|
|
return emitError("right=identity requires second argument to have the "
|
|
"same type as the output");
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult UnaryOp::verify() {
|
|
Type inputType = getX().getType();
|
|
Type outputType = getOutput().getType();
|
|
LogicalResult regionResult = success();
|
|
|
|
// Check correct number of block arguments and return type for each
|
|
// non-empty region.
|
|
Region &present = getPresentRegion();
|
|
if (!present.empty()) {
|
|
regionResult = verifyNumBlockArgs(this, present, "present",
|
|
TypeRange{inputType}, outputType);
|
|
if (failed(regionResult))
|
|
return regionResult;
|
|
}
|
|
Region &absent = getAbsentRegion();
|
|
if (!absent.empty()) {
|
|
regionResult =
|
|
verifyNumBlockArgs(this, absent, "absent", TypeRange{}, outputType);
|
|
if (failed(regionResult))
|
|
return regionResult;
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ReduceOp::verify() {
|
|
Type inputType = getX().getType();
|
|
LogicalResult regionResult = success();
|
|
|
|
// Check correct number of block arguments and return type.
|
|
Region &formula = getRegion();
|
|
if (!formula.empty()) {
|
|
regionResult = verifyNumBlockArgs(
|
|
this, formula, "reduce", TypeRange{inputType, inputType}, inputType);
|
|
if (failed(regionResult))
|
|
return regionResult;
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult YieldOp::verify() {
|
|
// Check for compatible parent.
|
|
auto *parentOp = (*this)->getParentOp();
|
|
if (isa<BinaryOp>(parentOp) || isa<UnaryOp>(parentOp) ||
|
|
isa<ReduceOp>(parentOp))
|
|
return success();
|
|
|
|
return emitOpError(
|
|
"expected parent op to be sparse_tensor unary, binary, or reduce");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TensorDialect Methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void SparseTensorDialect::initialize() {
|
|
addAttributes<
|
|
#define GET_ATTRDEF_LIST
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
|
|
>();
|
|
addOperations<
|
|
#define GET_OP_LIST
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
|
|
>();
|
|
}
|
|
|
|
#define GET_OP_CLASSES
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
|
|
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOpsDialect.cpp.inc"
|