This brings back previous SIMD functionality, but in a separate pass. The idea is to improve this new pass incrementally, going beyond for-loops to while-loops for co-iteration as welll (masking), while introducing new abstractions to make the lowering more progressive. The separation of sparsification and vectorization is a very good first step on this journey. Also brings back ArmSVE support Still to be fine-tuned: + use of "index" in SIMD loop (viz. a[i] = i) + check that all ops really have SIMD support + check all forms of reductions + chain reduction SIMD values Reviewed By: dcaballe Differential Revision: https://reviews.llvm.org/D138236
486 lines
21 KiB
C++
486 lines
21 KiB
C++
//===- SparseVectorization.cpp - Vectorization of sparsified loops --------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// A pass that converts loops generated by the sparse compiler into a form that
|
|
// can exploit SIMD instructions of the target architecture. Note that this pass
|
|
// ensures the sparse compiler can generate efficient SIMD (including ArmSVE
|
|
// support) with proper separation of concerns as far as sparsification and
|
|
// vectorization is concerned. However, this pass is not the final abstraction
|
|
// level we want, and not the general vectorizer we want either. It forms a good
|
|
// stepping stone for incremental future improvements though.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodegenUtils.h"
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Complex/IR/Complex.h"
|
|
#include "mlir/Dialect/Math/IR/Math.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/SCF/IR/SCF.h"
|
|
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
|
|
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::sparse_tensor;
|
|
|
|
namespace {
|
|
|
|
/// Target SIMD properties:
|
|
/// vectorLength: # packed data elements (viz. vector<16xf32> has length 16)
|
|
/// enableVLAVectorization: enables scalable vectors (viz. ARMSve)
|
|
/// enableSIMDIndex32: uses 32-bit indices in gather/scatter for efficiency
|
|
struct VL {
|
|
unsigned vectorLength;
|
|
bool enableVLAVectorization;
|
|
bool enableSIMDIndex32;
|
|
};
|
|
|
|
/// Helper to test for given index value.
|
|
static bool isIntValue(Value val, int64_t idx) {
|
|
if (auto ival = getConstantIntValue(val))
|
|
return *ival == idx;
|
|
return false;
|
|
}
|
|
|
|
/// Constructs vector type for element type.
|
|
static VectorType vectorType(VL vl, Type etp) {
|
|
unsigned numScalableDims = vl.enableVLAVectorization;
|
|
return VectorType::get(vl.vectorLength, etp, numScalableDims);
|
|
}
|
|
|
|
/// Constructs vector type from pointer.
|
|
static VectorType vectorType(VL vl, Value ptr) {
|
|
return vectorType(vl, ptr.getType().cast<MemRefType>().getElementType());
|
|
}
|
|
|
|
/// Constructs vector iteration mask.
|
|
static Value genVectorMask(PatternRewriter &rewriter, Location loc, VL vl,
|
|
Value iv, Value lo, Value hi, Value step) {
|
|
VectorType mtp = vectorType(vl, rewriter.getI1Type());
|
|
// Special case if the vector length evenly divides the trip count (for
|
|
// example, "for i = 0, 128, 16"). A constant all-true mask is generated
|
|
// so that all subsequent masked memory operations are immediately folded
|
|
// into unconditional memory operations.
|
|
IntegerAttr loInt, hiInt, stepInt;
|
|
if (matchPattern(lo, m_Constant(&loInt)) &&
|
|
matchPattern(hi, m_Constant(&hiInt)) &&
|
|
matchPattern(step, m_Constant(&stepInt))) {
|
|
if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0) {
|
|
Value trueVal = constantI1(rewriter, loc, true);
|
|
return rewriter.create<vector::BroadcastOp>(loc, mtp, trueVal);
|
|
}
|
|
}
|
|
// Otherwise, generate a vector mask that avoids overrunning the upperbound
|
|
// during vector execution. Here we rely on subsequent loop optimizations to
|
|
// avoid executing the mask in all iterations, for example, by splitting the
|
|
// loop into an unconditional vector loop and a scalar cleanup loop.
|
|
auto min = AffineMap::get(
|
|
/*dimCount=*/2, /*symbolCount=*/1,
|
|
{rewriter.getAffineSymbolExpr(0),
|
|
rewriter.getAffineDimExpr(0) - rewriter.getAffineDimExpr(1)},
|
|
rewriter.getContext());
|
|
Value end =
|
|
rewriter.createOrFold<AffineMinOp>(loc, min, ValueRange{hi, iv, step});
|
|
return rewriter.create<vector::CreateMaskOp>(loc, mtp, end);
|
|
}
|
|
|
|
/// Generates a vectorized invariant. Here we rely on subsequent loop
|
|
/// optimizations to hoist the invariant broadcast out of the vector loop.
|
|
static Value genVectorInvariantValue(PatternRewriter &rewriter, VL vl,
|
|
Value val) {
|
|
VectorType vtp = vectorType(vl, val.getType());
|
|
return rewriter.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
|
|
}
|
|
|
|
/// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi],
|
|
/// where 'lo' denotes the current index and 'hi = lo + vl - 1'.
|
|
static Value genVectorLoad(PatternRewriter &rewriter, Location loc, VL vl,
|
|
Value ptr, ArrayRef<Value> idxs, Value vmask) {
|
|
VectorType vtp = vectorType(vl, ptr);
|
|
Value pass = constantZero(rewriter, loc, vtp);
|
|
if (idxs.back().getType().isa<VectorType>()) {
|
|
SmallVector<Value> scalarArgs(idxs.begin(), idxs.end());
|
|
Value indexVec = idxs.back();
|
|
scalarArgs.back() = constantIndex(rewriter, loc, 0);
|
|
return rewriter.create<vector::GatherOp>(loc, vtp, ptr, scalarArgs,
|
|
indexVec, vmask, pass);
|
|
}
|
|
return rewriter.create<vector::MaskedLoadOp>(loc, vtp, ptr, idxs, vmask,
|
|
pass);
|
|
}
|
|
|
|
/// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs
|
|
/// where 'lo' denotes the current index and 'hi = lo + vl - 1'.
|
|
static void genVectorStore(PatternRewriter &rewriter, Location loc, Value ptr,
|
|
ArrayRef<Value> idxs, Value vmask, Value rhs) {
|
|
if (idxs.back().getType().isa<VectorType>()) {
|
|
SmallVector<Value> scalarArgs(idxs.begin(), idxs.end());
|
|
Value indexVec = idxs.back();
|
|
scalarArgs.back() = constantIndex(rewriter, loc, 0);
|
|
rewriter.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec, vmask,
|
|
rhs);
|
|
return;
|
|
}
|
|
rewriter.create<vector::MaskedStoreOp>(loc, ptr, idxs, vmask, rhs);
|
|
}
|
|
|
|
/// Maps operation to combining kind for reduction.
|
|
static vector::CombiningKind getCombiningKind(Operation *def) {
|
|
if (isa<arith::AddFOp>(def) || isa<arith::AddIOp>(def) ||
|
|
isa<arith::SubFOp>(def) || isa<arith::SubIOp>(def))
|
|
return vector::CombiningKind::ADD;
|
|
if (isa<arith::MulFOp>(def) || isa<arith::MulIOp>(def))
|
|
return vector::CombiningKind::MUL;
|
|
if (isa<arith::AndIOp>(def))
|
|
return vector::CombiningKind::AND;
|
|
if (isa<arith::OrIOp>(def))
|
|
return vector::CombiningKind::OR;
|
|
if (isa<arith::XOrIOp>(def))
|
|
return vector::CombiningKind::XOR;
|
|
llvm_unreachable("unknown reduction kind");
|
|
}
|
|
|
|
/// Generates an initial value for a vector reduction, following the scheme
|
|
/// given in Chapter 5 of "The Software Vectorization Handbook", where the
|
|
/// initial scalar value is correctly embedded in the vector reduction value,
|
|
/// and a straightforward horizontal reduction will complete the operation.
|
|
/// The value 'r' denotes the initial value of the accumulator. Value 'rd'
|
|
/// denotes the accumulation operation, which is solely used here to determine
|
|
/// the kind of combining reduction (viz. addf -> sum-accumulation).
|
|
static Value genVectorReducInit(PatternRewriter &rewriter, Location loc,
|
|
VectorType vtp, Value r, Value rd) {
|
|
vector::CombiningKind kind = getCombiningKind(rd.getDefiningOp());
|
|
switch (kind) {
|
|
case vector::CombiningKind::ADD:
|
|
case vector::CombiningKind::XOR:
|
|
// Initialize reduction vector to: | 0 | .. | 0 | r |
|
|
return rewriter.create<vector::InsertElementOp>(
|
|
loc, r, constantZero(rewriter, loc, vtp),
|
|
constantIndex(rewriter, loc, 0));
|
|
case vector::CombiningKind::MUL:
|
|
// Initialize reduction vector to: | 1 | .. | 1 | r |
|
|
return rewriter.create<vector::InsertElementOp>(
|
|
loc, r, constantOne(rewriter, loc, vtp),
|
|
constantIndex(rewriter, loc, 0));
|
|
case vector::CombiningKind::AND:
|
|
case vector::CombiningKind::OR:
|
|
// Initialize reduction vector to: | r | .. | r | r |
|
|
return rewriter.create<vector::BroadcastOp>(loc, vtp, r);
|
|
default:
|
|
break;
|
|
}
|
|
llvm_unreachable("unknown reduction kind");
|
|
}
|
|
|
|
/// Generates final value for a vector reduction.
|
|
static Value genVectorReducEnd(PatternRewriter &rewriter, Location loc,
|
|
Value vexp, Value rd) {
|
|
vector::CombiningKind kind = getCombiningKind(rd.getDefiningOp());
|
|
return rewriter.create<vector::ReductionOp>(loc, kind, vexp);
|
|
}
|
|
|
|
/// This method is called twice to analyze and rewrite the given subscripts.
|
|
/// The first call (!codegen) does the analysis. Then, on success, the second
|
|
/// call (codegen) yields the proper vector form in the output parameter
|
|
/// vector 'idxs'. This mechanism ensures that analysis and rewriting code
|
|
/// stay in sync.
|
|
///
|
|
/// See https://llvm.org/docs/GetElementPtr.html for some background on
|
|
/// the complications described below.
|
|
///
|
|
/// We need to generate a pointer/index load from the sparse storage scheme.
|
|
/// Narrower data types need to be zero extended before casting the value
|
|
/// into the index type used for looping and indexing.
|
|
///
|
|
/// For the scalar case, subscripts simply zero extend narrower indices
|
|
/// into 64-bit values before casting to an index type without a performance
|
|
/// penalty. Indices that already are 64-bit, in theory, cannot express the
|
|
/// full range since the LLVM backend defines addressing in terms of an
|
|
/// unsigned pointer/signed index pair.
|
|
static bool vectorizeSubscripts(PatternRewriter &rewriter, scf::ForOp forOp,
|
|
VL vl, ValueRange subs, bool codegen,
|
|
Value vmask, SmallVectorImpl<Value> &idxs) {
|
|
for (auto sub : subs) {
|
|
// Invariant indices simply pass through.
|
|
if (sub.dyn_cast<BlockArgument>() ||
|
|
sub.getDefiningOp()->getBlock() != &forOp.getRegion().front()) {
|
|
if (codegen)
|
|
idxs.push_back(sub);
|
|
continue; // success so far
|
|
}
|
|
// Look under the hood of casting.
|
|
auto cast = sub;
|
|
while (1) {
|
|
if (auto icast = cast.getDefiningOp<arith::IndexCastOp>())
|
|
cast = icast->getOperand(0);
|
|
else if (auto ecast = cast.getDefiningOp<arith::ExtUIOp>())
|
|
cast = ecast->getOperand(0);
|
|
else
|
|
break;
|
|
}
|
|
// Since the index vector is used in a subsequent gather/scatter
|
|
// operations, which effectively defines an unsigned pointer + signed
|
|
// index, we must zero extend the vector to an index width. For 8-bit
|
|
// and 16-bit values, an 32-bit index width suffices. For 32-bit values,
|
|
// zero extending the elements into 64-bit loses some performance since
|
|
// the 32-bit indexed gather/scatter is more efficient than the 64-bit
|
|
// index variant (if the negative 32-bit index space is unused, the
|
|
// enableSIMDIndex32 flag can preserve this performance). For 64-bit
|
|
// values, there is no good way to state that the indices are unsigned,
|
|
// which creates the potential of incorrect address calculations in the
|
|
// unlikely case we need such extremely large offsets.
|
|
if (auto load = cast.getDefiningOp<memref::LoadOp>()) {
|
|
if (codegen) {
|
|
SmallVector<Value> idxs2(load.getIndices()); // no need to analyze
|
|
Location loc = forOp.getLoc();
|
|
Value vload =
|
|
genVectorLoad(rewriter, loc, vl, load.getMemRef(), idxs2, vmask);
|
|
Type etp = vload.getType().cast<VectorType>().getElementType();
|
|
if (!etp.isa<IndexType>()) {
|
|
if (etp.getIntOrFloatBitWidth() < 32)
|
|
vload = rewriter.create<arith::ExtUIOp>(
|
|
loc, vectorType(vl, rewriter.getI32Type()), vload);
|
|
else if (etp.getIntOrFloatBitWidth() < 64 && !vl.enableSIMDIndex32)
|
|
vload = rewriter.create<arith::ExtUIOp>(
|
|
loc, vectorType(vl, rewriter.getI64Type()), vload);
|
|
}
|
|
idxs.push_back(vload);
|
|
}
|
|
continue; // success so far
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#define UNAOP(xxx) \
|
|
if (isa<xxx>(def)) { \
|
|
if (codegen) \
|
|
vexp = rewriter.create<xxx>(loc, vx); \
|
|
return true; \
|
|
}
|
|
|
|
#define BINOP(xxx) \
|
|
if (isa<xxx>(def)) { \
|
|
if (codegen) \
|
|
vexp = rewriter.create<xxx>(loc, vx, vy); \
|
|
return true; \
|
|
}
|
|
|
|
/// This method is called twice to analyze and rewrite the given expression.
|
|
/// The first call (!codegen) does the analysis. Then, on success, the second
|
|
/// call (codegen) yields the proper vector form in the output parameter 'vexp'.
|
|
/// This mechanism ensures that analysis and rewriting code stay in sync.
|
|
static bool vectorizeExpr(PatternRewriter &rewriter, scf::ForOp forOp, VL vl,
|
|
Value exp, bool codegen, Value vmask, Value &vexp) {
|
|
// A block argument in invariant.
|
|
if (auto arg = exp.dyn_cast<BlockArgument>()) {
|
|
if (codegen)
|
|
vexp = genVectorInvariantValue(rewriter, vl, exp);
|
|
return true;
|
|
}
|
|
// Something defined outside the loop-body is invariant as well.
|
|
Operation *def = exp.getDefiningOp();
|
|
if (def->getBlock() != &forOp.getRegion().front()) {
|
|
if (codegen)
|
|
vexp = genVectorInvariantValue(rewriter, vl, exp);
|
|
return true;
|
|
}
|
|
// Inside loop-body unary and binary operations. Note that it would be
|
|
// nicer if we could somehow test and build the operations in a more
|
|
// concise manner than just listing them all (although this way we know
|
|
// for certain that they can vectorize).
|
|
Location loc = forOp.getLoc();
|
|
if (auto load = dyn_cast<memref::LoadOp>(def)) {
|
|
auto subs = load.getIndices();
|
|
SmallVector<Value> idxs;
|
|
if (vectorizeSubscripts(rewriter, forOp, vl, subs, codegen, vmask, idxs)) {
|
|
if (codegen)
|
|
vexp = genVectorLoad(rewriter, loc, vl, load.getMemRef(), idxs, vmask);
|
|
return true;
|
|
}
|
|
} else if (def->getNumOperands() == 1) {
|
|
Value vx;
|
|
if (vectorizeExpr(rewriter, forOp, vl, def->getOperand(0), codegen, vmask,
|
|
vx)) {
|
|
UNAOP(math::AbsFOp)
|
|
UNAOP(math::AbsIOp)
|
|
UNAOP(math::CeilOp)
|
|
UNAOP(math::FloorOp)
|
|
UNAOP(math::SqrtOp)
|
|
UNAOP(math::ExpM1Op)
|
|
UNAOP(math::Log1pOp)
|
|
UNAOP(math::SinOp)
|
|
UNAOP(math::TanhOp)
|
|
UNAOP(arith::NegFOp)
|
|
}
|
|
} else if (def->getNumOperands() == 2) {
|
|
Value vx, vy;
|
|
if (vectorizeExpr(rewriter, forOp, vl, def->getOperand(0), codegen, vmask,
|
|
vx) &&
|
|
vectorizeExpr(rewriter, forOp, vl, def->getOperand(1), codegen, vmask,
|
|
vy)) {
|
|
BINOP(arith::MulFOp)
|
|
BINOP(arith::MulIOp)
|
|
BINOP(arith::DivFOp)
|
|
BINOP(arith::DivSIOp)
|
|
BINOP(arith::DivUIOp)
|
|
BINOP(arith::AddFOp)
|
|
BINOP(arith::AddIOp)
|
|
BINOP(arith::SubFOp)
|
|
BINOP(arith::SubIOp)
|
|
BINOP(arith::AndIOp)
|
|
BINOP(arith::OrIOp)
|
|
BINOP(arith::XOrIOp)
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#undef UNAOP
|
|
#undef BINOP
|
|
|
|
/// This method is called twice to analyze and rewrite the given for-loop.
|
|
/// The first call (!codegen) does the analysis. Then, on success, the second
|
|
/// call (codegen) rewriters the IR into vector form. This mechanism ensures
|
|
/// that analysis and rewriting code stay in sync.
|
|
static bool vectorizeStmt(PatternRewriter &rewriter, scf::ForOp forOp, VL vl,
|
|
bool codegen) {
|
|
Location loc = forOp.getLoc();
|
|
Block &block = forOp.getRegion().front();
|
|
scf::YieldOp yield = cast<scf::YieldOp>(block.getTerminator());
|
|
auto &last = *++block.rbegin();
|
|
scf::ForOp forOpNew;
|
|
|
|
// Perform initial set up during codegen (we know that the first analysis
|
|
// pass was successful). For reductions, we need to construct a completely
|
|
// new for-loop, since the incoming and outgoing reduction type
|
|
// changes into SIMD form. For stores, we can simply adjust the stride
|
|
// and insert in the existing for-loop. In both cases, we set up a vector
|
|
// mask for all operations which takes care of confining vectors to
|
|
// the original iteration space (later cleanup loops or other
|
|
// optimizations can take care of those).
|
|
Value vmask;
|
|
if (codegen) {
|
|
Value step = constantIndex(rewriter, loc, vl.vectorLength);
|
|
if (vl.enableVLAVectorization) {
|
|
Value vscale =
|
|
rewriter.create<vector::VectorScaleOp>(loc, rewriter.getIndexType());
|
|
step = rewriter.create<arith::MulIOp>(loc, vscale, step);
|
|
}
|
|
if (!yield.getResults().empty()) {
|
|
Value init = forOp.getInitArgs()[0];
|
|
VectorType vtp = vectorType(vl, init.getType());
|
|
Value vinit =
|
|
genVectorReducInit(rewriter, loc, vtp, init, yield->getOperand(0));
|
|
forOpNew = rewriter.create<scf::ForOp>(
|
|
loc, forOp.getLowerBound(), forOp.getUpperBound(), step, vinit);
|
|
rewriter.setInsertionPointToStart(forOpNew.getBody());
|
|
} else {
|
|
forOp.setStep(step);
|
|
rewriter.setInsertionPoint(yield);
|
|
}
|
|
vmask = genVectorMask(rewriter, loc, vl, forOp.getInductionVar(),
|
|
forOp.getLowerBound(), forOp.getUpperBound(), step);
|
|
}
|
|
|
|
// Sparse for-loops either are terminated by a non-empty yield operation
|
|
// (reduction loop) or otherwise by a store operation (pararallel loop).
|
|
if (!yield.getResults().empty()) {
|
|
if (yield->getNumOperands() != 1)
|
|
return false;
|
|
Value redOp = yield->getOperand(0);
|
|
// Analyze/vectorize reduction.
|
|
// TODO: use linalg utils to verify the actual reduction?
|
|
Value vrhs;
|
|
if (vectorizeExpr(rewriter, forOp, vl, redOp, codegen, vmask, vrhs)) {
|
|
if (codegen) {
|
|
Value vpass =
|
|
genVectorInvariantValue(rewriter, vl, forOp.getRegionIterArg(0));
|
|
Value vred = rewriter.create<arith::SelectOp>(loc, vmask, vrhs, vpass);
|
|
rewriter.create<scf::YieldOp>(loc, vred);
|
|
rewriter.setInsertionPointAfter(forOpNew);
|
|
Value vres = genVectorReducEnd(rewriter, loc, forOpNew.getResult(0), redOp);
|
|
// Now do some relinking (last one is not completely type safe
|
|
// but all bad ones are removed right away). This also folds away
|
|
// nop broadcast operations.
|
|
forOp.getResult(0).replaceAllUsesWith(vres);
|
|
forOp.getInductionVar().replaceAllUsesWith(forOpNew.getInductionVar());
|
|
forOp.getRegionIterArg(0).replaceAllUsesWith(
|
|
forOpNew.getRegionIterArg(0));
|
|
rewriter.eraseOp(forOp);
|
|
}
|
|
return true;
|
|
}
|
|
} else if (auto store = dyn_cast<memref::StoreOp>(last)) {
|
|
// Analyze/vectorize store operation.
|
|
auto subs = store.getIndices();
|
|
SmallVector<Value> idxs;
|
|
Value rhs = store.getValue();
|
|
Value vrhs;
|
|
if (vectorizeSubscripts(rewriter, forOp, vl, subs, codegen, vmask, idxs) &&
|
|
vectorizeExpr(rewriter, forOp, vl, rhs, codegen, vmask, vrhs)) {
|
|
if (codegen) {
|
|
genVectorStore(rewriter, loc, store.getMemRef(), idxs, vmask, vrhs);
|
|
rewriter.eraseOp(store);
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
assert(!codegen && "cannot call codegen when analysis failed");
|
|
return false;
|
|
}
|
|
|
|
/// Basic for-loop vectorizer.
|
|
struct ForOpRewriter : public OpRewritePattern<scf::ForOp> {
|
|
public:
|
|
using OpRewritePattern<scf::ForOp>::OpRewritePattern;
|
|
|
|
ForOpRewriter(MLIRContext *context, unsigned vectorLength,
|
|
bool enableVLAVectorization, bool enableSIMDIndex32)
|
|
: OpRewritePattern(context),
|
|
vl{vectorLength, enableVLAVectorization, enableSIMDIndex32} {}
|
|
|
|
LogicalResult matchAndRewrite(scf::ForOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
// Check for single block, unit-stride for-loop that is generated by
|
|
// sparse compiler, which means no data dependence analysis is required,
|
|
// and its loop-body is very restricted in form.
|
|
if (!op.getRegion().hasOneBlock() || !isIntValue(op.getStep(), 1) ||
|
|
!op->hasAttr(SparseTensorLoopEmitter::getLoopEmitterLoopAttrName()))
|
|
return failure();
|
|
// Analyze (!codegen) and rewrite (codegen) loop-body.
|
|
if (vectorizeStmt(rewriter, op, vl, /*codegen=*/false) &&
|
|
vectorizeStmt(rewriter, op, vl, /*codegen=*/true))
|
|
return success();
|
|
return failure();
|
|
}
|
|
|
|
private:
|
|
const VL vl;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Public method for populating vectorization rules.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Populates the given patterns list with vectorization rules.
|
|
void mlir::populateSparseVectorizationPatterns(RewritePatternSet &patterns,
|
|
unsigned vectorLength,
|
|
bool enableVLAVectorization,
|
|
bool enableSIMDIndex32) {
|
|
patterns.add<ForOpRewriter>(patterns.getContext(), vectorLength,
|
|
enableVLAVectorization, enableSIMDIndex32);
|
|
}
|