Files
clang-p2996/flang/lib/Lower/OpenACC.cpp
Valentin Clement (バレンタイン クレメン) b171849afe [flang][openacc] Use OpenACC terminator instead of fir.unreachable after Stop stmt (#66325)
This follow an update made on OpenMP https://reviews.llvm.org/D129969
and was not possible on OpenACC until the unstructured construct was
supported.
2023-09-13 22:28:02 -07:00

3311 lines
152 KiB
C++

//===-- OpenACC.cpp -- OpenACC directive lowering -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/OpenACC.h"
#include "DirectivesCommon.h"
#include "flang/Common/idioms.h"
#include "flang/Lower/Bridge.h"
#include "flang/Lower/ConvertType.h"
#include "flang/Lower/Mangler.h"
#include "flang/Lower/PFTBuilder.h"
#include "flang/Lower/StatementContext.h"
#include "flang/Lower/Support/Utils.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/Complex.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/IntrinsicCall.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Parser/parse-tree.h"
#include "flang/Semantics/expression.h"
#include "flang/Semantics/tools.h"
#include "llvm/Frontend/OpenACC/ACC.h.inc"
// Special value for * passed in device_type or gang clauses.
static constexpr std::int64_t starCst = -1;
static unsigned routineCounter = 0;
static constexpr llvm::StringRef accRoutinePrefix = "acc_routine_";
/// Generate the acc.bounds operation from the descriptor information.
static llvm::SmallVector<mlir::Value>
genBoundsOpsFromBox(fir::FirOpBuilder &builder, mlir::Location loc,
Fortran::lower::AbstractConverter &converter,
fir::ExtendedValue dataExv, mlir::Value box) {
llvm::SmallVector<mlir::Value> bounds;
mlir::Type idxTy = builder.getIndexType();
mlir::Type boundTy = builder.getType<mlir::acc::DataBoundsType>();
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
assert(box.getType().isa<fir::BaseBoxType>() &&
"expect fir.box or fir.class");
// Note that with the HLFIR lowering the 'box' is the FIR box
// which may not have correct local lbounds. As long as we only
// use the extents, it should be okay to read the dimensions
// from this box.
for (unsigned dim = 0; dim < dataExv.rank(); ++dim) {
mlir::Value d = builder.createIntegerConstant(loc, idxTy, dim);
mlir::Value baseLb =
fir::factory::readLowerBound(builder, loc, dataExv, dim, one);
auto dimInfo =
builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, box, d);
mlir::Value lb = builder.createIntegerConstant(loc, idxTy, 0);
mlir::Value ub =
builder.create<mlir::arith::SubIOp>(loc, dimInfo.getExtent(), one);
mlir::Value bound = builder.create<mlir::acc::DataBoundsOp>(
loc, boundTy, lb, ub, mlir::Value(), dimInfo.getByteStride(), true,
baseLb);
bounds.push_back(bound);
}
return bounds;
}
/// Generate acc.bounds operation for base array without any subscripts
/// provided.
static llvm::SmallVector<mlir::Value>
genBaseBoundsOps(fir::FirOpBuilder &builder, mlir::Location loc,
Fortran::lower::AbstractConverter &converter,
fir::ExtendedValue dataExv, mlir::Value baseAddr) {
mlir::Type idxTy = builder.getIndexType();
mlir::Type boundTy = builder.getType<mlir::acc::DataBoundsType>();
llvm::SmallVector<mlir::Value> bounds;
if (dataExv.rank() == 0)
return bounds;
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
for (std::size_t dim = 0; dim < dataExv.rank(); ++dim) {
mlir::Value baseLb =
fir::factory::readLowerBound(builder, loc, dataExv, dim, one);
mlir::Value ext = fir::factory::readExtent(builder, loc, dataExv, dim);
mlir::Value lb = builder.createIntegerConstant(loc, idxTy, 0);
// ub = extent - 1
mlir::Value ub = builder.create<mlir::arith::SubIOp>(loc, ext, one);
mlir::Value bound = builder.create<mlir::acc::DataBoundsOp>(
loc, boundTy, lb, ub, ext, one, false, baseLb);
bounds.push_back(bound);
}
return bounds;
}
/// Generate acc.bounds operations for an array section when subscripts are
/// provided.
static llvm::SmallVector<mlir::Value>
genBoundsOps(fir::FirOpBuilder &builder, mlir::Location loc,
Fortran::lower::AbstractConverter &converter,
Fortran::lower::StatementContext &stmtCtx,
const std::list<Fortran::parser::SectionSubscript> &subscripts,
std::stringstream &asFortran, fir::ExtendedValue &dataExv,
mlir::Value baseAddr) {
int dimension = 0;
mlir::Type idxTy = builder.getIndexType();
mlir::Type boundTy = builder.getType<mlir::acc::DataBoundsType>();
llvm::SmallVector<mlir::Value> bounds;
mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
for (const auto &subscript : subscripts) {
if (const auto *triplet{
std::get_if<Fortran::parser::SubscriptTriplet>(&subscript.u)}) {
if (dimension != 0)
asFortran << ',';
mlir::Value lbound, ubound, extent;
std::optional<std::int64_t> lval, uval;
mlir::Value baseLb =
fir::factory::readLowerBound(builder, loc, dataExv, dimension, one);
bool defaultLb = baseLb == one;
mlir::Value stride = one;
bool strideInBytes = false;
if (fir::unwrapRefType(baseAddr.getType()).isa<fir::BaseBoxType>()) {
mlir::Value d = builder.createIntegerConstant(loc, idxTy, dimension);
auto dimInfo = builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy,
baseAddr, d);
stride = dimInfo.getByteStride();
strideInBytes = true;
}
const auto &lower{std::get<0>(triplet->t)};
if (lower) {
lval = Fortran::semantics::GetIntValue(lower);
if (lval) {
if (defaultLb) {
lbound = builder.createIntegerConstant(loc, idxTy, *lval - 1);
} else {
mlir::Value lb = builder.createIntegerConstant(loc, idxTy, *lval);
lbound = builder.create<mlir::arith::SubIOp>(loc, lb, baseLb);
}
asFortran << *lval;
} else {
const Fortran::lower::SomeExpr *lexpr =
Fortran::semantics::GetExpr(*lower);
mlir::Value lb =
fir::getBase(converter.genExprValue(loc, *lexpr, stmtCtx));
lb = builder.createConvert(loc, baseLb.getType(), lb);
lbound = builder.create<mlir::arith::SubIOp>(loc, lb, baseLb);
asFortran << lexpr->AsFortran();
}
} else {
lbound = defaultLb ? zero : baseLb;
}
asFortran << ':';
const auto &upper{std::get<1>(triplet->t)};
if (upper) {
uval = Fortran::semantics::GetIntValue(upper);
if (uval) {
if (defaultLb) {
ubound = builder.createIntegerConstant(loc, idxTy, *uval - 1);
} else {
mlir::Value ub = builder.createIntegerConstant(loc, idxTy, *uval);
ubound = builder.create<mlir::arith::SubIOp>(loc, ub, baseLb);
}
asFortran << *uval;
} else {
const Fortran::lower::SomeExpr *uexpr =
Fortran::semantics::GetExpr(*upper);
mlir::Value ub =
fir::getBase(converter.genExprValue(loc, *uexpr, stmtCtx));
ub = builder.createConvert(loc, baseLb.getType(), ub);
ubound = builder.create<mlir::arith::SubIOp>(loc, ub, baseLb);
asFortran << uexpr->AsFortran();
}
}
if (lower && upper) {
if (lval && uval && *uval < *lval) {
mlir::emitError(loc, "zero sized array section");
break;
} else if (std::get<2>(triplet->t)) {
const auto &strideExpr{std::get<2>(triplet->t)};
if (strideExpr) {
mlir::emitError(loc, "stride cannot be specified on "
"an OpenACC array section");
break;
}
}
}
// ub = baseLb + extent - 1
if (!ubound) {
mlir::Value ext =
fir::factory::readExtent(builder, loc, dataExv, dimension);
mlir::Value lbExt =
builder.create<mlir::arith::AddIOp>(loc, ext, baseLb);
ubound = builder.create<mlir::arith::SubIOp>(loc, lbExt, one);
}
mlir::Value bound = builder.create<mlir::acc::DataBoundsOp>(
loc, boundTy, lbound, ubound, extent, stride, strideInBytes, baseLb);
bounds.push_back(bound);
++dimension;
}
}
return bounds;
}
static mlir::Value
getDataOperandBaseAddr(Fortran::lower::AbstractConverter &converter,
fir::FirOpBuilder &builder,
Fortran::lower::SymbolRef sym, mlir::Location loc) {
mlir::Value symAddr = converter.getSymbolAddress(sym);
// TODO: Might need revisiting to handle for non-shared clauses
if (!symAddr) {
if (const auto *details =
sym->detailsIf<Fortran::semantics::HostAssocDetails>())
symAddr = converter.getSymbolAddress(details->symbol());
}
if (!symAddr)
llvm::report_fatal_error("could not retrieve symbol address");
if (auto boxTy =
fir::unwrapRefType(symAddr.getType()).dyn_cast<fir::BaseBoxType>()) {
if (boxTy.getEleTy().isa<fir::RecordType>())
TODO(loc, "derived type");
// Load the box when baseAddr is a `fir.ref<fir.box<T>>` or a
// `fir.ref<fir.class<T>>` type.
if (symAddr.getType().isa<fir::ReferenceType>())
return builder.create<fir::LoadOp>(loc, symAddr);
}
return symAddr;
}
static mlir::Value gatherDataOperandAddrAndBounds(
Fortran::lower::AbstractConverter &converter, fir::FirOpBuilder &builder,
Fortran::semantics::SemanticsContext &semanticsContext,
Fortran::lower::StatementContext &stmtCtx,
const Fortran::parser::AccObject &accObject, mlir::Location operandLocation,
std::stringstream &asFortran, llvm::SmallVector<mlir::Value> &bounds) {
mlir::Value baseAddr;
std::visit(
Fortran::common::visitors{
[&](const Fortran::parser::Designator &designator) {
if (auto expr{Fortran::semantics::AnalyzeExpr(semanticsContext,
designator)}) {
if ((*expr).Rank() > 0 &&
Fortran::parser::Unwrap<Fortran::parser::ArrayElement>(
designator)) {
const auto *arrayElement =
Fortran::parser::Unwrap<Fortran::parser::ArrayElement>(
designator);
const auto *dataRef =
std::get_if<Fortran::parser::DataRef>(&designator.u);
fir::ExtendedValue dataExv;
if (Fortran::parser::Unwrap<
Fortran::parser::StructureComponent>(
arrayElement->base)) {
auto exprBase = Fortran::semantics::AnalyzeExpr(
semanticsContext, arrayElement->base);
dataExv = converter.genExprAddr(operandLocation, *exprBase,
stmtCtx);
baseAddr = fir::getBase(dataExv);
asFortran << (*exprBase).AsFortran();
} else {
const Fortran::parser::Name &name =
Fortran::parser::GetLastName(*dataRef);
baseAddr = getDataOperandBaseAddr(
converter, builder, *name.symbol, operandLocation);
dataExv = converter.getSymbolExtendedValue(*name.symbol);
asFortran << name.ToString();
}
if (!arrayElement->subscripts.empty()) {
asFortran << '(';
bounds = genBoundsOps(builder, operandLocation, converter,
stmtCtx, arrayElement->subscripts,
asFortran, dataExv, baseAddr);
}
asFortran << ')';
} else if (Fortran::parser::Unwrap<
Fortran::parser::StructureComponent>(designator)) {
fir::ExtendedValue compExv =
converter.genExprAddr(operandLocation, *expr, stmtCtx);
baseAddr = fir::getBase(compExv);
if (fir::unwrapRefType(baseAddr.getType())
.isa<fir::SequenceType>())
bounds = genBaseBoundsOps(builder, operandLocation, converter,
compExv, baseAddr);
asFortran << (*expr).AsFortran();
// If the component is an allocatable or pointer the result of
// genExprAddr will be the result of a fir.box_addr operation.
// Retrieve the box so we handle it like other descriptor.
if (auto boxAddrOp = mlir::dyn_cast_or_null<fir::BoxAddrOp>(
baseAddr.getDefiningOp())) {
baseAddr = boxAddrOp.getVal();
bounds = genBoundsOpsFromBox(builder, operandLocation,
converter, compExv, baseAddr);
}
} else {
// Scalar or full array.
if (const auto *dataRef{
std::get_if<Fortran::parser::DataRef>(&designator.u)}) {
const Fortran::parser::Name &name =
Fortran::parser::GetLastName(*dataRef);
fir::ExtendedValue dataExv =
converter.getSymbolExtendedValue(*name.symbol);
baseAddr = getDataOperandBaseAddr(
converter, builder, *name.symbol, operandLocation);
if (fir::unwrapRefType(baseAddr.getType())
.isa<fir::BaseBoxType>())
bounds = genBoundsOpsFromBox(builder, operandLocation,
converter, dataExv, baseAddr);
if (fir::unwrapRefType(baseAddr.getType())
.isa<fir::SequenceType>())
bounds = genBaseBoundsOps(builder, operandLocation,
converter, dataExv, baseAddr);
asFortran << name.ToString();
} else { // Unsupported
llvm::report_fatal_error(
"Unsupported type of OpenACC operand");
}
}
}
},
[&](const Fortran::parser::Name &name) {
baseAddr = getDataOperandBaseAddr(converter, builder, *name.symbol,
operandLocation);
asFortran << name.ToString();
}},
accObject.u);
return baseAddr;
}
static mlir::Location
genOperandLocation(Fortran::lower::AbstractConverter &converter,
const Fortran::parser::AccObject &accObject) {
mlir::Location loc = converter.genUnknownLocation();
std::visit(Fortran::common::visitors{
[&](const Fortran::parser::Designator &designator) {
loc = converter.genLocation(designator.source);
},
[&](const Fortran::parser::Name &name) {
loc = converter.genLocation(name.source);
}},
accObject.u);
return loc;
}
template <typename Op>
static Op createDataEntryOp(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value baseAddr, std::stringstream &name,
mlir::SmallVector<mlir::Value> bounds,
bool structured, bool implicit,
mlir::acc::DataClause dataClause,
mlir::Type retTy) {
mlir::Value varPtrPtr;
if (auto boxTy = baseAddr.getType().dyn_cast<fir::BaseBoxType>()) {
baseAddr = builder.create<fir::BoxAddrOp>(loc, baseAddr);
retTy = baseAddr.getType();
}
Op op = builder.create<Op>(loc, retTy, baseAddr);
op.setNameAttr(builder.getStringAttr(name.str()));
op.setStructured(structured);
op.setImplicit(implicit);
op.setDataClause(dataClause);
unsigned insPos = 1;
if (varPtrPtr)
op->insertOperands(insPos++, varPtrPtr);
if (bounds.size() > 0)
op->insertOperands(insPos, bounds);
op->setAttr(Op::getOperandSegmentSizeAttr(),
builder.getDenseI32ArrayAttr(
{1, varPtrPtr ? 1 : 0, static_cast<int32_t>(bounds.size())}));
return op;
}
static void addDeclareAttr(fir::FirOpBuilder &builder, mlir::Operation *op,
mlir::acc::DataClause clause) {
if (!op)
return;
op->setAttr(mlir::acc::getDeclareAttrName(),
mlir::acc::DeclareAttr::get(builder.getContext(),
mlir::acc::DataClauseAttr::get(
builder.getContext(), clause)));
}
static mlir::func::FuncOp
createDeclareFunc(mlir::OpBuilder &modBuilder, fir::FirOpBuilder &builder,
mlir::Location loc, llvm::StringRef funcName,
llvm::SmallVector<mlir::Type> argsTy = {},
llvm::SmallVector<mlir::Location> locs = {}) {
auto funcTy = mlir::FunctionType::get(modBuilder.getContext(), argsTy, {});
auto funcOp = modBuilder.create<mlir::func::FuncOp>(loc, funcName, funcTy);
funcOp.setVisibility(mlir::SymbolTable::Visibility::Private);
builder.createBlock(&funcOp.getRegion(), funcOp.getRegion().end(), argsTy,
locs);
builder.setInsertionPointToEnd(&funcOp.getRegion().back());
builder.create<mlir::func::ReturnOp>(loc);
builder.setInsertionPointToStart(&funcOp.getRegion().back());
return funcOp;
}
template <typename Op>
static Op
createSimpleOp(fir::FirOpBuilder &builder, mlir::Location loc,
const llvm::SmallVectorImpl<mlir::Value> &operands,
const llvm::SmallVectorImpl<int32_t> &operandSegments) {
llvm::ArrayRef<mlir::Type> argTy;
Op op = builder.create<Op>(loc, argTy, operands);
op->setAttr(Op::getOperandSegmentSizeAttr(),
builder.getDenseI32ArrayAttr(operandSegments));
return op;
}
template <typename EntryOp>
static void createDeclareAllocFuncWithArg(mlir::OpBuilder &modBuilder,
fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Type descTy,
llvm::StringRef funcNamePrefix,
std::stringstream &asFortran,
mlir::acc::DataClause clause) {
auto crtInsPt = builder.saveInsertionPoint();
std::stringstream registerFuncName;
registerFuncName << funcNamePrefix.str()
<< Fortran::lower::declarePostAllocSuffix.str();
if (!mlir::isa<fir::ReferenceType>(descTy))
descTy = fir::ReferenceType::get(descTy);
auto registerFuncOp = createDeclareFunc(
modBuilder, builder, loc, registerFuncName.str(), {descTy}, {loc});
mlir::Value desc =
builder.create<fir::LoadOp>(loc, registerFuncOp.getArgument(0));
fir::BoxAddrOp boxAddrOp = builder.create<fir::BoxAddrOp>(loc, desc);
addDeclareAttr(builder, boxAddrOp.getOperation(), clause);
llvm::SmallVector<mlir::Value> bounds;
EntryOp entryOp = createDataEntryOp<EntryOp>(
builder, loc, boxAddrOp.getResult(), asFortran, bounds,
/*structured=*/false, /*implicit=*/false, clause, boxAddrOp.getType());
builder.create<mlir::acc::DeclareEnterOp>(
loc, mlir::ValueRange(entryOp.getAccPtr()));
asFortran << "_desc";
mlir::acc::UpdateDeviceOp updateDeviceOp =
createDataEntryOp<mlir::acc::UpdateDeviceOp>(
builder, loc, registerFuncOp.getArgument(0), asFortran, bounds,
/*structured=*/false, /*implicit=*/true,
mlir::acc::DataClause::acc_update_device, descTy);
llvm::SmallVector<int32_t> operandSegments{0, 0, 0, 0, 0, 1};
llvm::SmallVector<mlir::Value> operands{updateDeviceOp.getResult()};
createSimpleOp<mlir::acc::UpdateOp>(builder, loc, operands, operandSegments);
modBuilder.setInsertionPointAfter(registerFuncOp);
builder.restoreInsertionPoint(crtInsPt);
}
template <typename ExitOp>
static void createDeclareDeallocFuncWithArg(
mlir::OpBuilder &modBuilder, fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Type descTy, llvm::StringRef funcNamePrefix,
std::stringstream &asFortran, mlir::acc::DataClause clause) {
auto crtInsPt = builder.saveInsertionPoint();
// Generate the pre dealloc function.
std::stringstream preDeallocFuncName;
preDeallocFuncName << funcNamePrefix.str()
<< Fortran::lower::declarePreDeallocSuffix.str();
if (!mlir::isa<fir::ReferenceType>(descTy))
descTy = fir::ReferenceType::get(descTy);
auto preDeallocOp = createDeclareFunc(
modBuilder, builder, loc, preDeallocFuncName.str(), {descTy}, {loc});
mlir::Value loadOp =
builder.create<fir::LoadOp>(loc, preDeallocOp.getArgument(0));
fir::BoxAddrOp boxAddrOp = builder.create<fir::BoxAddrOp>(loc, loadOp);
addDeclareAttr(builder, boxAddrOp.getOperation(), clause);
llvm::SmallVector<mlir::Value> bounds;
mlir::acc::GetDevicePtrOp entryOp =
createDataEntryOp<mlir::acc::GetDevicePtrOp>(
builder, loc, boxAddrOp.getResult(), asFortran, bounds,
/*structured=*/false, /*implicit=*/false, clause,
boxAddrOp.getType());
builder.create<mlir::acc::DeclareExitOp>(
loc, mlir::ValueRange(entryOp.getAccPtr()));
mlir::Value varPtr;
if constexpr (std::is_same_v<ExitOp, mlir::acc::CopyoutOp> ||
std::is_same_v<ExitOp, mlir::acc::UpdateHostOp>)
varPtr = entryOp.getVarPtr();
builder.create<ExitOp>(entryOp.getLoc(), entryOp.getAccPtr(), varPtr,
entryOp.getBounds(), entryOp.getDataClause(),
/*structured=*/false, /*implicit=*/false,
builder.getStringAttr(*entryOp.getName()));
// Generate the post dealloc function.
modBuilder.setInsertionPointAfter(preDeallocOp);
std::stringstream postDeallocFuncName;
postDeallocFuncName << funcNamePrefix.str()
<< Fortran::lower::declarePostDeallocSuffix.str();
auto postDeallocOp = createDeclareFunc(
modBuilder, builder, loc, postDeallocFuncName.str(), {descTy}, {loc});
loadOp = builder.create<fir::LoadOp>(loc, postDeallocOp.getArgument(0));
asFortran << "_desc";
mlir::acc::UpdateDeviceOp updateDeviceOp =
createDataEntryOp<mlir::acc::UpdateDeviceOp>(
builder, loc, loadOp, asFortran, bounds,
/*structured=*/false, /*implicit=*/true,
mlir::acc::DataClause::acc_update_device, loadOp.getType());
llvm::SmallVector<int32_t> operandSegments{0, 0, 0, 0, 0, 1};
llvm::SmallVector<mlir::Value> operands{updateDeviceOp.getResult()};
createSimpleOp<mlir::acc::UpdateOp>(builder, loc, operands, operandSegments);
modBuilder.setInsertionPointAfter(postDeallocOp);
builder.restoreInsertionPoint(crtInsPt);
}
Fortran::semantics::Symbol &
getSymbolFromAccObject(const Fortran::parser::AccObject &accObject) {
if (const auto *designator =
std::get_if<Fortran::parser::Designator>(&accObject.u)) {
if (const auto *name =
Fortran::semantics::getDesignatorNameIfDataRef(*designator))
return *name->symbol;
if (const auto *arrayElement =
Fortran::parser::Unwrap<Fortran::parser::ArrayElement>(
*designator)) {
const Fortran::parser::Name &name =
Fortran::parser::GetLastName(arrayElement->base);
return *name.symbol;
}
} else if (const auto *name =
std::get_if<Fortran::parser::Name>(&accObject.u)) {
return *name->symbol;
}
llvm::report_fatal_error("Could not find symbol");
}
template <typename Op>
static void
genDataOperandOperations(const Fortran::parser::AccObjectList &objectList,
Fortran::lower::AbstractConverter &converter,
Fortran::semantics::SemanticsContext &semanticsContext,
Fortran::lower::StatementContext &stmtCtx,
llvm::SmallVectorImpl<mlir::Value> &dataOperands,
mlir::acc::DataClause dataClause, bool structured,
bool implicit, bool setDeclareAttr = false) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
for (const auto &accObject : objectList.v) {
llvm::SmallVector<mlir::Value> bounds;
std::stringstream asFortran;
mlir::Location operandLocation = genOperandLocation(converter, accObject);
mlir::Value baseAddr = gatherDataOperandAddrAndBounds(
converter, builder, semanticsContext, stmtCtx, accObject,
operandLocation, asFortran, bounds);
Op op = createDataEntryOp<Op>(builder, operandLocation, baseAddr, asFortran,
bounds, structured, implicit, dataClause,
baseAddr.getType());
dataOperands.push_back(op.getAccPtr());
}
}
template <typename EntryOp, typename ExitOp>
static void genDeclareDataOperandOperations(
const Fortran::parser::AccObjectList &objectList,
Fortran::lower::AbstractConverter &converter,
Fortran::semantics::SemanticsContext &semanticsContext,
Fortran::lower::StatementContext &stmtCtx,
llvm::SmallVectorImpl<mlir::Value> &dataOperands,
mlir::acc::DataClause dataClause, bool structured, bool implicit) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
for (const auto &accObject : objectList.v) {
llvm::SmallVector<mlir::Value> bounds;
std::stringstream asFortran;
mlir::Location operandLocation = genOperandLocation(converter, accObject);
mlir::Value baseAddr = gatherDataOperandAddrAndBounds(
converter, builder, semanticsContext, stmtCtx, accObject,
operandLocation, asFortran, bounds);
EntryOp op = createDataEntryOp<EntryOp>(
builder, operandLocation, baseAddr, asFortran, bounds, structured,
implicit, dataClause, baseAddr.getType());
dataOperands.push_back(op.getAccPtr());
addDeclareAttr(builder, op.getVarPtr().getDefiningOp(), dataClause);
if (mlir::isa<fir::BaseBoxType>(fir::unwrapRefType(baseAddr.getType()))) {
mlir::OpBuilder modBuilder(builder.getModule().getBodyRegion());
modBuilder.setInsertionPointAfter(builder.getFunction());
std::string prefix =
converter.mangleName(getSymbolFromAccObject(accObject));
createDeclareAllocFuncWithArg<EntryOp>(
modBuilder, builder, operandLocation, baseAddr.getType(), prefix,
asFortran, dataClause);
if constexpr (!std::is_same_v<EntryOp, ExitOp>)
createDeclareDeallocFuncWithArg<ExitOp>(
modBuilder, builder, operandLocation, baseAddr.getType(), prefix,
asFortran, dataClause);
}
}
}
template <typename EntryOp, typename ExitOp, typename Clause>
static void genDeclareDataOperandOperationsWithModifier(
const Clause *x, Fortran::lower::AbstractConverter &converter,
Fortran::semantics::SemanticsContext &semanticsContext,
Fortran::lower::StatementContext &stmtCtx,
Fortran::parser::AccDataModifier::Modifier mod,
llvm::SmallVectorImpl<mlir::Value> &dataClauseOperands,
const mlir::acc::DataClause clause,
const mlir::acc::DataClause clauseWithModifier) {
const Fortran::parser::AccObjectListWithModifier &listWithModifier = x->v;
const auto &accObjectList =
std::get<Fortran::parser::AccObjectList>(listWithModifier.t);
const auto &modifier =
std::get<std::optional<Fortran::parser::AccDataModifier>>(
listWithModifier.t);
mlir::acc::DataClause dataClause =
(modifier && (*modifier).v == mod) ? clauseWithModifier : clause;
genDeclareDataOperandOperations<EntryOp, ExitOp>(
accObjectList, converter, semanticsContext, stmtCtx, dataClauseOperands,
dataClause,
/*structured=*/true, /*implicit=*/false);
}
template <typename EntryOp, typename ExitOp>
static void genDataExitOperations(fir::FirOpBuilder &builder,
llvm::SmallVector<mlir::Value> operands,
bool structured, bool implicit) {
for (mlir::Value operand : operands) {
auto entryOp = mlir::dyn_cast_or_null<EntryOp>(operand.getDefiningOp());
assert(entryOp && "data entry op expected");
mlir::Value varPtr;
if constexpr (std::is_same_v<ExitOp, mlir::acc::CopyoutOp> ||
std::is_same_v<ExitOp, mlir::acc::UpdateHostOp>)
varPtr = entryOp.getVarPtr();
builder.create<ExitOp>(entryOp.getLoc(), entryOp.getAccPtr(), varPtr,
entryOp.getBounds(), entryOp.getDataClause(),
structured, implicit,
builder.getStringAttr(*entryOp.getName()));
}
}
template <typename RecipeOp>
static void genPrivateLikeInitRegion(mlir::OpBuilder &builder, RecipeOp recipe,
mlir::Type ty, mlir::Location loc) {
mlir::Value retVal = recipe.getInitRegion().front().getArgument(0);
if (auto refTy = mlir::dyn_cast_or_null<fir::ReferenceType>(ty)) {
if (fir::isa_trivial(refTy.getEleTy()))
retVal = builder.create<fir::AllocaOp>(loc, refTy.getEleTy());
else if (auto seqTy =
mlir::dyn_cast_or_null<fir::SequenceType>(refTy.getEleTy())) {
if (seqTy.hasDynamicExtents())
TODO(loc, "private recipe of array with dynamic extents");
if (fir::isa_trivial(seqTy.getEleTy()))
retVal = builder.create<fir::AllocaOp>(loc, seqTy);
}
}
builder.create<mlir::acc::YieldOp>(loc, retVal);
}
mlir::acc::PrivateRecipeOp
Fortran::lower::createOrGetPrivateRecipe(mlir::OpBuilder &builder,
llvm::StringRef recipeName,
mlir::Location loc, mlir::Type ty) {
mlir::ModuleOp mod =
builder.getBlock()->getParent()->getParentOfType<mlir::ModuleOp>();
if (auto recipe = mod.lookupSymbol<mlir::acc::PrivateRecipeOp>(recipeName))
return recipe;
auto crtPos = builder.saveInsertionPoint();
mlir::OpBuilder modBuilder(mod.getBodyRegion());
auto recipe =
modBuilder.create<mlir::acc::PrivateRecipeOp>(loc, recipeName, ty);
builder.createBlock(&recipe.getInitRegion(), recipe.getInitRegion().end(),
{ty}, {loc});
builder.setInsertionPointToEnd(&recipe.getInitRegion().back());
genPrivateLikeInitRegion<mlir::acc::PrivateRecipeOp>(builder, recipe, ty,
loc);
builder.restoreInsertionPoint(crtPos);
return recipe;
}
mlir::acc::FirstprivateRecipeOp Fortran::lower::createOrGetFirstprivateRecipe(
mlir::OpBuilder &builder, llvm::StringRef recipeName, mlir::Location loc,
mlir::Type ty) {
mlir::ModuleOp mod =
builder.getBlock()->getParent()->getParentOfType<mlir::ModuleOp>();
if (auto recipe =
mod.lookupSymbol<mlir::acc::FirstprivateRecipeOp>(recipeName))
return recipe;
auto crtPos = builder.saveInsertionPoint();
mlir::OpBuilder modBuilder(mod.getBodyRegion());
auto recipe =
modBuilder.create<mlir::acc::FirstprivateRecipeOp>(loc, recipeName, ty);
builder.createBlock(&recipe.getInitRegion(), recipe.getInitRegion().end(),
{ty}, {loc});
builder.setInsertionPointToEnd(&recipe.getInitRegion().back());
genPrivateLikeInitRegion<mlir::acc::FirstprivateRecipeOp>(builder, recipe, ty,
loc);
// Add empty copy region for firstprivate. TODO add copy sequence.
builder.createBlock(&recipe.getCopyRegion(), recipe.getCopyRegion().end(),
{ty, ty}, {loc, loc});
builder.setInsertionPointToEnd(&recipe.getCopyRegion().back());
if (auto refTy = mlir::dyn_cast_or_null<fir::ReferenceType>(ty)) {
if (fir::isa_trivial(refTy.getEleTy())) {
mlir::Value initValue = builder.create<fir::LoadOp>(
loc, recipe.getCopyRegion().front().getArgument(0));
builder.create<fir::StoreOp>(
loc, initValue, recipe.getCopyRegion().front().getArgument(1));
} else if (auto seqTy = mlir::dyn_cast_or_null<fir::SequenceType>(
refTy.getEleTy())) {
if (seqTy.hasDynamicExtents())
TODO(loc, "private recipe of array with dynamic extents");
mlir::Type idxTy = builder.getIndexType();
mlir::Type refTy = fir::ReferenceType::get(seqTy.getEleTy());
mlir::Value arraySrc = recipe.getCopyRegion().front().getArgument(0);
mlir::Value arrayDst = recipe.getCopyRegion().front().getArgument(1);
llvm::SmallVector<fir::DoLoopOp> loops;
llvm::SmallVector<mlir::Value> ivs;
for (auto ext : llvm::reverse(seqTy.getShape())) {
auto lb = builder.create<mlir::arith::ConstantOp>(
loc, idxTy, builder.getIntegerAttr(idxTy, 0));
auto ub = builder.create<mlir::arith::ConstantOp>(
loc, idxTy, builder.getIntegerAttr(idxTy, ext - 1));
auto step = builder.create<mlir::arith::ConstantOp>(
loc, idxTy, builder.getIntegerAttr(idxTy, 1));
auto loop = builder.create<fir::DoLoopOp>(loc, lb, ub, step,
/*unordered=*/false);
builder.setInsertionPointToStart(loop.getBody());
loops.push_back(loop);
ivs.push_back(loop.getInductionVar());
}
auto addr1 = builder.create<fir::CoordinateOp>(loc, refTy, arraySrc, ivs);
auto addr2 = builder.create<fir::CoordinateOp>(loc, refTy, arrayDst, ivs);
auto loadedValue = builder.create<fir::LoadOp>(loc, addr1);
builder.create<fir::StoreOp>(loc, loadedValue, addr2);
builder.setInsertionPointAfter(loops[0]);
}
}
builder.create<mlir::acc::TerminatorOp>(loc);
builder.restoreInsertionPoint(crtPos);
return recipe;
}
/// Rebuild the array type from the acc.bounds operation with constant
/// lowerbound/upperbound or extent.
mlir::Type getTypeFromBounds(llvm::SmallVector<mlir::Value> &bounds,
mlir::Type ty) {
auto seqTy =
mlir::dyn_cast_or_null<fir::SequenceType>(fir::unwrapRefType(ty));
if (!bounds.empty() && seqTy) {
llvm::SmallVector<int64_t> shape;
for (auto b : bounds) {
auto boundsOp =
mlir::dyn_cast<mlir::acc::DataBoundsOp>(b.getDefiningOp());
if (boundsOp.getLowerbound() &&
fir::getIntIfConstant(boundsOp.getLowerbound()) &&
boundsOp.getUpperbound() &&
fir::getIntIfConstant(boundsOp.getUpperbound())) {
int64_t ext = *fir::getIntIfConstant(boundsOp.getUpperbound()) -
*fir::getIntIfConstant(boundsOp.getLowerbound()) + 1;
shape.push_back(ext);
} else if (boundsOp.getExtent() &&
fir::getIntIfConstant(boundsOp.getExtent())) {
shape.push_back(*fir::getIntIfConstant(boundsOp.getExtent()));
} else {
return ty; // TODO: handle dynamic shaped array slice.
}
}
if (shape.empty() || shape.size() != bounds.size())
return ty;
auto newSeqTy = fir::SequenceType::get(shape, seqTy.getEleTy());
if (mlir::isa<fir::ReferenceType>(ty))
return fir::ReferenceType::get(newSeqTy);
return newSeqTy;
}
return ty;
}
template <typename RecipeOp>
static void
genPrivatizations(const Fortran::parser::AccObjectList &objectList,
Fortran::lower::AbstractConverter &converter,
Fortran::semantics::SemanticsContext &semanticsContext,
Fortran::lower::StatementContext &stmtCtx,
llvm::SmallVectorImpl<mlir::Value> &dataOperands,
llvm::SmallVector<mlir::Attribute> &privatizations) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
for (const auto &accObject : objectList.v) {
llvm::SmallVector<mlir::Value> bounds;
std::stringstream asFortran;
mlir::Location operandLocation = genOperandLocation(converter, accObject);
mlir::Value baseAddr = gatherDataOperandAddrAndBounds(
converter, builder, semanticsContext, stmtCtx, accObject,
operandLocation, asFortran, bounds);
RecipeOp recipe;
mlir::Type retTy = getTypeFromBounds(bounds, baseAddr.getType());
if constexpr (std::is_same_v<RecipeOp, mlir::acc::PrivateRecipeOp>) {
std::string recipeName =
fir::getTypeAsString(retTy, converter.getKindMap(), "privatization");
recipe = Fortran::lower::createOrGetPrivateRecipe(builder, recipeName,
operandLocation, retTy);
auto op = createDataEntryOp<mlir::acc::PrivateOp>(
builder, operandLocation, baseAddr, asFortran, bounds, true,
/*implicit=*/false, mlir::acc::DataClause::acc_private, retTy);
dataOperands.push_back(op.getAccPtr());
} else {
std::string recipeName = fir::getTypeAsString(
retTy, converter.getKindMap(), "firstprivatization");
recipe = Fortran::lower::createOrGetFirstprivateRecipe(
builder, recipeName, operandLocation, retTy);
auto op = createDataEntryOp<mlir::acc::FirstprivateOp>(
builder, operandLocation, baseAddr, asFortran, bounds, true,
/*implicit=*/false, mlir::acc::DataClause::acc_firstprivate, retTy);
dataOperands.push_back(op.getAccPtr());
}
privatizations.push_back(mlir::SymbolRefAttr::get(
builder.getContext(), recipe.getSymName().str()));
}
}
/// Return the corresponding enum value for the mlir::acc::ReductionOperator
/// from the parser representation.
static mlir::acc::ReductionOperator
getReductionOperator(const Fortran::parser::AccReductionOperator &op) {
switch (op.v) {
case Fortran::parser::AccReductionOperator::Operator::Plus:
return mlir::acc::ReductionOperator::AccAdd;
case Fortran::parser::AccReductionOperator::Operator::Multiply:
return mlir::acc::ReductionOperator::AccMul;
case Fortran::parser::AccReductionOperator::Operator::Max:
return mlir::acc::ReductionOperator::AccMax;
case Fortran::parser::AccReductionOperator::Operator::Min:
return mlir::acc::ReductionOperator::AccMin;
case Fortran::parser::AccReductionOperator::Operator::Iand:
return mlir::acc::ReductionOperator::AccIand;
case Fortran::parser::AccReductionOperator::Operator::Ior:
return mlir::acc::ReductionOperator::AccIor;
case Fortran::parser::AccReductionOperator::Operator::Ieor:
return mlir::acc::ReductionOperator::AccXor;
case Fortran::parser::AccReductionOperator::Operator::And:
return mlir::acc::ReductionOperator::AccLand;
case Fortran::parser::AccReductionOperator::Operator::Or:
return mlir::acc::ReductionOperator::AccLor;
case Fortran::parser::AccReductionOperator::Operator::Eqv:
return mlir::acc::ReductionOperator::AccEqv;
case Fortran::parser::AccReductionOperator::Operator::Neqv:
return mlir::acc::ReductionOperator::AccNeqv;
}
llvm_unreachable("unexpected reduction operator");
}
/// Get the initial value for reduction operator.
template <typename R>
static R getReductionInitValue(mlir::acc::ReductionOperator op, mlir::Type ty) {
if (op == mlir::acc::ReductionOperator::AccMin) {
// min init value -> largest
if constexpr (std::is_same_v<R, llvm::APInt>) {
assert(ty.isIntOrIndex() && "expect integer or index type");
return llvm::APInt::getSignedMaxValue(ty.getIntOrFloatBitWidth());
}
if constexpr (std::is_same_v<R, llvm::APFloat>) {
auto floatTy = mlir::dyn_cast_or_null<mlir::FloatType>(ty);
assert(floatTy && "expect float type");
return llvm::APFloat::getLargest(floatTy.getFloatSemantics(),
/*negative=*/false);
}
} else if (op == mlir::acc::ReductionOperator::AccMax) {
// max init value -> smallest
if constexpr (std::is_same_v<R, llvm::APInt>) {
assert(ty.isIntOrIndex() && "expect integer or index type");
return llvm::APInt::getSignedMinValue(ty.getIntOrFloatBitWidth());
}
if constexpr (std::is_same_v<R, llvm::APFloat>) {
auto floatTy = mlir::dyn_cast_or_null<mlir::FloatType>(ty);
assert(floatTy && "expect float type");
return llvm::APFloat::getSmallest(floatTy.getFloatSemantics(),
/*negative=*/true);
}
} else if (op == mlir::acc::ReductionOperator::AccIand) {
if constexpr (std::is_same_v<R, llvm::APInt>) {
assert(ty.isIntOrIndex() && "expect integer type");
unsigned bits = ty.getIntOrFloatBitWidth();
return llvm::APInt::getAllOnes(bits);
}
} else {
// +, ior, ieor init value -> 0
// * init value -> 1
int64_t value = (op == mlir::acc::ReductionOperator::AccMul) ? 1 : 0;
if constexpr (std::is_same_v<R, llvm::APInt>) {
assert(ty.isIntOrIndex() && "expect integer or index type");
return llvm::APInt(ty.getIntOrFloatBitWidth(), value, true);
}
if constexpr (std::is_same_v<R, llvm::APFloat>) {
assert(mlir::isa<mlir::FloatType>(ty) && "expect float type");
auto floatTy = mlir::dyn_cast<mlir::FloatType>(ty);
return llvm::APFloat(floatTy.getFloatSemantics(), value);
}
if constexpr (std::is_same_v<R, int64_t>)
return value;
}
llvm_unreachable("OpenACC reduction unsupported type");
}
/// Check if the DataBoundsOp is a constant bound (lb and ub are constants or
/// extent is a constant).
bool isConstantBound(mlir::acc::DataBoundsOp &op) {
if (op.getLowerbound() && fir::getIntIfConstant(op.getLowerbound()) &&
op.getUpperbound() && fir::getIntIfConstant(op.getUpperbound()))
return true;
if (op.getExtent() && fir::getIntIfConstant(op.getExtent()))
return true;
return false;
}
/// Determine if the bounds represent a dynamic shape.
bool hasDynamicShape(llvm::SmallVector<mlir::Value> &bounds) {
if (bounds.empty())
return false;
for (auto b : bounds) {
auto op = mlir::dyn_cast<mlir::acc::DataBoundsOp>(b.getDefiningOp());
if (!isConstantBound(op))
return true;
}
return false;
}
/// Return a constant with the initial value for the reduction operator and
/// type combination.
static mlir::Value getReductionInitValue(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Type ty,
mlir::acc::ReductionOperator op) {
if (op == mlir::acc::ReductionOperator::AccLand ||
op == mlir::acc::ReductionOperator::AccLor ||
op == mlir::acc::ReductionOperator::AccEqv ||
op == mlir::acc::ReductionOperator::AccNeqv) {
assert(mlir::isa<fir::LogicalType>(ty) && "expect fir.logical type");
bool value = true; // .true. for .and. and .eqv.
if (op == mlir::acc::ReductionOperator::AccLor ||
op == mlir::acc::ReductionOperator::AccNeqv)
value = false; // .false. for .or. and .neqv.
return builder.createBool(loc, value);
}
if (ty.isIntOrIndex())
return builder.create<mlir::arith::ConstantOp>(
loc, ty,
builder.getIntegerAttr(ty, getReductionInitValue<llvm::APInt>(op, ty)));
if (op == mlir::acc::ReductionOperator::AccMin ||
op == mlir::acc::ReductionOperator::AccMax) {
if (mlir::isa<fir::ComplexType>(ty))
llvm::report_fatal_error(
"min/max reduction not supported for complex type");
if (auto floatTy = mlir::dyn_cast_or_null<mlir::FloatType>(ty))
return builder.create<mlir::arith::ConstantOp>(
loc, ty,
builder.getFloatAttr(ty,
getReductionInitValue<llvm::APFloat>(op, ty)));
} else if (auto floatTy = mlir::dyn_cast_or_null<mlir::FloatType>(ty)) {
return builder.create<mlir::arith::ConstantOp>(
loc, ty,
builder.getFloatAttr(ty, getReductionInitValue<int64_t>(op, ty)));
} else if (auto cmplxTy = mlir::dyn_cast_or_null<fir::ComplexType>(ty)) {
mlir::Type floatTy =
Fortran::lower::convertReal(builder.getContext(), cmplxTy.getFKind());
mlir::Value realInit = builder.createRealConstant(
loc, floatTy, getReductionInitValue<int64_t>(op, cmplxTy));
mlir::Value imagInit = builder.createRealConstant(loc, floatTy, 0.0);
return fir::factory::Complex{builder, loc}.createComplex(
cmplxTy.getFKind(), realInit, imagInit);
}
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(ty))
return getReductionInitValue(builder, loc, seqTy.getEleTy(), op);
llvm::report_fatal_error("Unsupported OpenACC reduction type");
}
static mlir::Value genReductionInitRegion(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Type ty,
mlir::acc::ReductionOperator op) {
ty = fir::unwrapRefType(ty);
mlir::Value initValue = getReductionInitValue(builder, loc, ty, op);
if (fir::isa_trivial(ty)) {
mlir::Value alloca = builder.create<fir::AllocaOp>(loc, ty);
builder.create<fir::StoreOp>(loc, builder.createConvert(loc, ty, initValue),
alloca);
return alloca;
} else if (auto seqTy = mlir::dyn_cast_or_null<fir::SequenceType>(ty)) {
if (seqTy.hasDynamicExtents())
TODO(loc, "private recipe of array with dynamic extents");
if (fir::isa_trivial(seqTy.getEleTy())) {
mlir::Value alloca = builder.create<fir::AllocaOp>(loc, seqTy);
mlir::Type idxTy = builder.getIndexType();
mlir::Type refTy = fir::ReferenceType::get(seqTy.getEleTy());
llvm::SmallVector<fir::DoLoopOp> loops;
llvm::SmallVector<mlir::Value> ivs;
for (auto ext : llvm::reverse(seqTy.getShape())) {
auto lb = builder.createIntegerConstant(loc, idxTy, 0);
auto ub = builder.createIntegerConstant(loc, idxTy, ext - 1);
auto step = builder.createIntegerConstant(loc, idxTy, 1);
auto loop = builder.create<fir::DoLoopOp>(loc, lb, ub, step,
/*unordered=*/false);
builder.setInsertionPointToStart(loop.getBody());
loops.push_back(loop);
ivs.push_back(loop.getInductionVar());
}
auto coord = builder.create<fir::CoordinateOp>(loc, refTy, alloca, ivs);
builder.create<fir::StoreOp>(loc, initValue, coord);
builder.setInsertionPointAfter(loops[0]);
return alloca;
}
}
llvm::report_fatal_error("Unsupported OpenACC reduction type");
}
template <typename Op>
static mlir::Value genLogicalCombiner(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Value value1,
mlir::Value value2) {
mlir::Type i1 = builder.getI1Type();
mlir::Value v1 = builder.create<fir::ConvertOp>(loc, i1, value1);
mlir::Value v2 = builder.create<fir::ConvertOp>(loc, i1, value2);
mlir::Value combined = builder.create<Op>(loc, v1, v2);
return builder.create<fir::ConvertOp>(loc, value1.getType(), combined);
}
static mlir::Value loadIfRef(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value value) {
if (mlir::isa<fir::ReferenceType, fir::PointerType, fir::HeapType>(
value.getType()))
return builder.create<fir::LoadOp>(loc, value);
return value;
}
static mlir::Value genComparisonCombiner(fir::FirOpBuilder &builder,
mlir::Location loc,
mlir::arith::CmpIPredicate pred,
mlir::Value value1,
mlir::Value value2) {
mlir::Type i1 = builder.getI1Type();
mlir::Value v1 = builder.create<fir::ConvertOp>(loc, i1, value1);
mlir::Value v2 = builder.create<fir::ConvertOp>(loc, i1, value2);
mlir::Value add = builder.create<mlir::arith::CmpIOp>(loc, pred, v1, v2);
return builder.create<fir::ConvertOp>(loc, value1.getType(), add);
}
static mlir::Value genScalarCombiner(fir::FirOpBuilder &builder,
mlir::Location loc,
mlir::acc::ReductionOperator op,
mlir::Type ty, mlir::Value value1,
mlir::Value value2) {
value1 = loadIfRef(builder, loc, value1);
value2 = loadIfRef(builder, loc, value2);
if (op == mlir::acc::ReductionOperator::AccAdd) {
if (ty.isIntOrIndex())
return builder.create<mlir::arith::AddIOp>(loc, value1, value2);
if (mlir::isa<mlir::FloatType>(ty))
return builder.create<mlir::arith::AddFOp>(loc, value1, value2);
if (auto cmplxTy = mlir::dyn_cast_or_null<fir::ComplexType>(ty))
return builder.create<fir::AddcOp>(loc, value1, value2);
TODO(loc, "reduction add type");
}
if (op == mlir::acc::ReductionOperator::AccMul) {
if (ty.isIntOrIndex())
return builder.create<mlir::arith::MulIOp>(loc, value1, value2);
if (mlir::isa<mlir::FloatType>(ty))
return builder.create<mlir::arith::MulFOp>(loc, value1, value2);
if (mlir::isa<fir::ComplexType>(ty))
return builder.create<fir::MulcOp>(loc, value1, value2);
TODO(loc, "reduction mul type");
}
if (op == mlir::acc::ReductionOperator::AccMin)
return fir::genMin(builder, loc, {value1, value2});
if (op == mlir::acc::ReductionOperator::AccMax)
return fir::genMax(builder, loc, {value1, value2});
if (op == mlir::acc::ReductionOperator::AccIand)
return builder.create<mlir::arith::AndIOp>(loc, value1, value2);
if (op == mlir::acc::ReductionOperator::AccIor)
return builder.create<mlir::arith::OrIOp>(loc, value1, value2);
if (op == mlir::acc::ReductionOperator::AccXor)
return builder.create<mlir::arith::XOrIOp>(loc, value1, value2);
if (op == mlir::acc::ReductionOperator::AccLand)
return genLogicalCombiner<mlir::arith::AndIOp>(builder, loc, value1,
value2);
if (op == mlir::acc::ReductionOperator::AccLor)
return genLogicalCombiner<mlir::arith::OrIOp>(builder, loc, value1, value2);
if (op == mlir::acc::ReductionOperator::AccEqv)
return genComparisonCombiner(builder, loc, mlir::arith::CmpIPredicate::eq,
value1, value2);
if (op == mlir::acc::ReductionOperator::AccNeqv)
return genComparisonCombiner(builder, loc, mlir::arith::CmpIPredicate::ne,
value1, value2);
TODO(loc, "reduction operator");
}
static void genCombiner(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::acc::ReductionOperator op, mlir::Type ty,
mlir::Value value1, mlir::Value value2) {
ty = fir::unwrapRefType(ty);
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(ty)) {
if (seqTy.hasDynamicExtents())
TODO(loc, "OpenACC reduction on array with dynamic extents");
mlir::Type idxTy = builder.getIndexType();
mlir::Type refTy = fir::ReferenceType::get(seqTy.getEleTy());
llvm::SmallVector<fir::DoLoopOp> loops;
llvm::SmallVector<mlir::Value> ivs;
for (auto ext : llvm::reverse(seqTy.getShape())) {
auto lb = builder.createIntegerConstant(loc, idxTy, 0);
auto ub = builder.createIntegerConstant(loc, idxTy, ext - 1);
auto step = builder.createIntegerConstant(loc, idxTy, 1);
auto loop = builder.create<fir::DoLoopOp>(loc, lb, ub, step,
/*unordered=*/false);
builder.setInsertionPointToStart(loop.getBody());
loops.push_back(loop);
ivs.push_back(loop.getInductionVar());
}
auto addr1 = builder.create<fir::CoordinateOp>(loc, refTy, value1, ivs);
auto addr2 = builder.create<fir::CoordinateOp>(loc, refTy, value2, ivs);
auto load1 = builder.create<fir::LoadOp>(loc, addr1);
auto load2 = builder.create<fir::LoadOp>(loc, addr2);
mlir::Value res =
genScalarCombiner(builder, loc, op, seqTy.getEleTy(), load1, load2);
builder.create<fir::StoreOp>(loc, res, addr1);
builder.setInsertionPointAfter(loops[0]);
} else {
mlir::Value res = genScalarCombiner(builder, loc, op, ty, value1, value2);
builder.create<fir::StoreOp>(loc, res, value1);
}
}
mlir::acc::ReductionRecipeOp Fortran::lower::createOrGetReductionRecipe(
fir::FirOpBuilder &builder, llvm::StringRef recipeName, mlir::Location loc,
mlir::Type ty, mlir::acc::ReductionOperator op,
llvm::SmallVector<mlir::Value> &bounds) {
mlir::ModuleOp mod =
builder.getBlock()->getParent()->getParentOfType<mlir::ModuleOp>();
if (auto recipe = mod.lookupSymbol<mlir::acc::ReductionRecipeOp>(recipeName))
return recipe;
auto crtPos = builder.saveInsertionPoint();
mlir::OpBuilder modBuilder(mod.getBodyRegion());
auto recipe =
modBuilder.create<mlir::acc::ReductionRecipeOp>(loc, recipeName, ty, op);
builder.createBlock(&recipe.getInitRegion(), recipe.getInitRegion().end(),
{ty}, {loc});
builder.setInsertionPointToEnd(&recipe.getInitRegion().back());
mlir::Value initValue = genReductionInitRegion(builder, loc, ty, op);
builder.create<mlir::acc::YieldOp>(loc, initValue);
builder.createBlock(&recipe.getCombinerRegion(),
recipe.getCombinerRegion().end(), {ty, ty}, {loc, loc});
builder.setInsertionPointToEnd(&recipe.getCombinerRegion().back());
mlir::Value v1 = recipe.getCombinerRegion().front().getArgument(0);
mlir::Value v2 = recipe.getCombinerRegion().front().getArgument(1);
genCombiner(builder, loc, op, ty, v1, v2);
builder.create<mlir::acc::YieldOp>(loc, v1);
builder.restoreInsertionPoint(crtPos);
return recipe;
}
static void
genReductions(const Fortran::parser::AccObjectListWithReduction &objectList,
Fortran::lower::AbstractConverter &converter,
Fortran::semantics::SemanticsContext &semanticsContext,
Fortran::lower::StatementContext &stmtCtx,
llvm::SmallVectorImpl<mlir::Value> &reductionOperands,
llvm::SmallVector<mlir::Attribute> &reductionRecipes) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
const auto &objects = std::get<Fortran::parser::AccObjectList>(objectList.t);
const auto &op =
std::get<Fortran::parser::AccReductionOperator>(objectList.t);
mlir::acc::ReductionOperator mlirOp = getReductionOperator(op);
for (const auto &accObject : objects.v) {
llvm::SmallVector<mlir::Value> bounds;
std::stringstream asFortran;
mlir::Location operandLocation = genOperandLocation(converter, accObject);
mlir::Value baseAddr = gatherDataOperandAddrAndBounds(
converter, builder, semanticsContext, stmtCtx, accObject,
operandLocation, asFortran, bounds);
if (hasDynamicShape(bounds))
TODO(operandLocation, "OpenACC reductions with dynamic shaped array");
mlir::Type reductionTy = fir::unwrapRefType(baseAddr.getType());
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(reductionTy))
reductionTy = seqTy.getEleTy();
if (!fir::isa_trivial(reductionTy) &&
((fir::isAllocatableType(reductionTy) ||
fir::isPointerType(reductionTy)) &&
!bounds.empty()))
TODO(operandLocation, "reduction with unsupported type");
auto op = createDataEntryOp<mlir::acc::ReductionOp>(
builder, operandLocation, baseAddr, asFortran, bounds,
/*structured=*/true, /*implicit=*/false,
mlir::acc::DataClause::acc_reduction, baseAddr.getType());
mlir::Type ty = op.getAccPtr().getType();
std::string recipeName = fir::getTypeAsString(
ty, converter.getKindMap(),
("reduction_" + stringifyReductionOperator(mlirOp)).str());
mlir::acc::ReductionRecipeOp recipe =
Fortran::lower::createOrGetReductionRecipe(
builder, recipeName, operandLocation, ty, mlirOp, bounds);
reductionRecipes.push_back(mlir::SymbolRefAttr::get(
builder.getContext(), recipe.getSymName().str()));
reductionOperands.push_back(op.getAccPtr());
}
}
static void
addOperands(llvm::SmallVectorImpl<mlir::Value> &operands,
llvm::SmallVectorImpl<int32_t> &operandSegments,
const llvm::SmallVectorImpl<mlir::Value> &clauseOperands) {
operands.append(clauseOperands.begin(), clauseOperands.end());
operandSegments.push_back(clauseOperands.size());
}
static void addOperand(llvm::SmallVectorImpl<mlir::Value> &operands,
llvm::SmallVectorImpl<int32_t> &operandSegments,
const mlir::Value &clauseOperand) {
if (clauseOperand) {
operands.push_back(clauseOperand);
operandSegments.push_back(1);
} else {
operandSegments.push_back(0);
}
}
template <typename Op, typename Terminator>
static Op createRegionOp(fir::FirOpBuilder &builder, mlir::Location loc,
Fortran::lower::pft::Evaluation &eval,
const llvm::SmallVectorImpl<mlir::Value> &operands,
const llvm::SmallVectorImpl<int32_t> &operandSegments,
bool outerCombined = false) {
llvm::ArrayRef<mlir::Type> argTy;
Op op = builder.create<Op>(loc, argTy, operands);
builder.createBlock(&op.getRegion());
mlir::Block &block = op.getRegion().back();
builder.setInsertionPointToStart(&block);
op->setAttr(Op::getOperandSegmentSizeAttr(),
builder.getDenseI32ArrayAttr(operandSegments));
// Place the insertion point to the start of the first block.
builder.setInsertionPointToStart(&block);
// If it is an unstructured region and is not the outer region of a combined
// construct, create empty blocks for all evaluations.
if (eval.lowerAsUnstructured() && !outerCombined)
Fortran::lower::createEmptyRegionBlocks<mlir::acc::TerminatorOp,
mlir::acc::YieldOp>(
builder, eval.getNestedEvaluations());
builder.create<Terminator>(loc);
builder.setInsertionPointToStart(&block);
return op;
}
static void genAsyncClause(Fortran::lower::AbstractConverter &converter,
const Fortran::parser::AccClause::Async *asyncClause,
mlir::Value &async, bool &addAsyncAttr,
Fortran::lower::StatementContext &stmtCtx) {
const auto &asyncClauseValue = asyncClause->v;
if (asyncClauseValue) { // async has a value.
async = fir::getBase(converter.genExprValue(
*Fortran::semantics::GetExpr(*asyncClauseValue), stmtCtx));
} else {
addAsyncAttr = true;
}
}
static void genDeviceTypeClause(
Fortran::lower::AbstractConverter &converter, mlir::Location clauseLocation,
const Fortran::parser::AccClause::DeviceType *deviceTypeClause,
llvm::SmallVectorImpl<mlir::Value> &operands,
Fortran::lower::StatementContext &stmtCtx) {
const Fortran::parser::AccDeviceTypeExprList &deviceTypeExprList =
deviceTypeClause->v;
for (const auto &deviceTypeExpr : deviceTypeExprList.v) {
const auto &expr = std::get<std::optional<Fortran::parser::ScalarIntExpr>>(
deviceTypeExpr.t);
if (expr) {
operands.push_back(fir::getBase(converter.genExprValue(
*Fortran::semantics::GetExpr(expr), stmtCtx, &clauseLocation)));
} else {
// * was passed as value and will be represented as a special constant.
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
mlir::Value star = firOpBuilder.createIntegerConstant(
clauseLocation, firOpBuilder.getIndexType(), starCst);
operands.push_back(star);
}
}
}
static void genIfClause(Fortran::lower::AbstractConverter &converter,
mlir::Location clauseLocation,
const Fortran::parser::AccClause::If *ifClause,
mlir::Value &ifCond,
Fortran::lower::StatementContext &stmtCtx) {
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
mlir::Value cond = fir::getBase(converter.genExprValue(
*Fortran::semantics::GetExpr(ifClause->v), stmtCtx, &clauseLocation));
ifCond = firOpBuilder.createConvert(clauseLocation, firOpBuilder.getI1Type(),
cond);
}
static void genWaitClause(Fortran::lower::AbstractConverter &converter,
const Fortran::parser::AccClause::Wait *waitClause,
llvm::SmallVectorImpl<mlir::Value> &operands,
mlir::Value &waitDevnum, bool &addWaitAttr,
Fortran::lower::StatementContext &stmtCtx) {
const auto &waitClauseValue = waitClause->v;
if (waitClauseValue) { // wait has a value.
const Fortran::parser::AccWaitArgument &waitArg = *waitClauseValue;
const auto &waitList =
std::get<std::list<Fortran::parser::ScalarIntExpr>>(waitArg.t);
for (const Fortran::parser::ScalarIntExpr &value : waitList) {
mlir::Value v = fir::getBase(
converter.genExprValue(*Fortran::semantics::GetExpr(value), stmtCtx));
operands.push_back(v);
}
const auto &waitDevnumValue =
std::get<std::optional<Fortran::parser::ScalarIntExpr>>(waitArg.t);
if (waitDevnumValue)
waitDevnum = fir::getBase(converter.genExprValue(
*Fortran::semantics::GetExpr(*waitDevnumValue), stmtCtx));
} else {
addWaitAttr = true;
}
}
static mlir::acc::LoopOp
createLoopOp(Fortran::lower::AbstractConverter &converter,
mlir::Location currentLocation,
Fortran::lower::pft::Evaluation &eval,
Fortran::semantics::SemanticsContext &semanticsContext,
Fortran::lower::StatementContext &stmtCtx,
const Fortran::parser::AccClauseList &accClauseList) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Value workerNum;
mlir::Value vectorNum;
mlir::Value gangNum;
mlir::Value gangDim;
mlir::Value gangStatic;
llvm::SmallVector<mlir::Value> tileOperands, privateOperands,
reductionOperands, cacheOperands;
llvm::SmallVector<mlir::Attribute> privatizations, reductionRecipes;
bool hasGang = false, hasVector = false, hasWorker = false;
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
mlir::Location clauseLocation = converter.genLocation(clause.source);
if (const auto *gangClause =
std::get_if<Fortran::parser::AccClause::Gang>(&clause.u)) {
if (gangClause->v) {
const Fortran::parser::AccGangArgList &x = *gangClause->v;
for (const Fortran::parser::AccGangArg &gangArg : x.v) {
if (const auto *num =
std::get_if<Fortran::parser::AccGangArg::Num>(&gangArg.u)) {
gangNum = fir::getBase(converter.genExprValue(
*Fortran::semantics::GetExpr(num->v), stmtCtx));
} else if (const auto *staticArg =
std::get_if<Fortran::parser::AccGangArg::Static>(
&gangArg.u)) {
const Fortran::parser::AccSizeExpr &sizeExpr = staticArg->v;
if (sizeExpr.v) {
gangStatic = fir::getBase(converter.genExprValue(
*Fortran::semantics::GetExpr(*sizeExpr.v), stmtCtx));
} else {
// * was passed as value and will be represented as a special
// constant.
gangStatic = builder.createIntegerConstant(
clauseLocation, builder.getIndexType(), starCst);
}
} else if (const auto *dim =
std::get_if<Fortran::parser::AccGangArg::Dim>(
&gangArg.u)) {
gangDim = fir::getBase(converter.genExprValue(
*Fortran::semantics::GetExpr(dim->v), stmtCtx));
}
}
}
hasGang = true;
} else if (const auto *workerClause =
std::get_if<Fortran::parser::AccClause::Worker>(&clause.u)) {
if (workerClause->v) {
workerNum = fir::getBase(converter.genExprValue(
*Fortran::semantics::GetExpr(*workerClause->v), stmtCtx));
}
hasWorker = true;
} else if (const auto *vectorClause =
std::get_if<Fortran::parser::AccClause::Vector>(&clause.u)) {
if (vectorClause->v) {
vectorNum = fir::getBase(converter.genExprValue(
*Fortran::semantics::GetExpr(*vectorClause->v), stmtCtx));
}
hasVector = true;
} else if (const auto *tileClause =
std::get_if<Fortran::parser::AccClause::Tile>(&clause.u)) {
const Fortran::parser::AccTileExprList &accTileExprList = tileClause->v;
for (const auto &accTileExpr : accTileExprList.v) {
const auto &expr =
std::get<std::optional<Fortran::parser::ScalarIntConstantExpr>>(
accTileExpr.t);
if (expr) {
tileOperands.push_back(fir::getBase(converter.genExprValue(
*Fortran::semantics::GetExpr(*expr), stmtCtx)));
} else {
// * was passed as value and will be represented as a special
// constant.
mlir::Value tileStar = builder.createIntegerConstant(
clauseLocation, builder.getIntegerType(32), starCst);
tileOperands.push_back(tileStar);
}
}
} else if (const auto *privateClause =
std::get_if<Fortran::parser::AccClause::Private>(
&clause.u)) {
genPrivatizations<mlir::acc::PrivateRecipeOp>(
privateClause->v, converter, semanticsContext, stmtCtx,
privateOperands, privatizations);
} else if (const auto *reductionClause =
std::get_if<Fortran::parser::AccClause::Reduction>(
&clause.u)) {
genReductions(reductionClause->v, converter, semanticsContext, stmtCtx,
reductionOperands, reductionRecipes);
}
}
// Prepare the operand segment size attribute and the operands value range.
llvm::SmallVector<mlir::Value> operands;
llvm::SmallVector<int32_t> operandSegments;
addOperand(operands, operandSegments, gangNum);
addOperand(operands, operandSegments, gangDim);
addOperand(operands, operandSegments, gangStatic);
addOperand(operands, operandSegments, workerNum);
addOperand(operands, operandSegments, vectorNum);
addOperands(operands, operandSegments, tileOperands);
addOperands(operands, operandSegments, privateOperands);
addOperands(operands, operandSegments, reductionOperands);
addOperands(operands, operandSegments, cacheOperands);
auto loopOp = createRegionOp<mlir::acc::LoopOp, mlir::acc::YieldOp>(
builder, currentLocation, eval, operands, operandSegments);
if (hasGang)
loopOp.setHasGangAttr(builder.getUnitAttr());
if (hasWorker)
loopOp.setHasWorkerAttr(builder.getUnitAttr());
if (hasVector)
loopOp.setHasVectorAttr(builder.getUnitAttr());
if (!privatizations.empty())
loopOp.setPrivatizationsAttr(
mlir::ArrayAttr::get(builder.getContext(), privatizations));
if (!reductionRecipes.empty())
loopOp.setReductionRecipesAttr(
mlir::ArrayAttr::get(builder.getContext(), reductionRecipes));
// Lower clauses mapped to attributes
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
mlir::Location clauseLocation = converter.genLocation(clause.source);
if (const auto *collapseClause =
std::get_if<Fortran::parser::AccClause::Collapse>(&clause.u)) {
const Fortran::parser::AccCollapseArg &arg = collapseClause->v;
const auto &force = std::get<bool>(arg.t);
if (force)
TODO(clauseLocation, "OpenACC collapse force modifier");
const auto &intExpr =
std::get<Fortran::parser::ScalarIntConstantExpr>(arg.t);
const auto *expr = Fortran::semantics::GetExpr(intExpr);
const std::optional<int64_t> collapseValue =
Fortran::evaluate::ToInt64(*expr);
if (collapseValue) {
loopOp.setCollapseAttr(builder.getI64IntegerAttr(*collapseValue));
}
} else if (std::get_if<Fortran::parser::AccClause::Seq>(&clause.u)) {
loopOp.setSeqAttr(builder.getUnitAttr());
} else if (std::get_if<Fortran::parser::AccClause::Independent>(
&clause.u)) {
loopOp.setIndependentAttr(builder.getUnitAttr());
} else if (std::get_if<Fortran::parser::AccClause::Auto>(&clause.u)) {
loopOp->setAttr(mlir::acc::LoopOp::getAutoAttrStrName(),
builder.getUnitAttr());
}
}
return loopOp;
}
static void genACC(Fortran::lower::AbstractConverter &converter,
Fortran::semantics::SemanticsContext &semanticsContext,
Fortran::lower::pft::Evaluation &eval,
const Fortran::parser::OpenACCLoopConstruct &loopConstruct) {
const auto &beginLoopDirective =
std::get<Fortran::parser::AccBeginLoopDirective>(loopConstruct.t);
const auto &loopDirective =
std::get<Fortran::parser::AccLoopDirective>(beginLoopDirective.t);
mlir::Location currentLocation =
converter.genLocation(beginLoopDirective.source);
Fortran::lower::StatementContext stmtCtx;
if (loopDirective.v == llvm::acc::ACCD_loop) {
const auto &accClauseList =
std::get<Fortran::parser::AccClauseList>(beginLoopDirective.t);
createLoopOp(converter, currentLocation, eval, semanticsContext, stmtCtx,
accClauseList);
}
}
template <typename Op, typename Clause>
static void genDataOperandOperationsWithModifier(
const Clause *x, Fortran::lower::AbstractConverter &converter,
Fortran::semantics::SemanticsContext &semanticsContext,
Fortran::lower::StatementContext &stmtCtx,
Fortran::parser::AccDataModifier::Modifier mod,
llvm::SmallVectorImpl<mlir::Value> &dataClauseOperands,
const mlir::acc::DataClause clause,
const mlir::acc::DataClause clauseWithModifier,
bool setDeclareAttr = false) {
const Fortran::parser::AccObjectListWithModifier &listWithModifier = x->v;
const auto &accObjectList =
std::get<Fortran::parser::AccObjectList>(listWithModifier.t);
const auto &modifier =
std::get<std::optional<Fortran::parser::AccDataModifier>>(
listWithModifier.t);
mlir::acc::DataClause dataClause =
(modifier && (*modifier).v == mod) ? clauseWithModifier : clause;
genDataOperandOperations<Op>(accObjectList, converter, semanticsContext,
stmtCtx, dataClauseOperands, dataClause,
/*structured=*/true, /*implicit=*/false,
setDeclareAttr);
}
template <typename Op>
static Op
createComputeOp(Fortran::lower::AbstractConverter &converter,
mlir::Location currentLocation,
Fortran::lower::pft::Evaluation &eval,
Fortran::semantics::SemanticsContext &semanticsContext,
Fortran::lower::StatementContext &stmtCtx,
const Fortran::parser::AccClauseList &accClauseList,
bool outerCombined = false) {
// Parallel operation operands
mlir::Value async;
mlir::Value numWorkers;
mlir::Value vectorLength;
mlir::Value ifCond;
mlir::Value selfCond;
mlir::Value waitDevnum;
llvm::SmallVector<mlir::Value> waitOperands, attachEntryOperands,
copyEntryOperands, copyoutEntryOperands, createEntryOperands,
dataClauseOperands, numGangs;
llvm::SmallVector<mlir::Value> reductionOperands, privateOperands,
firstprivateOperands;
llvm::SmallVector<mlir::Attribute> privatizations, firstPrivatizations,
reductionRecipes;
// Async, wait and self clause have optional values but can be present with
// no value as well. When there is no value, the op has an attribute to
// represent the clause.
bool addAsyncAttr = false;
bool addWaitAttr = false;
bool addSelfAttr = false;
bool hasDefaultNone = false;
bool hasDefaultPresent = false;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
// Lower clauses values mapped to operands.
// Keep track of each group of operands separatly as clauses can appear
// more than once.
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
mlir::Location clauseLocation = converter.genLocation(clause.source);
if (const auto *asyncClause =
std::get_if<Fortran::parser::AccClause::Async>(&clause.u)) {
genAsyncClause(converter, asyncClause, async, addAsyncAttr, stmtCtx);
} else if (const auto *waitClause =
std::get_if<Fortran::parser::AccClause::Wait>(&clause.u)) {
genWaitClause(converter, waitClause, waitOperands, waitDevnum,
addWaitAttr, stmtCtx);
} else if (const auto *numGangsClause =
std::get_if<Fortran::parser::AccClause::NumGangs>(
&clause.u)) {
for (const Fortran::parser::ScalarIntExpr &expr : numGangsClause->v)
numGangs.push_back(fir::getBase(converter.genExprValue(
*Fortran::semantics::GetExpr(expr), stmtCtx)));
} else if (const auto *numWorkersClause =
std::get_if<Fortran::parser::AccClause::NumWorkers>(
&clause.u)) {
numWorkers = fir::getBase(converter.genExprValue(
*Fortran::semantics::GetExpr(numWorkersClause->v), stmtCtx));
} else if (const auto *vectorLengthClause =
std::get_if<Fortran::parser::AccClause::VectorLength>(
&clause.u)) {
vectorLength = fir::getBase(converter.genExprValue(
*Fortran::semantics::GetExpr(vectorLengthClause->v), stmtCtx));
} else if (const auto *ifClause =
std::get_if<Fortran::parser::AccClause::If>(&clause.u)) {
genIfClause(converter, clauseLocation, ifClause, ifCond, stmtCtx);
} else if (const auto *selfClause =
std::get_if<Fortran::parser::AccClause::Self>(&clause.u)) {
const std::optional<Fortran::parser::AccSelfClause> &accSelfClause =
selfClause->v;
if (accSelfClause) {
if (const auto *optCondition =
std::get_if<std::optional<Fortran::parser::ScalarLogicalExpr>>(
&(*accSelfClause).u)) {
if (*optCondition) {
mlir::Value cond = fir::getBase(converter.genExprValue(
*Fortran::semantics::GetExpr(*optCondition), stmtCtx));
selfCond = builder.createConvert(clauseLocation,
builder.getI1Type(), cond);
}
} else if (const auto *accClauseList =
std::get_if<Fortran::parser::AccObjectList>(
&(*accSelfClause).u)) {
// TODO This would be nicer to be done in canonicalization step.
if (accClauseList->v.size() == 1) {
const auto &accObject = accClauseList->v.front();
if (const auto *designator =
std::get_if<Fortran::parser::Designator>(&accObject.u)) {
if (const auto *name =
Fortran::semantics::getDesignatorNameIfDataRef(
*designator)) {
auto cond = converter.getSymbolAddress(*name->symbol);
selfCond = builder.createConvert(clauseLocation,
builder.getI1Type(), cond);
}
}
}
}
} else {
addSelfAttr = true;
}
} else if (const auto *copyClause =
std::get_if<Fortran::parser::AccClause::Copy>(&clause.u)) {
auto crtDataStart = dataClauseOperands.size();
genDataOperandOperations<mlir::acc::CopyinOp>(
copyClause->v, converter, semanticsContext, stmtCtx,
dataClauseOperands, mlir::acc::DataClause::acc_copy,
/*structured=*/true, /*implicit=*/false);
copyEntryOperands.append(dataClauseOperands.begin() + crtDataStart,
dataClauseOperands.end());
} else if (const auto *copyinClause =
std::get_if<Fortran::parser::AccClause::Copyin>(&clause.u)) {
genDataOperandOperationsWithModifier<mlir::acc::CopyinOp,
Fortran::parser::AccClause::Copyin>(
copyinClause, converter, semanticsContext, stmtCtx,
Fortran::parser::AccDataModifier::Modifier::ReadOnly,
dataClauseOperands, mlir::acc::DataClause::acc_copyin,
mlir::acc::DataClause::acc_copyin_readonly);
} else if (const auto *copyoutClause =
std::get_if<Fortran::parser::AccClause::Copyout>(
&clause.u)) {
auto crtDataStart = dataClauseOperands.size();
genDataOperandOperationsWithModifier<mlir::acc::CreateOp,
Fortran::parser::AccClause::Copyout>(
copyoutClause, converter, semanticsContext, stmtCtx,
Fortran::parser::AccDataModifier::Modifier::ReadOnly,
dataClauseOperands, mlir::acc::DataClause::acc_copyout,
mlir::acc::DataClause::acc_copyout_zero);
copyoutEntryOperands.append(dataClauseOperands.begin() + crtDataStart,
dataClauseOperands.end());
} else if (const auto *createClause =
std::get_if<Fortran::parser::AccClause::Create>(&clause.u)) {
auto crtDataStart = dataClauseOperands.size();
genDataOperandOperationsWithModifier<mlir::acc::CreateOp,
Fortran::parser::AccClause::Create>(
createClause, converter, semanticsContext, stmtCtx,
Fortran::parser::AccDataModifier::Modifier::Zero, dataClauseOperands,
mlir::acc::DataClause::acc_create,
mlir::acc::DataClause::acc_create_zero);
createEntryOperands.append(dataClauseOperands.begin() + crtDataStart,
dataClauseOperands.end());
} else if (const auto *noCreateClause =
std::get_if<Fortran::parser::AccClause::NoCreate>(
&clause.u)) {
genDataOperandOperations<mlir::acc::NoCreateOp>(
noCreateClause->v, converter, semanticsContext, stmtCtx,
dataClauseOperands, mlir::acc::DataClause::acc_no_create,
/*structured=*/true, /*implicit=*/false);
} else if (const auto *presentClause =
std::get_if<Fortran::parser::AccClause::Present>(
&clause.u)) {
genDataOperandOperations<mlir::acc::PresentOp>(
presentClause->v, converter, semanticsContext, stmtCtx,
dataClauseOperands, mlir::acc::DataClause::acc_present,
/*structured=*/true, /*implicit=*/false);
} else if (const auto *devicePtrClause =
std::get_if<Fortran::parser::AccClause::Deviceptr>(
&clause.u)) {
genDataOperandOperations<mlir::acc::DevicePtrOp>(
devicePtrClause->v, converter, semanticsContext, stmtCtx,
dataClauseOperands, mlir::acc::DataClause::acc_deviceptr,
/*structured=*/true, /*implicit=*/false);
} else if (const auto *attachClause =
std::get_if<Fortran::parser::AccClause::Attach>(&clause.u)) {
auto crtDataStart = dataClauseOperands.size();
genDataOperandOperations<mlir::acc::AttachOp>(
attachClause->v, converter, semanticsContext, stmtCtx,
dataClauseOperands, mlir::acc::DataClause::acc_attach,
/*structured=*/true, /*implicit=*/false);
attachEntryOperands.append(dataClauseOperands.begin() + crtDataStart,
dataClauseOperands.end());
} else if (const auto *privateClause =
std::get_if<Fortran::parser::AccClause::Private>(
&clause.u)) {
genPrivatizations<mlir::acc::PrivateRecipeOp>(
privateClause->v, converter, semanticsContext, stmtCtx,
privateOperands, privatizations);
} else if (const auto *firstprivateClause =
std::get_if<Fortran::parser::AccClause::Firstprivate>(
&clause.u)) {
genPrivatizations<mlir::acc::FirstprivateRecipeOp>(
firstprivateClause->v, converter, semanticsContext, stmtCtx,
firstprivateOperands, firstPrivatizations);
} else if (const auto *reductionClause =
std::get_if<Fortran::parser::AccClause::Reduction>(
&clause.u)) {
genReductions(reductionClause->v, converter, semanticsContext, stmtCtx,
reductionOperands, reductionRecipes);
} else if (const auto *defaultClause =
std::get_if<Fortran::parser::AccClause::Default>(
&clause.u)) {
if ((defaultClause->v).v == llvm::acc::DefaultValue::ACC_Default_none)
hasDefaultNone = true;
else if ((defaultClause->v).v ==
llvm::acc::DefaultValue::ACC_Default_present)
hasDefaultPresent = true;
}
}
// Prepare the operand segment size attribute and the operands value range.
llvm::SmallVector<mlir::Value, 8> operands;
llvm::SmallVector<int32_t, 8> operandSegments;
addOperand(operands, operandSegments, async);
addOperands(operands, operandSegments, waitOperands);
if constexpr (!std::is_same_v<Op, mlir::acc::SerialOp>) {
addOperands(operands, operandSegments, numGangs);
addOperand(operands, operandSegments, numWorkers);
addOperand(operands, operandSegments, vectorLength);
}
addOperand(operands, operandSegments, ifCond);
addOperand(operands, operandSegments, selfCond);
if constexpr (!std::is_same_v<Op, mlir::acc::KernelsOp>) {
addOperands(operands, operandSegments, reductionOperands);
addOperands(operands, operandSegments, privateOperands);
addOperands(operands, operandSegments, firstprivateOperands);
}
addOperands(operands, operandSegments, dataClauseOperands);
Op computeOp;
if constexpr (std::is_same_v<Op, mlir::acc::KernelsOp>)
computeOp = createRegionOp<Op, mlir::acc::TerminatorOp>(
builder, currentLocation, eval, operands, operandSegments,
outerCombined);
else
computeOp = createRegionOp<Op, mlir::acc::YieldOp>(
builder, currentLocation, eval, operands, operandSegments,
outerCombined);
if (addAsyncAttr)
computeOp.setAsyncAttrAttr(builder.getUnitAttr());
if (addWaitAttr)
computeOp.setWaitAttrAttr(builder.getUnitAttr());
if (addSelfAttr)
computeOp.setSelfAttrAttr(builder.getUnitAttr());
if (hasDefaultNone)
computeOp.setDefaultAttr(mlir::acc::ClauseDefaultValue::None);
if (hasDefaultPresent)
computeOp.setDefaultAttr(mlir::acc::ClauseDefaultValue::Present);
if constexpr (!std::is_same_v<Op, mlir::acc::KernelsOp>) {
if (!privatizations.empty())
computeOp.setPrivatizationsAttr(
mlir::ArrayAttr::get(builder.getContext(), privatizations));
if (!reductionRecipes.empty())
computeOp.setReductionRecipesAttr(
mlir::ArrayAttr::get(builder.getContext(), reductionRecipes));
if (!firstPrivatizations.empty())
computeOp.setFirstprivatizationsAttr(
mlir::ArrayAttr::get(builder.getContext(), firstPrivatizations));
}
auto insPt = builder.saveInsertionPoint();
builder.setInsertionPointAfter(computeOp);
// Create the exit operations after the region.
genDataExitOperations<mlir::acc::CopyinOp, mlir::acc::CopyoutOp>(
builder, copyEntryOperands, /*structured=*/true, /*implicit=*/false);
genDataExitOperations<mlir::acc::CreateOp, mlir::acc::CopyoutOp>(
builder, copyoutEntryOperands, /*structured=*/true, /*implicit=*/false);
genDataExitOperations<mlir::acc::AttachOp, mlir::acc::DetachOp>(
builder, attachEntryOperands, /*structured=*/true, /*implicit=*/false);
genDataExitOperations<mlir::acc::CreateOp, mlir::acc::DeleteOp>(
builder, createEntryOperands, /*structured=*/true, /*implicit=*/false);
builder.restoreInsertionPoint(insPt);
return computeOp;
}
static void genACCDataOp(Fortran::lower::AbstractConverter &converter,
mlir::Location currentLocation,
Fortran::lower::pft::Evaluation &eval,
Fortran::semantics::SemanticsContext &semanticsContext,
Fortran::lower::StatementContext &stmtCtx,
const Fortran::parser::AccClauseList &accClauseList) {
mlir::Value ifCond, async, waitDevnum;
llvm::SmallVector<mlir::Value> attachEntryOperands, createEntryOperands,
copyEntryOperands, copyoutEntryOperands, dataClauseOperands, waitOperands;
// Async and wait have an optional value but can be present with
// no value as well. When there is no value, the op has an attribute to
// represent the clause.
bool addAsyncAttr = false;
bool addWaitAttr = false;
bool hasDefaultNone = false;
bool hasDefaultPresent = false;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
// Lower clauses values mapped to operands.
// Keep track of each group of operands separately as clauses can appear
// more than once.
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
mlir::Location clauseLocation = converter.genLocation(clause.source);
if (const auto *ifClause =
std::get_if<Fortran::parser::AccClause::If>(&clause.u)) {
genIfClause(converter, clauseLocation, ifClause, ifCond, stmtCtx);
} else if (const auto *copyClause =
std::get_if<Fortran::parser::AccClause::Copy>(&clause.u)) {
auto crtDataStart = dataClauseOperands.size();
genDataOperandOperations<mlir::acc::CopyinOp>(
copyClause->v, converter, semanticsContext, stmtCtx,
dataClauseOperands, mlir::acc::DataClause::acc_copy,
/*structured=*/true, /*implicit=*/false);
copyEntryOperands.append(dataClauseOperands.begin() + crtDataStart,
dataClauseOperands.end());
} else if (const auto *copyinClause =
std::get_if<Fortran::parser::AccClause::Copyin>(&clause.u)) {
genDataOperandOperationsWithModifier<mlir::acc::CopyinOp,
Fortran::parser::AccClause::Copyin>(
copyinClause, converter, semanticsContext, stmtCtx,
Fortran::parser::AccDataModifier::Modifier::ReadOnly,
dataClauseOperands, mlir::acc::DataClause::acc_copyin,
mlir::acc::DataClause::acc_copyin_readonly);
} else if (const auto *copyoutClause =
std::get_if<Fortran::parser::AccClause::Copyout>(
&clause.u)) {
auto crtDataStart = dataClauseOperands.size();
genDataOperandOperationsWithModifier<mlir::acc::CreateOp,
Fortran::parser::AccClause::Copyout>(
copyoutClause, converter, semanticsContext, stmtCtx,
Fortran::parser::AccDataModifier::Modifier::Zero, dataClauseOperands,
mlir::acc::DataClause::acc_copyout,
mlir::acc::DataClause::acc_copyout_zero);
copyoutEntryOperands.append(dataClauseOperands.begin() + crtDataStart,
dataClauseOperands.end());
} else if (const auto *createClause =
std::get_if<Fortran::parser::AccClause::Create>(&clause.u)) {
auto crtDataStart = dataClauseOperands.size();
genDataOperandOperationsWithModifier<mlir::acc::CreateOp,
Fortran::parser::AccClause::Create>(
createClause, converter, semanticsContext, stmtCtx,
Fortran::parser::AccDataModifier::Modifier::Zero, dataClauseOperands,
mlir::acc::DataClause::acc_create,
mlir::acc::DataClause::acc_create_zero);
createEntryOperands.append(dataClauseOperands.begin() + crtDataStart,
dataClauseOperands.end());
} else if (const auto *noCreateClause =
std::get_if<Fortran::parser::AccClause::NoCreate>(
&clause.u)) {
genDataOperandOperations<mlir::acc::NoCreateOp>(
noCreateClause->v, converter, semanticsContext, stmtCtx,
dataClauseOperands, mlir::acc::DataClause::acc_no_create,
/*structured=*/true, /*implicit=*/false);
} else if (const auto *presentClause =
std::get_if<Fortran::parser::AccClause::Present>(
&clause.u)) {
genDataOperandOperations<mlir::acc::PresentOp>(
presentClause->v, converter, semanticsContext, stmtCtx,
dataClauseOperands, mlir::acc::DataClause::acc_present,
/*structured=*/true, /*implicit=*/false);
} else if (const auto *deviceptrClause =
std::get_if<Fortran::parser::AccClause::Deviceptr>(
&clause.u)) {
genDataOperandOperations<mlir::acc::DevicePtrOp>(
deviceptrClause->v, converter, semanticsContext, stmtCtx,
dataClauseOperands, mlir::acc::DataClause::acc_deviceptr,
/*structured=*/true, /*implicit=*/false);
} else if (const auto *attachClause =
std::get_if<Fortran::parser::AccClause::Attach>(&clause.u)) {
auto crtDataStart = dataClauseOperands.size();
genDataOperandOperations<mlir::acc::AttachOp>(
attachClause->v, converter, semanticsContext, stmtCtx,
dataClauseOperands, mlir::acc::DataClause::acc_attach,
/*structured=*/true, /*implicit=*/false);
attachEntryOperands.append(dataClauseOperands.begin() + crtDataStart,
dataClauseOperands.end());
} else if (const auto *asyncClause =
std::get_if<Fortran::parser::AccClause::Async>(&clause.u)) {
genAsyncClause(converter, asyncClause, async, addAsyncAttr, stmtCtx);
} else if (const auto *waitClause =
std::get_if<Fortran::parser::AccClause::Wait>(&clause.u)) {
genWaitClause(converter, waitClause, waitOperands, waitDevnum,
addWaitAttr, stmtCtx);
} else if(const auto *defaultClause =
std::get_if<Fortran::parser::AccClause::Default>(&clause.u)) {
if ((defaultClause->v).v == llvm::acc::DefaultValue::ACC_Default_none)
hasDefaultNone = true;
else if ((defaultClause->v).v == llvm::acc::DefaultValue::ACC_Default_present)
hasDefaultPresent = true;
}
}
// Prepare the operand segment size attribute and the operands value range.
llvm::SmallVector<mlir::Value> operands;
llvm::SmallVector<int32_t> operandSegments;
addOperand(operands, operandSegments, ifCond);
addOperand(operands, operandSegments, async);
addOperand(operands, operandSegments, waitDevnum);
addOperands(operands, operandSegments, waitOperands);
addOperands(operands, operandSegments, dataClauseOperands);
if (dataClauseOperands.empty() && !hasDefaultNone && !hasDefaultPresent)
return;
auto dataOp = createRegionOp<mlir::acc::DataOp, mlir::acc::TerminatorOp>(
builder, currentLocation, eval, operands, operandSegments);
dataOp.setAsyncAttr(addAsyncAttr);
dataOp.setWaitAttr(addWaitAttr);
if (hasDefaultNone)
dataOp.setDefaultAttr(mlir::acc::ClauseDefaultValue::None);
if (hasDefaultPresent)
dataOp.setDefaultAttr(mlir::acc::ClauseDefaultValue::Present);
auto insPt = builder.saveInsertionPoint();
builder.setInsertionPointAfter(dataOp);
// Create the exit operations after the region.
genDataExitOperations<mlir::acc::CopyinOp, mlir::acc::CopyoutOp>(
builder, copyEntryOperands, /*structured=*/true, /*implicit=*/false);
genDataExitOperations<mlir::acc::CreateOp, mlir::acc::CopyoutOp>(
builder, copyoutEntryOperands, /*structured=*/true, /*implicit=*/false);
genDataExitOperations<mlir::acc::AttachOp, mlir::acc::DetachOp>(
builder, attachEntryOperands, /*structured=*/true, /*implicit=*/false);
genDataExitOperations<mlir::acc::CreateOp, mlir::acc::DeleteOp>(
builder, createEntryOperands, /*structured=*/true, /*implicit=*/false);
builder.restoreInsertionPoint(insPt);
}
static void
genACCHostDataOp(Fortran::lower::AbstractConverter &converter,
mlir::Location currentLocation,
Fortran::lower::pft::Evaluation &eval,
Fortran::semantics::SemanticsContext &semanticsContext,
Fortran::lower::StatementContext &stmtCtx,
const Fortran::parser::AccClauseList &accClauseList) {
mlir::Value ifCond;
llvm::SmallVector<mlir::Value> dataOperands;
bool addIfPresentAttr = false;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
mlir::Location clauseLocation = converter.genLocation(clause.source);
if (const auto *ifClause =
std::get_if<Fortran::parser::AccClause::If>(&clause.u)) {
genIfClause(converter, clauseLocation, ifClause, ifCond, stmtCtx);
} else if (const auto *useDevice =
std::get_if<Fortran::parser::AccClause::UseDevice>(
&clause.u)) {
genDataOperandOperations<mlir::acc::UseDeviceOp>(
useDevice->v, converter, semanticsContext, stmtCtx, dataOperands,
mlir::acc::DataClause::acc_use_device,
/*structured=*/true, /*implicit=*/false);
} else if (std::get_if<Fortran::parser::AccClause::IfPresent>(&clause.u)) {
addIfPresentAttr = true;
}
}
if (ifCond) {
if (auto cst =
mlir::dyn_cast<mlir::arith::ConstantOp>(ifCond.getDefiningOp()))
if (auto boolAttr = cst.getValue().dyn_cast<mlir::BoolAttr>()) {
if (boolAttr.getValue()) {
// get rid of the if condition if it is always true.
ifCond = mlir::Value();
} else {
// Do not generate the acc.host_data op if the if condition is always
// false.
return;
}
}
}
// Prepare the operand segment size attribute and the operands value range.
llvm::SmallVector<mlir::Value> operands;
llvm::SmallVector<int32_t> operandSegments;
addOperand(operands, operandSegments, ifCond);
addOperands(operands, operandSegments, dataOperands);
auto hostDataOp =
createRegionOp<mlir::acc::HostDataOp, mlir::acc::TerminatorOp>(
builder, currentLocation, eval, operands, operandSegments);
if (addIfPresentAttr)
hostDataOp.setIfPresentAttr(builder.getUnitAttr());
}
static void
genACC(Fortran::lower::AbstractConverter &converter,
Fortran::semantics::SemanticsContext &semanticsContext,
Fortran::lower::pft::Evaluation &eval,
const Fortran::parser::OpenACCBlockConstruct &blockConstruct) {
const auto &beginBlockDirective =
std::get<Fortran::parser::AccBeginBlockDirective>(blockConstruct.t);
const auto &blockDirective =
std::get<Fortran::parser::AccBlockDirective>(beginBlockDirective.t);
const auto &accClauseList =
std::get<Fortran::parser::AccClauseList>(beginBlockDirective.t);
mlir::Location currentLocation = converter.genLocation(blockDirective.source);
Fortran::lower::StatementContext stmtCtx;
if (blockDirective.v == llvm::acc::ACCD_parallel) {
createComputeOp<mlir::acc::ParallelOp>(converter, currentLocation, eval,
semanticsContext, stmtCtx,
accClauseList);
} else if (blockDirective.v == llvm::acc::ACCD_data) {
genACCDataOp(converter, currentLocation, eval, semanticsContext, stmtCtx,
accClauseList);
} else if (blockDirective.v == llvm::acc::ACCD_serial) {
createComputeOp<mlir::acc::SerialOp>(converter, currentLocation, eval,
semanticsContext, stmtCtx,
accClauseList);
} else if (blockDirective.v == llvm::acc::ACCD_kernels) {
createComputeOp<mlir::acc::KernelsOp>(converter, currentLocation, eval,
semanticsContext, stmtCtx,
accClauseList);
} else if (blockDirective.v == llvm::acc::ACCD_host_data) {
genACCHostDataOp(converter, currentLocation, eval, semanticsContext,
stmtCtx, accClauseList);
}
}
static void
genACC(Fortran::lower::AbstractConverter &converter,
Fortran::semantics::SemanticsContext &semanticsContext,
Fortran::lower::pft::Evaluation &eval,
const Fortran::parser::OpenACCCombinedConstruct &combinedConstruct) {
const auto &beginCombinedDirective =
std::get<Fortran::parser::AccBeginCombinedDirective>(combinedConstruct.t);
const auto &combinedDirective =
std::get<Fortran::parser::AccCombinedDirective>(beginCombinedDirective.t);
const auto &accClauseList =
std::get<Fortran::parser::AccClauseList>(beginCombinedDirective.t);
mlir::Location currentLocation =
converter.genLocation(beginCombinedDirective.source);
Fortran::lower::StatementContext stmtCtx;
if (combinedDirective.v == llvm::acc::ACCD_kernels_loop) {
createComputeOp<mlir::acc::KernelsOp>(
converter, currentLocation, eval, semanticsContext, stmtCtx,
accClauseList, /*outerCombined=*/true);
createLoopOp(converter, currentLocation, eval, semanticsContext, stmtCtx,
accClauseList);
} else if (combinedDirective.v == llvm::acc::ACCD_parallel_loop) {
createComputeOp<mlir::acc::ParallelOp>(
converter, currentLocation, eval, semanticsContext, stmtCtx,
accClauseList, /*outerCombined=*/true);
createLoopOp(converter, currentLocation, eval, semanticsContext, stmtCtx,
accClauseList);
} else if (combinedDirective.v == llvm::acc::ACCD_serial_loop) {
createComputeOp<mlir::acc::SerialOp>(converter, currentLocation, eval,
semanticsContext, stmtCtx,
accClauseList, /*outerCombined=*/true);
createLoopOp(converter, currentLocation, eval, semanticsContext, stmtCtx,
accClauseList);
} else {
llvm::report_fatal_error("Unknown combined construct encountered");
}
}
static void
genACCEnterDataOp(Fortran::lower::AbstractConverter &converter,
mlir::Location currentLocation,
Fortran::semantics::SemanticsContext &semanticsContext,
Fortran::lower::StatementContext &stmtCtx,
const Fortran::parser::AccClauseList &accClauseList) {
mlir::Value ifCond, async, waitDevnum;
llvm::SmallVector<mlir::Value> waitOperands, dataClauseOperands;
// Async, wait and self clause have optional values but can be present with
// no value as well. When there is no value, the op has an attribute to
// represent the clause.
bool addAsyncAttr = false;
bool addWaitAttr = false;
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
// Lower clauses values mapped to operands.
// Keep track of each group of operands separately as clauses can appear
// more than once.
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
mlir::Location clauseLocation = converter.genLocation(clause.source);
if (const auto *ifClause =
std::get_if<Fortran::parser::AccClause::If>(&clause.u)) {
genIfClause(converter, clauseLocation, ifClause, ifCond, stmtCtx);
} else if (const auto *asyncClause =
std::get_if<Fortran::parser::AccClause::Async>(&clause.u)) {
genAsyncClause(converter, asyncClause, async, addAsyncAttr, stmtCtx);
} else if (const auto *waitClause =
std::get_if<Fortran::parser::AccClause::Wait>(&clause.u)) {
genWaitClause(converter, waitClause, waitOperands, waitDevnum,
addWaitAttr, stmtCtx);
} else if (const auto *copyinClause =
std::get_if<Fortran::parser::AccClause::Copyin>(&clause.u)) {
const Fortran::parser::AccObjectListWithModifier &listWithModifier =
copyinClause->v;
const auto &accObjectList =
std::get<Fortran::parser::AccObjectList>(listWithModifier.t);
genDataOperandOperations<mlir::acc::CopyinOp>(
accObjectList, converter, semanticsContext, stmtCtx,
dataClauseOperands, mlir::acc::DataClause::acc_copyin, false,
/*implicit=*/false);
} else if (const auto *createClause =
std::get_if<Fortran::parser::AccClause::Create>(&clause.u)) {
const Fortran::parser::AccObjectListWithModifier &listWithModifier =
createClause->v;
const auto &accObjectList =
std::get<Fortran::parser::AccObjectList>(listWithModifier.t);
const auto &modifier =
std::get<std::optional<Fortran::parser::AccDataModifier>>(
listWithModifier.t);
mlir::acc::DataClause clause = mlir::acc::DataClause::acc_create;
if (modifier &&
(*modifier).v == Fortran::parser::AccDataModifier::Modifier::Zero)
clause = mlir::acc::DataClause::acc_create_zero;
genDataOperandOperations<mlir::acc::CreateOp>(
accObjectList, converter, semanticsContext, stmtCtx,
dataClauseOperands, clause, false, /*implicit=*/false);
} else if (const auto *attachClause =
std::get_if<Fortran::parser::AccClause::Attach>(&clause.u)) {
genDataOperandOperations<mlir::acc::AttachOp>(
attachClause->v, converter, semanticsContext, stmtCtx,
dataClauseOperands, mlir::acc::DataClause::acc_attach, false,
/*implicit=*/false);
} else {
llvm::report_fatal_error(
"Unknown clause in ENTER DATA directive lowering");
}
}
// Prepare the operand segment size attribute and the operands value range.
llvm::SmallVector<mlir::Value, 16> operands;
llvm::SmallVector<int32_t, 8> operandSegments;
addOperand(operands, operandSegments, ifCond);
addOperand(operands, operandSegments, async);
addOperand(operands, operandSegments, waitDevnum);
addOperands(operands, operandSegments, waitOperands);
addOperands(operands, operandSegments, dataClauseOperands);
mlir::acc::EnterDataOp enterDataOp = createSimpleOp<mlir::acc::EnterDataOp>(
firOpBuilder, currentLocation, operands, operandSegments);
if (addAsyncAttr)
enterDataOp.setAsyncAttr(firOpBuilder.getUnitAttr());
if (addWaitAttr)
enterDataOp.setWaitAttr(firOpBuilder.getUnitAttr());
}
static void
genACCExitDataOp(Fortran::lower::AbstractConverter &converter,
mlir::Location currentLocation,
Fortran::semantics::SemanticsContext &semanticsContext,
Fortran::lower::StatementContext &stmtCtx,
const Fortran::parser::AccClauseList &accClauseList) {
mlir::Value ifCond, async, waitDevnum;
llvm::SmallVector<mlir::Value> waitOperands, dataClauseOperands,
copyoutOperands, deleteOperands, detachOperands;
// Async and wait clause have optional values but can be present with
// no value as well. When there is no value, the op has an attribute to
// represent the clause.
bool addAsyncAttr = false;
bool addWaitAttr = false;
bool addFinalizeAttr = false;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
// Lower clauses values mapped to operands.
// Keep track of each group of operands separately as clauses can appear
// more than once.
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
mlir::Location clauseLocation = converter.genLocation(clause.source);
if (const auto *ifClause =
std::get_if<Fortran::parser::AccClause::If>(&clause.u)) {
genIfClause(converter, clauseLocation, ifClause, ifCond, stmtCtx);
} else if (const auto *asyncClause =
std::get_if<Fortran::parser::AccClause::Async>(&clause.u)) {
genAsyncClause(converter, asyncClause, async, addAsyncAttr, stmtCtx);
} else if (const auto *waitClause =
std::get_if<Fortran::parser::AccClause::Wait>(&clause.u)) {
genWaitClause(converter, waitClause, waitOperands, waitDevnum,
addWaitAttr, stmtCtx);
} else if (const auto *copyoutClause =
std::get_if<Fortran::parser::AccClause::Copyout>(
&clause.u)) {
const Fortran::parser::AccObjectListWithModifier &listWithModifier =
copyoutClause->v;
const auto &accObjectList =
std::get<Fortran::parser::AccObjectList>(listWithModifier.t);
genDataOperandOperations<mlir::acc::GetDevicePtrOp>(
accObjectList, converter, semanticsContext, stmtCtx, copyoutOperands,
mlir::acc::DataClause::acc_copyout, false, /*implicit=*/false);
} else if (const auto *deleteClause =
std::get_if<Fortran::parser::AccClause::Delete>(&clause.u)) {
genDataOperandOperations<mlir::acc::GetDevicePtrOp>(
deleteClause->v, converter, semanticsContext, stmtCtx, deleteOperands,
mlir::acc::DataClause::acc_delete, false, /*implicit=*/false);
} else if (const auto *detachClause =
std::get_if<Fortran::parser::AccClause::Detach>(&clause.u)) {
genDataOperandOperations<mlir::acc::GetDevicePtrOp>(
detachClause->v, converter, semanticsContext, stmtCtx, detachOperands,
mlir::acc::DataClause::acc_detach, false, /*implicit=*/false);
} else if (std::get_if<Fortran::parser::AccClause::Finalize>(&clause.u)) {
addFinalizeAttr = true;
}
}
dataClauseOperands.append(copyoutOperands);
dataClauseOperands.append(deleteOperands);
dataClauseOperands.append(detachOperands);
// Prepare the operand segment size attribute and the operands value range.
llvm::SmallVector<mlir::Value, 14> operands;
llvm::SmallVector<int32_t, 7> operandSegments;
addOperand(operands, operandSegments, ifCond);
addOperand(operands, operandSegments, async);
addOperand(operands, operandSegments, waitDevnum);
addOperands(operands, operandSegments, waitOperands);
addOperands(operands, operandSegments, dataClauseOperands);
mlir::acc::ExitDataOp exitDataOp = createSimpleOp<mlir::acc::ExitDataOp>(
builder, currentLocation, operands, operandSegments);
if (addAsyncAttr)
exitDataOp.setAsyncAttr(builder.getUnitAttr());
if (addWaitAttr)
exitDataOp.setWaitAttr(builder.getUnitAttr());
if (addFinalizeAttr)
exitDataOp.setFinalizeAttr(builder.getUnitAttr());
genDataExitOperations<mlir::acc::GetDevicePtrOp, mlir::acc::CopyoutOp>(
builder, copyoutOperands, /*structured=*/false, /*implicit=*/false);
genDataExitOperations<mlir::acc::GetDevicePtrOp, mlir::acc::DeleteOp>(
builder, deleteOperands, /*structured=*/false, /*implicit=*/false);
genDataExitOperations<mlir::acc::GetDevicePtrOp, mlir::acc::DetachOp>(
builder, detachOperands, /*structured=*/false, /*implicit=*/false);
}
template <typename Op>
static void
genACCInitShutdownOp(Fortran::lower::AbstractConverter &converter,
mlir::Location currentLocation,
const Fortran::parser::AccClauseList &accClauseList) {
mlir::Value ifCond, deviceNum;
llvm::SmallVector<mlir::Value> deviceTypeOperands;
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
Fortran::lower::StatementContext stmtCtx;
// Lower clauses values mapped to operands.
// Keep track of each group of operands separately as clauses can appear
// more than once.
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
mlir::Location clauseLocation = converter.genLocation(clause.source);
if (const auto *ifClause =
std::get_if<Fortran::parser::AccClause::If>(&clause.u)) {
genIfClause(converter, clauseLocation, ifClause, ifCond, stmtCtx);
} else if (const auto *deviceNumClause =
std::get_if<Fortran::parser::AccClause::DeviceNum>(
&clause.u)) {
deviceNum = fir::getBase(converter.genExprValue(
*Fortran::semantics::GetExpr(deviceNumClause->v), stmtCtx));
} else if (const auto *deviceTypeClause =
std::get_if<Fortran::parser::AccClause::DeviceType>(
&clause.u)) {
genDeviceTypeClause(converter, clauseLocation, deviceTypeClause,
deviceTypeOperands, stmtCtx);
}
}
// Prepare the operand segment size attribute and the operands value range.
llvm::SmallVector<mlir::Value, 6> operands;
llvm::SmallVector<int32_t, 3> operandSegments;
addOperands(operands, operandSegments, deviceTypeOperands);
addOperand(operands, operandSegments, deviceNum);
addOperand(operands, operandSegments, ifCond);
createSimpleOp<Op>(firOpBuilder, currentLocation, operands, operandSegments);
}
void genACCSetOp(Fortran::lower::AbstractConverter &converter,
mlir::Location currentLocation,
const Fortran::parser::AccClauseList &accClauseList) {
mlir::Value ifCond, deviceNum, defaultAsync;
llvm::SmallVector<mlir::Value> deviceTypeOperands;
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
Fortran::lower::StatementContext stmtCtx;
// Lower clauses values mapped to operands.
// Keep track of each group of operands separately as clauses can appear
// more than once.
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
mlir::Location clauseLocation = converter.genLocation(clause.source);
if (const auto *ifClause =
std::get_if<Fortran::parser::AccClause::If>(&clause.u)) {
genIfClause(converter, clauseLocation, ifClause, ifCond, stmtCtx);
} else if (const auto *defaultAsyncClause =
std::get_if<Fortran::parser::AccClause::DefaultAsync>(
&clause.u)) {
defaultAsync = fir::getBase(converter.genExprValue(
*Fortran::semantics::GetExpr(defaultAsyncClause->v), stmtCtx));
} else if (const auto *deviceNumClause =
std::get_if<Fortran::parser::AccClause::DeviceNum>(
&clause.u)) {
deviceNum = fir::getBase(converter.genExprValue(
*Fortran::semantics::GetExpr(deviceNumClause->v), stmtCtx));
} else if (const auto *deviceTypeClause =
std::get_if<Fortran::parser::AccClause::DeviceType>(
&clause.u)) {
genDeviceTypeClause(converter, clauseLocation, deviceTypeClause,
deviceTypeOperands, stmtCtx);
}
}
// Prepare the operand segment size attribute and the operands value range.
llvm::SmallVector<mlir::Value> operands;
llvm::SmallVector<int32_t, 4> operandSegments;
addOperands(operands, operandSegments, deviceTypeOperands);
addOperand(operands, operandSegments, defaultAsync);
addOperand(operands, operandSegments, deviceNum);
addOperand(operands, operandSegments, ifCond);
createSimpleOp<mlir::acc::SetOp>(firOpBuilder, currentLocation, operands,
operandSegments);
}
static void
genACCUpdateOp(Fortran::lower::AbstractConverter &converter,
mlir::Location currentLocation,
Fortran::semantics::SemanticsContext &semanticsContext,
Fortran::lower::StatementContext &stmtCtx,
const Fortran::parser::AccClauseList &accClauseList) {
mlir::Value ifCond, async, waitDevnum;
llvm::SmallVector<mlir::Value> dataClauseOperands, updateHostOperands,
waitOperands, deviceTypeOperands;
// Async and wait clause have optional values but can be present with
// no value as well. When there is no value, the op has an attribute to
// represent the clause.
bool addAsyncAttr = false;
bool addWaitAttr = false;
bool addIfPresentAttr = false;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
// Lower clauses values mapped to operands.
// Keep track of each group of operands separately as clauses can appear
// more than once.
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
mlir::Location clauseLocation = converter.genLocation(clause.source);
if (const auto *ifClause =
std::get_if<Fortran::parser::AccClause::If>(&clause.u)) {
genIfClause(converter, clauseLocation, ifClause, ifCond, stmtCtx);
} else if (const auto *asyncClause =
std::get_if<Fortran::parser::AccClause::Async>(&clause.u)) {
genAsyncClause(converter, asyncClause, async, addAsyncAttr, stmtCtx);
} else if (const auto *waitClause =
std::get_if<Fortran::parser::AccClause::Wait>(&clause.u)) {
genWaitClause(converter, waitClause, waitOperands, waitDevnum,
addWaitAttr, stmtCtx);
} else if (const auto *deviceTypeClause =
std::get_if<Fortran::parser::AccClause::DeviceType>(
&clause.u)) {
genDeviceTypeClause(converter, clauseLocation, deviceTypeClause,
deviceTypeOperands, stmtCtx);
} else if (const auto *hostClause =
std::get_if<Fortran::parser::AccClause::Host>(&clause.u)) {
genDataOperandOperations<mlir::acc::GetDevicePtrOp>(
hostClause->v, converter, semanticsContext, stmtCtx,
updateHostOperands, mlir::acc::DataClause::acc_update_host, false,
/*implicit=*/false);
} else if (const auto *deviceClause =
std::get_if<Fortran::parser::AccClause::Device>(&clause.u)) {
genDataOperandOperations<mlir::acc::UpdateDeviceOp>(
deviceClause->v, converter, semanticsContext, stmtCtx,
dataClauseOperands, mlir::acc::DataClause::acc_update_device, false,
/*implicit=*/false);
} else if (std::get_if<Fortran::parser::AccClause::IfPresent>(&clause.u)) {
addIfPresentAttr = true;
} else if (const auto *selfClause =
std::get_if<Fortran::parser::AccClause::Self>(&clause.u)) {
const std::optional<Fortran::parser::AccSelfClause> &accSelfClause =
selfClause->v;
const auto *accObjectList =
std::get_if<Fortran::parser::AccObjectList>(&(*accSelfClause).u);
assert(accObjectList && "expect AccObjectList");
genDataOperandOperations<mlir::acc::GetDevicePtrOp>(
*accObjectList, converter, semanticsContext, stmtCtx,
updateHostOperands, mlir::acc::DataClause::acc_update_self, false,
/*implicit=*/false);
}
}
dataClauseOperands.append(updateHostOperands);
// Prepare the operand segment size attribute and the operands value range.
llvm::SmallVector<mlir::Value> operands;
llvm::SmallVector<int32_t> operandSegments;
addOperand(operands, operandSegments, ifCond);
addOperand(operands, operandSegments, async);
addOperand(operands, operandSegments, waitDevnum);
addOperands(operands, operandSegments, waitOperands);
addOperands(operands, operandSegments, deviceTypeOperands);
addOperands(operands, operandSegments, dataClauseOperands);
mlir::acc::UpdateOp updateOp = createSimpleOp<mlir::acc::UpdateOp>(
builder, currentLocation, operands, operandSegments);
genDataExitOperations<mlir::acc::GetDevicePtrOp, mlir::acc::UpdateHostOp>(
builder, updateHostOperands, /*structured=*/false, /*implicit=*/false);
if (addAsyncAttr)
updateOp.setAsyncAttr(builder.getUnitAttr());
if (addWaitAttr)
updateOp.setWaitAttr(builder.getUnitAttr());
if (addIfPresentAttr)
updateOp.setIfPresentAttr(builder.getUnitAttr());
}
static void
genACC(Fortran::lower::AbstractConverter &converter,
Fortran::semantics::SemanticsContext &semanticsContext,
const Fortran::parser::OpenACCStandaloneConstruct &standaloneConstruct) {
const auto &standaloneDirective =
std::get<Fortran::parser::AccStandaloneDirective>(standaloneConstruct.t);
const auto &accClauseList =
std::get<Fortran::parser::AccClauseList>(standaloneConstruct.t);
mlir::Location currentLocation =
converter.genLocation(standaloneDirective.source);
Fortran::lower::StatementContext stmtCtx;
if (standaloneDirective.v == llvm::acc::Directive::ACCD_enter_data) {
genACCEnterDataOp(converter, currentLocation, semanticsContext, stmtCtx,
accClauseList);
} else if (standaloneDirective.v == llvm::acc::Directive::ACCD_exit_data) {
genACCExitDataOp(converter, currentLocation, semanticsContext, stmtCtx,
accClauseList);
} else if (standaloneDirective.v == llvm::acc::Directive::ACCD_init) {
genACCInitShutdownOp<mlir::acc::InitOp>(converter, currentLocation,
accClauseList);
} else if (standaloneDirective.v == llvm::acc::Directive::ACCD_shutdown) {
genACCInitShutdownOp<mlir::acc::ShutdownOp>(converter, currentLocation,
accClauseList);
} else if (standaloneDirective.v == llvm::acc::Directive::ACCD_set) {
genACCSetOp(converter, currentLocation, accClauseList);
} else if (standaloneDirective.v == llvm::acc::Directive::ACCD_update) {
genACCUpdateOp(converter, currentLocation, semanticsContext, stmtCtx,
accClauseList);
}
}
static void genACC(Fortran::lower::AbstractConverter &converter,
const Fortran::parser::OpenACCWaitConstruct &waitConstruct) {
const auto &waitArgument =
std::get<std::optional<Fortran::parser::AccWaitArgument>>(
waitConstruct.t);
const auto &accClauseList =
std::get<Fortran::parser::AccClauseList>(waitConstruct.t);
mlir::Value ifCond, waitDevnum, async;
llvm::SmallVector<mlir::Value> waitOperands;
// Async clause have optional values but can be present with
// no value as well. When there is no value, the op has an attribute to
// represent the clause.
bool addAsyncAttr = false;
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
mlir::Location currentLocation = converter.genLocation(waitConstruct.source);
Fortran::lower::StatementContext stmtCtx;
if (waitArgument) { // wait has a value.
const Fortran::parser::AccWaitArgument &waitArg = *waitArgument;
const auto &waitList =
std::get<std::list<Fortran::parser::ScalarIntExpr>>(waitArg.t);
for (const Fortran::parser::ScalarIntExpr &value : waitList) {
mlir::Value v = fir::getBase(
converter.genExprValue(*Fortran::semantics::GetExpr(value), stmtCtx));
waitOperands.push_back(v);
}
const auto &waitDevnumValue =
std::get<std::optional<Fortran::parser::ScalarIntExpr>>(waitArg.t);
if (waitDevnumValue)
waitDevnum = fir::getBase(converter.genExprValue(
*Fortran::semantics::GetExpr(*waitDevnumValue), stmtCtx));
}
// Lower clauses values mapped to operands.
// Keep track of each group of operands separately as clauses can appear
// more than once.
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
mlir::Location clauseLocation = converter.genLocation(clause.source);
if (const auto *ifClause =
std::get_if<Fortran::parser::AccClause::If>(&clause.u)) {
genIfClause(converter, clauseLocation, ifClause, ifCond, stmtCtx);
} else if (const auto *asyncClause =
std::get_if<Fortran::parser::AccClause::Async>(&clause.u)) {
genAsyncClause(converter, asyncClause, async, addAsyncAttr, stmtCtx);
}
}
// Prepare the operand segment size attribute and the operands value range.
llvm::SmallVector<mlir::Value> operands;
llvm::SmallVector<int32_t> operandSegments;
addOperands(operands, operandSegments, waitOperands);
addOperand(operands, operandSegments, async);
addOperand(operands, operandSegments, waitDevnum);
addOperand(operands, operandSegments, ifCond);
mlir::acc::WaitOp waitOp = createSimpleOp<mlir::acc::WaitOp>(
firOpBuilder, currentLocation, operands, operandSegments);
if (addAsyncAttr)
waitOp.setAsyncAttr(firOpBuilder.getUnitAttr());
}
template <typename GlobalOp, typename EntryOp, typename DeclareOp,
typename ExitOp>
static void createDeclareGlobalOp(mlir::OpBuilder &modBuilder,
fir::FirOpBuilder &builder,
mlir::Location loc, fir::GlobalOp &globalOp,
mlir::acc::DataClause clause, bool implicit) {
std::stringstream declareGlobalName;
if constexpr (std::is_same_v<GlobalOp, mlir::acc::GlobalConstructorOp>)
declareGlobalName << globalOp.getSymName().str() << "_acc_ctor";
else if constexpr (std::is_same_v<GlobalOp, mlir::acc::GlobalDestructorOp>)
declareGlobalName << globalOp.getSymName().str() << "_acc_dtor";
GlobalOp declareGlobalOp =
modBuilder.create<GlobalOp>(loc, declareGlobalName.str());
builder.createBlock(&declareGlobalOp.getRegion(),
declareGlobalOp.getRegion().end(), {}, {});
builder.setInsertionPointToEnd(&declareGlobalOp.getRegion().back());
fir::AddrOfOp addrOp = builder.create<fir::AddrOfOp>(
loc, fir::ReferenceType::get(globalOp.getType()), globalOp.getSymbol());
addDeclareAttr(builder, addrOp.getOperation(), clause);
std::stringstream asFortran;
asFortran << Fortran::lower::mangle::demangleName(globalOp.getSymName());
llvm::SmallVector<mlir::Value> bounds;
EntryOp entryOp = createDataEntryOp<EntryOp>(
builder, loc, addrOp.getResTy(), asFortran, bounds,
/*structured=*/false, implicit, clause, addrOp.getResTy().getType());
builder.create<DeclareOp>(loc, mlir::ValueRange(entryOp.getAccPtr()));
mlir::Value varPtr;
if constexpr (std::is_same_v<GlobalOp, mlir::acc::GlobalDestructorOp>) {
builder.create<ExitOp>(entryOp.getLoc(), entryOp.getAccPtr(), varPtr,
entryOp.getBounds(), entryOp.getDataClause(),
/*structured=*/false, /*implicit=*/false,
builder.getStringAttr(*entryOp.getName()));
}
builder.create<mlir::acc::TerminatorOp>(loc);
modBuilder.setInsertionPointAfter(declareGlobalOp);
}
template <typename EntryOp>
static void createDeclareAllocFunc(mlir::OpBuilder &modBuilder,
fir::FirOpBuilder &builder,
mlir::Location loc, fir::GlobalOp &globalOp,
mlir::acc::DataClause clause) {
std::stringstream registerFuncName;
registerFuncName << globalOp.getSymName().str()
<< Fortran::lower::declarePostAllocSuffix.str();
auto registerFuncOp =
createDeclareFunc(modBuilder, builder, loc, registerFuncName.str());
fir::AddrOfOp addrOp = builder.create<fir::AddrOfOp>(
loc, fir::ReferenceType::get(globalOp.getType()), globalOp.getSymbol());
auto loadOp = builder.create<fir::LoadOp>(loc, addrOp.getResult());
fir::BoxAddrOp boxAddrOp = builder.create<fir::BoxAddrOp>(loc, loadOp);
addDeclareAttr(builder, boxAddrOp.getOperation(), clause);
std::stringstream asFortran;
asFortran << Fortran::lower::mangle::demangleName(globalOp.getSymName());
llvm::SmallVector<mlir::Value> bounds;
EntryOp entryOp = createDataEntryOp<EntryOp>(
builder, loc, boxAddrOp.getResult(), asFortran, bounds,
/*structured=*/false, /*implicit=*/false, clause, boxAddrOp.getType());
builder.create<mlir::acc::DeclareEnterOp>(
loc, mlir::ValueRange(entryOp.getAccPtr()));
asFortran << "_desc";
mlir::acc::UpdateDeviceOp updateDeviceOp =
createDataEntryOp<mlir::acc::UpdateDeviceOp>(
builder, loc, addrOp, asFortran, bounds,
/*structured=*/false, /*implicit=*/true,
mlir::acc::DataClause::acc_update_device, addrOp.getType());
llvm::SmallVector<int32_t> operandSegments{0, 0, 0, 0, 0, 1};
llvm::SmallVector<mlir::Value> operands{updateDeviceOp.getResult()};
createSimpleOp<mlir::acc::UpdateOp>(builder, loc, operands, operandSegments);
modBuilder.setInsertionPointAfter(registerFuncOp);
}
/// Action to be performed on deallocation are split in two distinct functions.
/// - Pre deallocation function includes all the action to be performed before
/// the actual deallocation is done on the host side.
/// - Post deallocation function includes update to the descriptor.
template <typename ExitOp>
static void createDeclareDeallocFunc(mlir::OpBuilder &modBuilder,
fir::FirOpBuilder &builder,
mlir::Location loc,
fir::GlobalOp &globalOp,
mlir::acc::DataClause clause) {
// Generate the pre dealloc function.
std::stringstream preDeallocFuncName;
preDeallocFuncName << globalOp.getSymName().str()
<< Fortran::lower::declarePreDeallocSuffix.str();
auto preDeallocOp =
createDeclareFunc(modBuilder, builder, loc, preDeallocFuncName.str());
fir::AddrOfOp addrOp = builder.create<fir::AddrOfOp>(
loc, fir::ReferenceType::get(globalOp.getType()), globalOp.getSymbol());
auto loadOp = builder.create<fir::LoadOp>(loc, addrOp.getResult());
fir::BoxAddrOp boxAddrOp = builder.create<fir::BoxAddrOp>(loc, loadOp);
addDeclareAttr(builder, boxAddrOp.getOperation(), clause);
std::stringstream asFortran;
asFortran << Fortran::lower::mangle::demangleName(globalOp.getSymName());
llvm::SmallVector<mlir::Value> bounds;
mlir::acc::GetDevicePtrOp entryOp =
createDataEntryOp<mlir::acc::GetDevicePtrOp>(
builder, loc, boxAddrOp.getResult(), asFortran, bounds,
/*structured=*/false, /*implicit=*/false, clause,
boxAddrOp.getType());
builder.create<mlir::acc::DeclareExitOp>(
loc, mlir::ValueRange(entryOp.getAccPtr()));
mlir::Value varPtr;
if constexpr (std::is_same_v<ExitOp, mlir::acc::CopyoutOp> ||
std::is_same_v<ExitOp, mlir::acc::UpdateHostOp>)
varPtr = entryOp.getVarPtr();
builder.create<ExitOp>(entryOp.getLoc(), entryOp.getAccPtr(), varPtr,
entryOp.getBounds(), entryOp.getDataClause(),
/*structured=*/false, /*implicit=*/false,
builder.getStringAttr(*entryOp.getName()));
// Generate the post dealloc function.
modBuilder.setInsertionPointAfter(preDeallocOp);
std::stringstream postDeallocFuncName;
postDeallocFuncName << globalOp.getSymName().str()
<< Fortran::lower::declarePostDeallocSuffix.str();
auto postDeallocOp =
createDeclareFunc(modBuilder, builder, loc, postDeallocFuncName.str());
addrOp = builder.create<fir::AddrOfOp>(
loc, fir::ReferenceType::get(globalOp.getType()), globalOp.getSymbol());
asFortran << "_desc";
mlir::acc::UpdateDeviceOp updateDeviceOp =
createDataEntryOp<mlir::acc::UpdateDeviceOp>(
builder, loc, addrOp, asFortran, bounds,
/*structured=*/false, /*implicit=*/true,
mlir::acc::DataClause::acc_update_device, addrOp.getType());
llvm::SmallVector<int32_t> operandSegments{0, 0, 0, 0, 0, 1};
llvm::SmallVector<mlir::Value> operands{updateDeviceOp.getResult()};
createSimpleOp<mlir::acc::UpdateOp>(builder, loc, operands, operandSegments);
modBuilder.setInsertionPointAfter(postDeallocOp);
}
template <typename EntryOp, typename ExitOp>
static void genGlobalCtors(Fortran::lower::AbstractConverter &converter,
mlir::OpBuilder &modBuilder,
const Fortran::parser::AccObjectList &accObjectList,
mlir::acc::DataClause clause) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
for (const auto &accObject : accObjectList.v) {
mlir::Location operandLocation = genOperandLocation(converter, accObject);
std::visit(
Fortran::common::visitors{
[&](const Fortran::parser::Designator &designator) {
if (const auto *name =
Fortran::semantics::getDesignatorNameIfDataRef(
designator)) {
std::string globalName = converter.mangleName(*name->symbol);
fir::GlobalOp globalOp = builder.getNamedGlobal(globalName);
if (!globalOp)
llvm::report_fatal_error("could not retrieve global symbol");
addDeclareAttr(builder, globalOp.getOperation(), clause);
auto crtPos = builder.saveInsertionPoint();
modBuilder.setInsertionPointAfter(globalOp);
if (mlir::isa<fir::BaseBoxType>(
fir::unwrapRefType(globalOp.getType()))) {
createDeclareGlobalOp<mlir::acc::GlobalConstructorOp,
mlir::acc::CopyinOp,
mlir::acc::DeclareEnterOp, ExitOp>(
modBuilder, builder, operandLocation, globalOp, clause,
/*implicit=*/true);
createDeclareAllocFunc<EntryOp>(
modBuilder, builder, operandLocation, globalOp, clause);
if constexpr (!std::is_same_v<EntryOp, ExitOp>)
createDeclareDeallocFunc<ExitOp>(
modBuilder, builder, operandLocation, globalOp, clause);
} else {
createDeclareGlobalOp<mlir::acc::GlobalConstructorOp, EntryOp,
mlir::acc::DeclareEnterOp, ExitOp>(
modBuilder, builder, operandLocation, globalOp, clause,
/*implicit=*/false);
}
if constexpr (!std::is_same_v<EntryOp, ExitOp>) {
createDeclareGlobalOp<mlir::acc::GlobalDestructorOp,
mlir::acc::GetDevicePtrOp,
mlir::acc::DeclareExitOp, ExitOp>(
modBuilder, builder, operandLocation, globalOp, clause,
/*implicit=*/false);
}
builder.restoreInsertionPoint(crtPos);
}
},
[&](const Fortran::parser::Name &name) {
TODO(operandLocation, "OpenACC Global Ctor from parser::Name");
}},
accObject.u);
}
}
template <typename Clause, typename EntryOp, typename ExitOp>
static void
genGlobalCtorsWithModifier(Fortran::lower::AbstractConverter &converter,
mlir::OpBuilder &modBuilder, const Clause *x,
Fortran::parser::AccDataModifier::Modifier mod,
const mlir::acc::DataClause clause,
const mlir::acc::DataClause clauseWithModifier) {
const Fortran::parser::AccObjectListWithModifier &listWithModifier = x->v;
const auto &accObjectList =
std::get<Fortran::parser::AccObjectList>(listWithModifier.t);
const auto &modifier =
std::get<std::optional<Fortran::parser::AccDataModifier>>(
listWithModifier.t);
mlir::acc::DataClause dataClause =
(modifier && (*modifier).v == mod) ? clauseWithModifier : clause;
genGlobalCtors<EntryOp, ExitOp>(converter, modBuilder, accObjectList,
dataClause);
}
static void
genDeclareInFunction(Fortran::lower::AbstractConverter &converter,
Fortran::semantics::SemanticsContext &semanticsContext,
Fortran::lower::StatementContext &fctCtx,
mlir::Location loc,
const Fortran::parser::AccClauseList &accClauseList) {
llvm::SmallVector<mlir::Value> dataClauseOperands, copyEntryOperands,
createEntryOperands, copyoutEntryOperands, deviceResidentEntryOperands;
Fortran::lower::StatementContext stmtCtx;
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::acc::DeclareOp declareOp;
auto parentOp = builder.getBlock()->getParentOp();
if (mlir::isa<mlir::acc::DeclareOp>(parentOp)) {
declareOp = mlir::dyn_cast<mlir::acc::DeclareOp>(
*builder.getBlock()->getParentOp());
builder.setInsertionPoint(declareOp.getOperation());
}
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
if (const auto *copyClause =
std::get_if<Fortran::parser::AccClause::Copy>(&clause.u)) {
auto crtDataStart = dataClauseOperands.size();
genDeclareDataOperandOperations<mlir::acc::CopyinOp,
mlir::acc::CopyoutOp>(
copyClause->v, converter, semanticsContext, stmtCtx,
dataClauseOperands, mlir::acc::DataClause::acc_copy,
/*structured=*/true, /*implicit=*/false);
copyEntryOperands.append(dataClauseOperands.begin() + crtDataStart,
dataClauseOperands.end());
} else if (const auto *createClause =
std::get_if<Fortran::parser::AccClause::Create>(&clause.u)) {
const Fortran::parser::AccObjectListWithModifier &listWithModifier =
createClause->v;
const auto &accObjectList =
std::get<Fortran::parser::AccObjectList>(listWithModifier.t);
auto crtDataStart = dataClauseOperands.size();
genDeclareDataOperandOperations<mlir::acc::CreateOp, mlir::acc::DeleteOp>(
accObjectList, converter, semanticsContext, stmtCtx,
dataClauseOperands, mlir::acc::DataClause::acc_create,
/*structured=*/true, /*implicit=*/false);
createEntryOperands.append(dataClauseOperands.begin() + crtDataStart,
dataClauseOperands.end());
} else if (const auto *presentClause =
std::get_if<Fortran::parser::AccClause::Present>(
&clause.u)) {
genDeclareDataOperandOperations<mlir::acc::PresentOp,
mlir::acc::PresentOp>(
presentClause->v, converter, semanticsContext, stmtCtx,
dataClauseOperands, mlir::acc::DataClause::acc_present,
/*structured=*/true, /*implicit=*/false);
} else if (const auto *copyinClause =
std::get_if<Fortran::parser::AccClause::Copyin>(&clause.u)) {
genDeclareDataOperandOperationsWithModifier<mlir::acc::CopyinOp,
mlir::acc::DeleteOp>(
copyinClause, converter, semanticsContext, stmtCtx,
Fortran::parser::AccDataModifier::Modifier::ReadOnly,
dataClauseOperands, mlir::acc::DataClause::acc_copyin,
mlir::acc::DataClause::acc_copyin_readonly);
} else if (const auto *copyoutClause =
std::get_if<Fortran::parser::AccClause::Copyout>(
&clause.u)) {
const Fortran::parser::AccObjectListWithModifier &listWithModifier =
copyoutClause->v;
const auto &accObjectList =
std::get<Fortran::parser::AccObjectList>(listWithModifier.t);
auto crtDataStart = dataClauseOperands.size();
genDeclareDataOperandOperations<mlir::acc::CreateOp,
mlir::acc::CopyoutOp>(
accObjectList, converter, semanticsContext, stmtCtx,
dataClauseOperands, mlir::acc::DataClause::acc_copyout,
/*structured=*/true, /*implicit=*/false);
copyoutEntryOperands.append(dataClauseOperands.begin() + crtDataStart,
dataClauseOperands.end());
} else if (const auto *devicePtrClause =
std::get_if<Fortran::parser::AccClause::Deviceptr>(
&clause.u)) {
genDeclareDataOperandOperations<mlir::acc::DevicePtrOp,
mlir::acc::DevicePtrOp>(
devicePtrClause->v, converter, semanticsContext, stmtCtx,
dataClauseOperands, mlir::acc::DataClause::acc_deviceptr,
/*structured=*/true, /*implicit=*/false);
} else if (const auto *linkClause =
std::get_if<Fortran::parser::AccClause::Link>(&clause.u)) {
genDeclareDataOperandOperations<mlir::acc::DeclareLinkOp,
mlir::acc::DeclareLinkOp>(
linkClause->v, converter, semanticsContext, stmtCtx,
dataClauseOperands, mlir::acc::DataClause::acc_declare_link,
/*structured=*/true, /*implicit=*/false);
} else if (const auto *deviceResidentClause =
std::get_if<Fortran::parser::AccClause::DeviceResident>(
&clause.u)) {
auto crtDataStart = dataClauseOperands.size();
genDeclareDataOperandOperations<mlir::acc::DeclareDeviceResidentOp,
mlir::acc::DeleteOp>(
deviceResidentClause->v, converter, semanticsContext, stmtCtx,
dataClauseOperands,
mlir::acc::DataClause::acc_declare_device_resident,
/*structured=*/true, /*implicit=*/false);
deviceResidentEntryOperands.append(
dataClauseOperands.begin() + crtDataStart, dataClauseOperands.end());
} else {
mlir::Location clauseLocation = converter.genLocation(clause.source);
TODO(clauseLocation, "clause on declare directive");
}
}
if (declareOp) {
declareOp.getDataClauseOperandsMutable().append(dataClauseOperands);
builder.setInsertionPointToEnd(&declareOp.getRegion().back());
} else {
declareOp = builder.create<mlir::acc::DeclareOp>(loc, dataClauseOperands);
builder.createBlock(&declareOp.getRegion(), declareOp.getRegion().end(), {},
{});
builder.setInsertionPointToEnd(&declareOp.getRegion().back());
}
fctCtx.attachCleanup([&builder, declareOp, loc, createEntryOperands,
copyEntryOperands, copyoutEntryOperands,
deviceResidentEntryOperands]() {
auto parentOp = builder.getBlock()->getParentOp();
if (mlir::isa<mlir::acc::DeclareOp>(parentOp)) {
builder.create<mlir::acc::TerminatorOp>(loc);
builder.setInsertionPointAfter(declareOp);
}
genDataExitOperations<mlir::acc::CreateOp, mlir::acc::DeleteOp>(
builder, createEntryOperands, /*structured=*/true,
/*implicit=*/false);
genDataExitOperations<mlir::acc::DeclareDeviceResidentOp,
mlir::acc::DeleteOp>(
builder, deviceResidentEntryOperands, /*structured=*/true,
/*implicit=*/false);
genDataExitOperations<mlir::acc::CopyinOp, mlir::acc::CopyoutOp>(
builder, copyEntryOperands, /*structured=*/true, /*implicit=*/false);
genDataExitOperations<mlir::acc::CreateOp, mlir::acc::CopyoutOp>(
builder, copyoutEntryOperands, /*structured=*/true,
/*implicit=*/false);
});
}
static void
genDeclareInModule(Fortran::lower::AbstractConverter &converter,
mlir::ModuleOp &moduleOp,
const Fortran::parser::AccClauseList &accClauseList) {
mlir::OpBuilder modBuilder(moduleOp.getBodyRegion());
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
if (const auto *createClause =
std::get_if<Fortran::parser::AccClause::Create>(&clause.u)) {
const Fortran::parser::AccObjectListWithModifier &listWithModifier =
createClause->v;
const auto &accObjectList =
std::get<Fortran::parser::AccObjectList>(listWithModifier.t);
genGlobalCtors<mlir::acc::CreateOp, mlir::acc::DeleteOp>(
converter, modBuilder, accObjectList,
mlir::acc::DataClause::acc_create);
} else if (const auto *copyinClause =
std::get_if<Fortran::parser::AccClause::Copyin>(&clause.u)) {
genGlobalCtorsWithModifier<Fortran::parser::AccClause::Copyin,
mlir::acc::CopyinOp, mlir::acc::CopyinOp>(
converter, modBuilder, copyinClause,
Fortran::parser::AccDataModifier::Modifier::ReadOnly,
mlir::acc::DataClause::acc_copyin,
mlir::acc::DataClause::acc_copyin_readonly);
} else if (const auto *deviceResidentClause =
std::get_if<Fortran::parser::AccClause::DeviceResident>(
&clause.u)) {
genGlobalCtors<mlir::acc::DeclareDeviceResidentOp, mlir::acc::DeleteOp>(
converter, modBuilder, deviceResidentClause->v,
mlir::acc::DataClause::acc_declare_device_resident);
} else if (const auto *linkClause =
std::get_if<Fortran::parser::AccClause::Link>(&clause.u)) {
genGlobalCtors<mlir::acc::DeclareLinkOp, mlir::acc::DeclareLinkOp>(
converter, modBuilder, linkClause->v,
mlir::acc::DataClause::acc_declare_link);
} else {
llvm::report_fatal_error("unsupported clause on DECLARE directive");
}
}
}
static void genACC(Fortran::lower::AbstractConverter &converter,
Fortran::semantics::SemanticsContext &semanticsContext,
Fortran::lower::StatementContext &fctCtx,
const Fortran::parser::OpenACCStandaloneDeclarativeConstruct
&declareConstruct) {
const auto &declarativeDir =
std::get<Fortran::parser::AccDeclarativeDirective>(declareConstruct.t);
mlir::Location directiveLocation =
converter.genLocation(declarativeDir.source);
const auto &accClauseList =
std::get<Fortran::parser::AccClauseList>(declareConstruct.t);
if (declarativeDir.v == llvm::acc::Directive::ACCD_declare) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
auto moduleOp =
builder.getBlock()->getParent()->getParentOfType<mlir::ModuleOp>();
auto funcOp =
builder.getBlock()->getParent()->getParentOfType<mlir::func::FuncOp>();
if (funcOp)
genDeclareInFunction(converter, semanticsContext, fctCtx,
directiveLocation, accClauseList);
else if (moduleOp)
genDeclareInModule(converter, moduleOp, accClauseList);
return;
}
llvm_unreachable("unsupported declarative directive");
}
static void attachRoutineInfo(mlir::func::FuncOp func,
mlir::SymbolRefAttr routineAttr) {
llvm::SmallVector<mlir::SymbolRefAttr> routines;
if (func.getOperation()->hasAttr(mlir::acc::getRoutineInfoAttrName())) {
auto routineInfo =
func.getOperation()->getAttrOfType<mlir::acc::RoutineInfoAttr>(
mlir::acc::getRoutineInfoAttrName());
routines.append(routineInfo.getAccRoutines().begin(),
routineInfo.getAccRoutines().end());
}
routines.push_back(routineAttr);
func.getOperation()->setAttr(
mlir::acc::getRoutineInfoAttrName(),
mlir::acc::RoutineInfoAttr::get(func.getContext(), routines));
}
static void
genACC(Fortran::lower::AbstractConverter &converter,
Fortran::semantics::SemanticsContext &semanticsContext,
const Fortran::parser::OpenACCRoutineConstruct &routineConstruct,
Fortran::lower::AccRoutineInfoMappingList &accRoutineInfos) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::Location loc = converter.genLocation(routineConstruct.source);
std::optional<Fortran::parser::Name> name =
std::get<std::optional<Fortran::parser::Name>>(routineConstruct.t);
const auto &clauses =
std::get<Fortran::parser::AccClauseList>(routineConstruct.t);
mlir::ModuleOp mod = builder.getModule();
mlir::func::FuncOp funcOp;
std::string funcName;
if (name) {
funcName = converter.mangleName(*name->symbol);
funcOp = builder.getNamedFunction(funcName);
} else {
funcOp = builder.getFunction();
funcName = funcOp.getName();
}
mlir::OpBuilder modBuilder(mod.getBodyRegion());
std::stringstream routineOpName;
routineOpName << accRoutinePrefix.str() << routineCounter++;
auto routineOp = modBuilder.create<mlir::acc::RoutineOp>(
loc, routineOpName.str(), funcName, mlir::StringAttr{}, mlir::UnitAttr{},
mlir::UnitAttr{}, mlir::UnitAttr{}, mlir::UnitAttr{}, mlir::UnitAttr{},
mlir::UnitAttr{}, mlir::IntegerAttr{});
for (const Fortran::parser::AccClause &clause : clauses.v) {
if (std::get_if<Fortran::parser::AccClause::Seq>(&clause.u)) {
routineOp.setSeqAttr(builder.getUnitAttr());
} else if (const auto *gangClause =
std::get_if<Fortran::parser::AccClause::Gang>(&clause.u)) {
routineOp.setGangAttr(builder.getUnitAttr());
if (gangClause->v) {
const Fortran::parser::AccGangArgList &x = *gangClause->v;
for (const Fortran::parser::AccGangArg &gangArg : x.v) {
if (const auto *dim =
std::get_if<Fortran::parser::AccGangArg::Dim>(&gangArg.u)) {
const std::optional<int64_t> dimValue = Fortran::evaluate::ToInt64(
*Fortran::semantics::GetExpr(dim->v));
if (!dimValue)
mlir::emitError(loc,
"dim value must be a constant positive integer");
routineOp.setGangDimAttr(
builder.getIntegerAttr(builder.getIntegerType(32), *dimValue));
}
}
}
} else if (std::get_if<Fortran::parser::AccClause::Vector>(&clause.u)) {
routineOp.setVectorAttr(builder.getUnitAttr());
} else if (std::get_if<Fortran::parser::AccClause::Worker>(&clause.u)) {
routineOp.setWorkerAttr(builder.getUnitAttr());
} else if (std::get_if<Fortran::parser::AccClause::Nohost>(&clause.u)) {
routineOp.setNohostAttr(builder.getUnitAttr());
} else if (const auto *bindClause =
std::get_if<Fortran::parser::AccClause::Bind>(&clause.u)) {
if (const auto *name =
std::get_if<Fortran::parser::Name>(&bindClause->v.u)) {
routineOp.setBindName(
builder.getStringAttr(converter.mangleName(*name->symbol)));
} else if (const auto charExpr =
std::get_if<Fortran::parser::ScalarDefaultCharExpr>(
&bindClause->v.u)) {
const std::optional<std::string> bindName =
Fortran::semantics::GetConstExpr<std::string>(semanticsContext,
*charExpr);
if (!bindName)
routineOp.emitError("Could not retrieve the bind name");
routineOp.setBindName(builder.getStringAttr(*bindName));
}
}
}
if (funcOp)
attachRoutineInfo(funcOp, builder.getSymbolRefAttr(routineOpName.str()));
else
// FuncOp is not lowered yet. Keep the information so the routine info
// can be attached later to the funcOp.
accRoutineInfos.push_back(std::make_pair(
funcName, builder.getSymbolRefAttr(routineOpName.str())));
}
void Fortran::lower::finalizeOpenACCRoutineAttachment(
mlir::ModuleOp &mod,
Fortran::lower::AccRoutineInfoMappingList &accRoutineInfos) {
for (auto &mapping : accRoutineInfos) {
mlir::func::FuncOp funcOp =
mod.lookupSymbol<mlir::func::FuncOp>(mapping.first);
if (!funcOp)
llvm::report_fatal_error(
"could not find function to attach OpenACC routine information.");
attachRoutineInfo(funcOp, mapping.second);
}
accRoutineInfos.clear();
}
static void
genACC(Fortran::lower::AbstractConverter &converter,
Fortran::lower::pft::Evaluation &eval,
const Fortran::parser::OpenACCAtomicConstruct &atomicConstruct) {
std::visit(
Fortran::common::visitors{
[&](const Fortran::parser::AccAtomicRead &atomicRead) {
Fortran::lower::genOmpAccAtomicRead<Fortran::parser::AccAtomicRead,
void>(converter, atomicRead);
},
[&](const Fortran::parser::AccAtomicWrite &atomicWrite) {
Fortran::lower::genOmpAccAtomicWrite<
Fortran::parser::AccAtomicWrite, void>(converter, atomicWrite);
},
[&](const Fortran::parser::AccAtomicUpdate &atomicUpdate) {
Fortran::lower::genOmpAccAtomicUpdate<
Fortran::parser::AccAtomicUpdate, void>(converter,
atomicUpdate);
},
[&](const Fortran::parser::AccAtomicCapture &atomicCapture) {
Fortran::lower::genOmpAccAtomicCapture<
Fortran::parser::AccAtomicCapture, void>(converter,
atomicCapture);
},
},
atomicConstruct.u);
}
static void
genACC(Fortran::lower::AbstractConverter &converter,
Fortran::semantics::SemanticsContext &semanticsContext,
const Fortran::parser::OpenACCCacheConstruct &cacheConstruct) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
auto loopOp = builder.getRegion().getParentOfType<mlir::acc::LoopOp>();
auto crtPos = builder.saveInsertionPoint();
if (loopOp) {
builder.setInsertionPoint(loopOp);
Fortran::lower::StatementContext stmtCtx;
llvm::SmallVector<mlir::Value> cacheOperands;
const Fortran::parser::AccObjectListWithModifier &listWithModifier =
std::get<Fortran::parser::AccObjectListWithModifier>(cacheConstruct.t);
const auto &accObjectList =
std::get<Fortran::parser::AccObjectList>(listWithModifier.t);
const auto &modifier =
std::get<std::optional<Fortran::parser::AccDataModifier>>(
listWithModifier.t);
mlir::acc::DataClause dataClause = mlir::acc::DataClause::acc_cache;
if (modifier &&
(*modifier).v == Fortran::parser::AccDataModifier::Modifier::ReadOnly)
dataClause = mlir::acc::DataClause::acc_cache_readonly;
genDataOperandOperations<mlir::acc::CacheOp>(
accObjectList, converter, semanticsContext, stmtCtx, cacheOperands,
dataClause,
/*structured=*/true, /*implicit=*/false, /*setDeclareAttr*/ false);
loopOp.getCacheOperandsMutable().append(cacheOperands);
} else {
llvm::report_fatal_error(
"could not find loop to attach OpenACC cache information.");
}
builder.restoreInsertionPoint(crtPos);
}
void Fortran::lower::genOpenACCConstruct(
Fortran::lower::AbstractConverter &converter,
Fortran::semantics::SemanticsContext &semanticsContext,
Fortran::lower::pft::Evaluation &eval,
const Fortran::parser::OpenACCConstruct &accConstruct) {
std::visit(
common::visitors{
[&](const Fortran::parser::OpenACCBlockConstruct &blockConstruct) {
genACC(converter, semanticsContext, eval, blockConstruct);
},
[&](const Fortran::parser::OpenACCCombinedConstruct
&combinedConstruct) {
genACC(converter, semanticsContext, eval, combinedConstruct);
},
[&](const Fortran::parser::OpenACCLoopConstruct &loopConstruct) {
genACC(converter, semanticsContext, eval, loopConstruct);
},
[&](const Fortran::parser::OpenACCStandaloneConstruct
&standaloneConstruct) {
genACC(converter, semanticsContext, standaloneConstruct);
},
[&](const Fortran::parser::OpenACCCacheConstruct &cacheConstruct) {
genACC(converter, semanticsContext, cacheConstruct);
},
[&](const Fortran::parser::OpenACCWaitConstruct &waitConstruct) {
genACC(converter, waitConstruct);
},
[&](const Fortran::parser::OpenACCAtomicConstruct &atomicConstruct) {
genACC(converter, eval, atomicConstruct);
},
},
accConstruct.u);
}
void Fortran::lower::genOpenACCDeclarativeConstruct(
Fortran::lower::AbstractConverter &converter,
Fortran::semantics::SemanticsContext &semanticsContext,
Fortran::lower::StatementContext &fctCtx,
const Fortran::parser::OpenACCDeclarativeConstruct &accDeclConstruct,
Fortran::lower::AccRoutineInfoMappingList &accRoutineInfos) {
std::visit(
common::visitors{
[&](const Fortran::parser::OpenACCStandaloneDeclarativeConstruct
&standaloneDeclarativeConstruct) {
genACC(converter, semanticsContext, fctCtx,
standaloneDeclarativeConstruct);
},
[&](const Fortran::parser::OpenACCRoutineConstruct
&routineConstruct) {
genACC(converter, semanticsContext, routineConstruct,
accRoutineInfos);
},
},
accDeclConstruct.u);
}
void Fortran::lower::attachDeclarePostAllocAction(
AbstractConverter &converter, fir::FirOpBuilder &builder,
const Fortran::semantics::Symbol &sym) {
std::stringstream fctName;
fctName << converter.mangleName(sym) << declarePostAllocSuffix.str();
mlir::Operation &op = builder.getInsertionBlock()->back();
op.setAttr(mlir::acc::getDeclareActionAttrName(),
mlir::acc::DeclareActionAttr::get(
builder.getContext(),
/*preAlloc=*/{},
/*postAlloc=*/builder.getSymbolRefAttr(fctName.str()),
/*preDealloc=*/{}, /*postDealloc=*/{}));
}
void Fortran::lower::attachDeclarePreDeallocAction(
AbstractConverter &converter, fir::FirOpBuilder &builder,
mlir::Value beginOpValue, const Fortran::semantics::Symbol &sym) {
if (!sym.test(Fortran::semantics::Symbol::Flag::AccCreate) &&
!sym.test(Fortran::semantics::Symbol::Flag::AccCopyIn) &&
!sym.test(Fortran::semantics::Symbol::Flag::AccCopyInReadOnly) &&
!sym.test(Fortran::semantics::Symbol::Flag::AccCopy) &&
!sym.test(Fortran::semantics::Symbol::Flag::AccCopyOut) &&
!sym.test(Fortran::semantics::Symbol::Flag::AccDeviceResident))
return;
std::stringstream fctName;
fctName << converter.mangleName(sym) << declarePreDeallocSuffix.str();
beginOpValue.getDefiningOp()->setAttr(
mlir::acc::getDeclareActionAttrName(),
mlir::acc::DeclareActionAttr::get(
builder.getContext(),
/*preAlloc=*/{}, /*postAlloc=*/{},
/*preDealloc=*/builder.getSymbolRefAttr(fctName.str()),
/*postDealloc=*/{}));
}
void Fortran::lower::attachDeclarePostDeallocAction(
AbstractConverter &converter, fir::FirOpBuilder &builder,
const Fortran::semantics::Symbol &sym) {
if (!sym.test(Fortran::semantics::Symbol::Flag::AccCreate) &&
!sym.test(Fortran::semantics::Symbol::Flag::AccCopyIn) &&
!sym.test(Fortran::semantics::Symbol::Flag::AccCopyInReadOnly) &&
!sym.test(Fortran::semantics::Symbol::Flag::AccCopy) &&
!sym.test(Fortran::semantics::Symbol::Flag::AccCopyOut) &&
!sym.test(Fortran::semantics::Symbol::Flag::AccDeviceResident))
return;
std::stringstream fctName;
fctName << converter.mangleName(sym) << declarePostDeallocSuffix.str();
mlir::Operation &op = builder.getInsertionBlock()->back();
op.setAttr(mlir::acc::getDeclareActionAttrName(),
mlir::acc::DeclareActionAttr::get(
builder.getContext(),
/*preAlloc=*/{}, /*postAlloc=*/{}, /*preDealloc=*/{},
/*postDealloc=*/builder.getSymbolRefAttr(fctName.str())));
}
void Fortran::lower::genOpenACCTerminator(fir::FirOpBuilder &builder,
mlir::Operation *op,
mlir::Location loc) {
if (mlir::isa<mlir::acc::ParallelOp, mlir::acc::LoopOp>(op))
builder.create<mlir::acc::YieldOp>(loc);
else
builder.create<mlir::acc::TerminatorOp>(loc);
}