Files
clang-p2996/mlir/lib/Analysis/DataFlow/LivenessAnalysis.cpp
Srishti Srivastava 232f8eadae [MLIR][analysis] Fix call op handling in sparse backward dataflow
Currently, data in `AbstractSparseBackwardDataFlowAnalysis` is
considered to flow one-to-one, in order, from the operands of an op
implementing `CallOpInterface` to the arguments of the function it is
calling.

This understanding of the data flow is inaccurate. The operands of such
an op that forward to the function arguments are obtained using a
method provided by `CallOpInterface` called `getArgOperands()`.

This commit fixes this bug by using `getArgOperands()` instead of
`getOperands()` to get the mapping from operands to function arguments
because not all operands necessarily forward to the function arguments
and even if they do, they don't necessarily have to be in the order in
which they appear in the op. The operands that don't get forwarded are
handled by the newly introduced `visitCallOperand()` function, which
works analogous to the `visitBranchOperand()` function.

This fix is also propagated to liveness analysis that earlier relied on
this incorrect implementation of the sparse backward dataflow analysis
framework and corrects some incorrect assumptions made in it.

Extra cleanup: Improved a comment and removed an unnecessary code line.

Signed-off-by: Srishti Srivastava <srishtisrivastava.ai@gmail.com>

Reviewed By: matthiaskramm, jcai19

Differential Revision: https://reviews.llvm.org/D157261
2023-08-11 17:26:58 +00:00

211 lines
8.6 KiB
C++

//===- LivenessAnalysis.cpp - Liveness analysis ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <mlir/Analysis/DataFlow/LivenessAnalysis.h>
#include <mlir/Analysis/DataFlow/ConstantPropagationAnalysis.h>
#include <mlir/Analysis/DataFlow/DeadCodeAnalysis.h>
#include <mlir/Analysis/DataFlow/SparseAnalysis.h>
#include <mlir/Analysis/DataFlowFramework.h>
#include <mlir/IR/Operation.h>
#include <mlir/IR/Value.h>
#include <mlir/Interfaces/CallInterfaces.h>
#include <mlir/Interfaces/SideEffectInterfaces.h>
#include <mlir/Support/LLVM.h>
using namespace mlir;
using namespace mlir::dataflow;
//===----------------------------------------------------------------------===//
// Liveness
//===----------------------------------------------------------------------===//
void Liveness::print(raw_ostream &os) const {
os << (isLive ? "live" : "not live");
}
ChangeResult Liveness::markLive() {
bool wasLive = isLive;
isLive = true;
return wasLive ? ChangeResult::NoChange : ChangeResult::Change;
}
ChangeResult Liveness::meet(const AbstractSparseLattice &other) {
const auto *otherLiveness = reinterpret_cast<const Liveness *>(&other);
return otherLiveness->isLive ? markLive() : ChangeResult::NoChange;
}
//===----------------------------------------------------------------------===//
// LivenessAnalysis
//===----------------------------------------------------------------------===//
/// For every value, liveness analysis determines whether or not it is "live".
///
/// A value is considered "live" iff it:
/// (1) has memory effects OR
/// (2) is returned by a public function OR
/// (3) is used to compute a value of type (1) or (2).
/// It is also to be noted that a value could be of multiple types (1/2/3) at
/// the same time.
///
/// A value "has memory effects" iff it:
/// (1.a) is an operand of an op with memory effects OR
/// (1.b) is a non-forwarded branch operand and its branch op could take the
/// control to a block that has an op with memory effects OR
/// (1.c) is a non-forwarded call operand.
///
/// A value `A` is said to be "used to compute" value `B` iff `B` cannot be
/// computed in the absence of `A`. Thus, in this implementation, we say that
/// value `A` is used to compute value `B` iff:
/// (3.a) `B` is a result of an op with operand `A` OR
/// (3.b) `A` is used to compute some value `C` and `C` is used to compute
/// `B`.
void LivenessAnalysis::visitOperation(Operation *op,
ArrayRef<Liveness *> operands,
ArrayRef<const Liveness *> results) {
// This marks values of type (1.a) liveness as "live".
if (!isMemoryEffectFree(op)) {
for (auto *operand : operands)
propagateIfChanged(operand, operand->markLive());
}
// This marks values of type (3) liveness as "live".
bool foundLiveResult = false;
for (const Liveness *r : results) {
if (r->isLive && !foundLiveResult) {
// It is assumed that each operand is used to compute each result of an
// op. Thus, if at least one result is live, each operand is live.
for (Liveness *operand : operands)
meet(operand, *r);
foundLiveResult = true;
}
addDependency(const_cast<Liveness *>(r), op);
}
}
void LivenessAnalysis::visitBranchOperand(OpOperand &operand) {
// We know (at the moment) and assume (for the future) that `operand` is a
// non-forwarded branch operand of a `RegionBranchOpInterface`,
// `BranchOpInterface`, `RegionBranchTerminatorOpInterface` or return-like op.
Operation *op = operand.getOwner();
assert((isa<RegionBranchOpInterface>(op) || isa<BranchOpInterface>(op) ||
isa<RegionBranchTerminatorOpInterface>(op)) &&
"expected the op to be `RegionBranchOpInterface`, "
"`BranchOpInterface` or `RegionBranchTerminatorOpInterface`");
// The lattices of the non-forwarded branch operands don't get updated like
// the forwarded branch operands or the non-branch operands. Thus they need
// to be handled separately. This is where we handle them.
// This marks values of type (1.b) liveness as "live". A non-forwarded
// branch operand will be live if a block where its op could take the control
// has an op with memory effects.
// Populating such blocks in `blocks`.
SmallVector<Block *, 4> blocks;
if (isa<RegionBranchOpInterface>(op)) {
// When the op is a `RegionBranchOpInterface`, like an `scf.for` or an
// `scf.index_switch` op, its branch operand controls the flow into this
// op's regions.
for (Region &region : op->getRegions()) {
for (Block &block : region)
blocks.push_back(&block);
}
} else if (isa<BranchOpInterface>(op)) {
// When the op is a `BranchOpInterface`, like a `cf.cond_br` or a
// `cf.switch` op, its branch operand controls the flow into this op's
// successors.
blocks = op->getSuccessors();
} else {
// When the op is a `RegionBranchTerminatorOpInterface`, like an
// `scf.condition` op or return-like, like an `scf.yield` op, its branch
// operand controls the flow into this op's parent's (which is a
// `RegionBranchOpInterface`'s) regions.
Operation *parentOp = op->getParentOp();
assert(isa<RegionBranchOpInterface>(parentOp) &&
"expected parent op to implement `RegionBranchOpInterface`");
for (Region &region : parentOp->getRegions()) {
for (Block &block : region)
blocks.push_back(&block);
}
}
bool foundMemoryEffectingOp = false;
for (Block *block : blocks) {
if (foundMemoryEffectingOp)
break;
for (Operation &nestedOp : *block) {
if (!isMemoryEffectFree(&nestedOp)) {
Liveness *operandLiveness = getLatticeElement(operand.get());
propagateIfChanged(operandLiveness, operandLiveness->markLive());
foundMemoryEffectingOp = true;
break;
}
}
}
// Now that we have checked for memory-effecting ops in the blocks of concern,
// we will simply visit the op with this non-forwarded operand to potentially
// mark it "live" due to type (1.a/3) liveness.
SmallVector<Liveness *, 4> operandLiveness;
operandLiveness.push_back(getLatticeElement(operand.get()));
SmallVector<const Liveness *, 4> resultsLiveness;
for (const Value result : op->getResults())
resultsLiveness.push_back(getLatticeElement(result));
visitOperation(op, operandLiveness, resultsLiveness);
// We also visit the parent op with the parent's results and this operand if
// `op` is a `RegionBranchTerminatorOpInterface` because its non-forwarded
// operand depends on not only its memory effects/results but also on those of
// its parent's.
if (!isa<RegionBranchTerminatorOpInterface>(op))
return;
Operation *parentOp = op->getParentOp();
SmallVector<const Liveness *, 4> parentResultsLiveness;
for (const Value parentResult : parentOp->getResults())
parentResultsLiveness.push_back(getLatticeElement(parentResult));
visitOperation(parentOp, operandLiveness, parentResultsLiveness);
}
void LivenessAnalysis::visitCallOperand(OpOperand &operand) {
// We know (at the moment) and assume (for the future) that `operand` is a
// non-forwarded call operand of an op implementing `CallOpInterface`.
assert(isa<CallOpInterface>(operand.getOwner()) &&
"expected the op to implement `CallOpInterface`");
// The lattices of the non-forwarded call operands don't get updated like the
// forwarded call operands or the non-call operands. Thus they need to be
// handled separately. This is where we handle them.
// This marks values of type (1.c) liveness as "live". A non-forwarded
// call operand is live.
Liveness *operandLiveness = getLatticeElement(operand.get());
propagateIfChanged(operandLiveness, operandLiveness->markLive());
}
void LivenessAnalysis::setToExitState(Liveness *lattice) {
// This marks values of type (2) liveness as "live".
lattice->markLive();
}
//===----------------------------------------------------------------------===//
// RunLivenessAnalysis
//===----------------------------------------------------------------------===//
RunLivenessAnalysis::RunLivenessAnalysis(Operation *op) {
SymbolTableCollection symbolTable;
solver.load<DeadCodeAnalysis>();
solver.load<SparseConstantPropagation>();
solver.load<LivenessAnalysis>(symbolTable);
(void)solver.initializeAndRun(op);
}
const Liveness *RunLivenessAnalysis::getLiveness(Value val) {
return solver.lookupState<Liveness>(val);
}