Files
clang-p2996/mlir/lib/Conversion/ArmSMEToSCF/ArmSMEToSCF.cpp
Cullen Rhodes 65a6be5de9 [mlir][ArmSME] Use memref indices for load and store
This patch extends the ArmSME load and store op lowering to use the
memref indices. An integration test that loads two 32-bit element ZA
tiles from memory and stores them back to memory in reverse order to
verify this is added.

Depends on D156467 D156558

Reviewed By: awarzynski, dcaballe

Differential Revision: https://reviews.llvm.org/D156689
2023-08-03 08:50:12 +00:00

222 lines
8.5 KiB
C++

//===- ArmSMEToSCF.cpp - Convert ArmSME to SCF dialect ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements lowering of ArmSME operations to SCF.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/ArmSMEToSCF/ArmSMEToSCF.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/ArmSME/IR/ArmSME.h"
#include "mlir/Dialect/ArmSME/Utils/Utils.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
namespace mlir {
#define GEN_PASS_DEF_CONVERTARMSMETOSCF
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
/// Adjusts `indices` as follows for a given tile slice and returns them in
/// `outIndices`:
/// rank 1: (indices[0] + (tileSliceIndex * tileSliceNumElts))
/// rank 2: (indices[0] + tileSliceIndex, indices[1])
void getMemrefIndices(ValueRange indices, unsigned rank, Value tileSliceIndex,
Value tileSliceNumElts,
SmallVectorImpl<Value> &outIndices, Location loc,
PatternRewriter &rewriter) {
assert((rank == 1 || rank == 2) && "memref has unexpected rank!");
auto tileSliceOffset = tileSliceIndex;
if (rank == 1)
tileSliceOffset =
rewriter.create<arith::MulIOp>(loc, tileSliceOffset, tileSliceNumElts);
auto baseIndexPlusTileSliceOffset =
rewriter.create<arith::AddIOp>(loc, indices[0], tileSliceOffset);
outIndices.push_back(baseIndexPlusTileSliceOffset);
if (rank == 2)
outIndices.push_back(indices[1]);
}
/// Lower `arm_sme.tile_load` to a loop over the tile slices and load each slice
/// using `arm_sme.load_tile_slice`.
///
/// BEFORE:
/// ```mlir
/// %tile = arm_sme.tile_load %src[%c0, %c0] :
/// memref<?x?xi32>, vector<[4]x[4]xi32>
/// ```
///
/// AFTER:
/// ```mlir
/// %tile_id = arm_sme.get_tile_id : i32
/// %tile = arm_sme.cast_tile_to_vector %tile_id : i32 to vector<[4]x[4]xi32>
/// %vscale = vector.vscale
/// %c0 = arith.constant 0 : index
/// %c1 = arith.constant 1 : index
/// %min_svl_s = arith.constant 4 : index
/// %svl_s = arith.muli %min_svl_s, %vscale : index
/// scf.for %tile_slice_idx = %c0 to %svl_s step %c1 {
/// %tile_update = arm_sme.load_tile_slice %src[%tile_slice_idx],
/// %tile, %tile_slice_idx : memref<?x?xi32>, vector<[4]x[4]xi32>
/// }
/// ```
struct TileLoadOpConversion : public OpRewritePattern<arm_sme::TileLoadOp> {
using OpRewritePattern<arm_sme::TileLoadOp>::OpRewritePattern;
LogicalResult matchAndRewrite(arm_sme::TileLoadOp tileLoadOp,
PatternRewriter &rewriter) const override {
OpBuilder::InsertionGuard g(rewriter);
auto loc = tileLoadOp.getLoc();
auto tileType = tileLoadOp.getVectorType();
auto tileElementType = tileType.getElementType();
unsigned tileElementWidth = tileElementType.getIntOrFloatBitWidth();
// Create 'arm_sme.get_tile' op.
auto tileId = rewriter.create<arm_sme::GetTileID>(
loc, rewriter.getIntegerType(tileElementWidth));
// Create `arm_sme.cast_tile_to_vector` to cast tile ID to a vector type to
// use as input tile to 'arm_sme.load_tile_slice' ops.
auto tile =
rewriter.create<arm_sme::CastTileToVector>(loc, tileType, tileId);
// Create a loop that loads each ZA tile slice from memory.
auto step = rewriter.create<arith::ConstantIndexOp>(loc, 1);
auto minTileSlices = rewriter.create<arith::ConstantIndexOp>(
loc, arm_sme::getSMETileSliceMinNumElts(tileElementType));
auto vscale =
rewriter.create<vector::VectorScaleOp>(loc, rewriter.getIndexType());
auto lowerBound = rewriter.create<arith::ConstantIndexOp>(loc, 0);
// This describes both the number of ZA tile slices and the number of
// elements in a vector of SVL bits for a given element type (SVL_B, SVL_H,
// ..., SVL_Q).
auto numTileSlices =
rewriter.create<arith::MulIOp>(loc, minTileSlices, vscale);
auto forOp =
rewriter.create<scf::ForOp>(loc, lowerBound, numTileSlices, step);
rewriter.setInsertionPointToStart(forOp.getBody());
// Create 'arm_sme.load_tile_slice' to load tile slice from memory into
// tile.
SmallVector<Value> memrefIndices;
auto tileSliceIndex = forOp.getInductionVar();
getMemrefIndices(tileLoadOp.getIndices(),
tileLoadOp.getMemRefType().getRank(), tileSliceIndex,
numTileSlices, memrefIndices, loc, rewriter);
rewriter.create<arm_sme::LoadTileSliceOp>(loc, tileType,
tileLoadOp.getBase(), tile,
memrefIndices, tileSliceIndex);
rewriter.setInsertionPointAfter(forOp);
// Replace 'arm_sme.tile_load' with the tile.
rewriter.replaceOp(tileLoadOp, tile);
return success();
}
};
/// Lower `arm_sme.tile_store` to a loop over the tile slices and store each
/// slice using `arm_sme.store_tile_slice`.
///
/// BEFORE:
/// ```mlir
/// arm_sme.tile_store %tile, %dest[%c0, %c0]
/// : memref<?x?xi32>, vector<[4]x[4]xi32
/// ```
///
/// AFTER:
/// ```mlir
/// %vscale = vector.vscale
/// %c0 = arith.constant 0 : index
/// %c1 = arith.constant 1 : index
/// %min_svl_s = arith.constant 4 : index
/// %svl_s = arith.muli %min_svl_s, %vscale : index
/// scf.for %tile_slice_idx = %c0 to %svl_s step %c1 {
/// arm_sme.store_tile_slice %tile, %tile_slice_idx, %dest[%tile_slice_idx]
/// : memref<?x?xi32>, vector<[4]x[4]xi32>
/// }
/// ```
struct TileStoreOpConversion : public OpRewritePattern<arm_sme::TileStoreOp> {
using OpRewritePattern<arm_sme::TileStoreOp>::OpRewritePattern;
LogicalResult matchAndRewrite(arm_sme::TileStoreOp tileStoreOp,
PatternRewriter &rewriter) const override {
OpBuilder::InsertionGuard g(rewriter);
auto loc = tileStoreOp.getLoc();
auto tileType = tileStoreOp.getVectorType();
auto tileElementType = tileType.getElementType();
// Create a loop that stores each ZA tile slice from memory.
auto step = rewriter.create<arith::ConstantIndexOp>(loc, 1);
auto minTileSlices = rewriter.create<arith::ConstantIndexOp>(
loc, arm_sme::getSMETileSliceMinNumElts(tileElementType));
auto vscale =
rewriter.create<vector::VectorScaleOp>(loc, rewriter.getIndexType());
auto lowerBound = rewriter.create<arith::ConstantIndexOp>(loc, 0);
// This describes both the number of ZA tile slices and the number of
// elements in a vector of SVL bits for a given element type (SVL_B, SVL_H,
// ..., SVL_Q).
auto numTileSlices =
rewriter.create<arith::MulIOp>(loc, minTileSlices, vscale);
auto forOp =
rewriter.create<scf::ForOp>(loc, lowerBound, numTileSlices, step);
rewriter.setInsertionPointToStart(forOp.getBody());
SmallVector<Value> memrefIndices;
auto tileSliceIndex = forOp.getInductionVar();
getMemrefIndices(tileStoreOp.getIndices(),
tileStoreOp.getMemRefType().getRank(), tileSliceIndex,
numTileSlices, memrefIndices, loc, rewriter);
rewriter.replaceOpWithNewOp<arm_sme::StoreTileSliceOp>(
tileStoreOp, tileStoreOp.getValueToStore(), tileSliceIndex,
tileStoreOp.getBase(), memrefIndices);
return success();
}
};
} // namespace
void mlir::populateArmSMEToSCFConversionPatterns(RewritePatternSet &patterns) {
patterns.add<TileLoadOpConversion, TileStoreOpConversion>(
patterns.getContext());
}
namespace {
struct ConvertArmSMEToSCFPass
: public impl::ConvertArmSMEToSCFBase<ConvertArmSMEToSCFPass> {
void runOnOperation() override {
RewritePatternSet patterns(&getContext());
ConversionTarget target(getContext());
populateArmSMEToSCFConversionPatterns(patterns);
target.addLegalDialect<arm_sme::ArmSMEDialect, vector::VectorDialect,
arith::ArithDialect, scf::SCFDialect>();
target.addIllegalOp<arm_sme::TileLoadOp, arm_sme::TileStoreOp>();
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
std::unique_ptr<Pass> mlir::createConvertArmSMEToSCFPass() {
return std::make_unique<ConvertArmSMEToSCFPass>();
}