The MLIR classes Type/Attribute/Operation/Op/Value support cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast functionality in addition to defining methods with the same name. This change begins the migration of uses of the method to the corresponding function call as has been decided as more consistent. Note that there still exist classes that only define methods directly, such as AffineExpr, and this does not include work currently to support a functional cast/isa call. Caveats include: - This clang-tidy script probably has more problems. - This only touches C++ code, so nothing that is being generated. Context: - https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…" - Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443 Implementation: This first patch was created with the following steps. The intention is to only do automated changes at first, so I waste less time if it's reverted, and so the first mass change is more clear as an example to other teams that will need to follow similar steps. Steps are described per line, as comments are removed by git: 0. Retrieve the change from the following to build clang-tidy with an additional check: https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check 1. Build clang-tidy 2. Run clang-tidy over your entire codebase while disabling all checks and enabling the one relevant one. Run on all header files also. 3. Delete .inc files that were also modified, so the next build rebuilds them to a pure state. 4. Some changes have been deleted for the following reasons: - Some files had a variable also named cast - Some files had not included a header file that defines the cast functions - Some files are definitions of the classes that have the casting methods, so the code still refers to the method instead of the function without adding a prefix or removing the method declaration at the same time. ``` ninja -C $BUILD_DIR clang-tidy run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\ -header-filter=mlir/ mlir/* -fix rm -rf $BUILD_DIR/tools/mlir/**/*.inc git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\ mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\ mlir/lib/**/IR/\ mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\ mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\ mlir/test/lib/Dialect/Test/TestTypes.cpp\ mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\ mlir/test/lib/Dialect/Test/TestAttributes.cpp\ mlir/unittests/TableGen/EnumsGenTest.cpp\ mlir/test/python/lib/PythonTestCAPI.cpp\ mlir/include/mlir/IR/ ``` Differential Revision: https://reviews.llvm.org/D150123
446 lines
18 KiB
C++
446 lines
18 KiB
C++
//===- KernelOutlining.cpp - Implementation of GPU kernel outlining -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the GPU dialect kernel outlining pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/GPU/Transforms/Passes.h"
|
|
|
|
#include "mlir/AsmParser/AsmParser.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
|
|
#include "mlir/Dialect/DLTI/DLTI.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
|
|
#include "mlir/Dialect/GPU/Transforms/Utils.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinAttributes.h"
|
|
#include "mlir/IR/IRMapping.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/SymbolTable.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
#include "mlir/Transforms/RegionUtils.h"
|
|
#include <limits>
|
|
|
|
namespace mlir {
|
|
#define GEN_PASS_DEF_GPULAUNCHSINKINDEXCOMPUTATIONS
|
|
#define GEN_PASS_DEF_GPUKERNELOUTLINING
|
|
#include "mlir/Dialect/GPU/Transforms/Passes.h.inc"
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
|
|
template <typename OpTy>
|
|
static void createForAllDimensions(OpBuilder &builder, Location loc,
|
|
SmallVectorImpl<Value> &values) {
|
|
for (auto dim : {gpu::Dimension::x, gpu::Dimension::y, gpu::Dimension::z})
|
|
values.push_back(builder.create<OpTy>(loc, builder.getIndexType(), dim));
|
|
}
|
|
|
|
/// Adds operations generating block/thread ids and grid/block dimensions at the
|
|
/// beginning of the `launchFuncOpBody` region. Add mapping from argument in
|
|
/// entry block of `launchOpBody`, to the corresponding result value of the
|
|
/// added operations.
|
|
static void injectGpuIndexOperations(Location loc, Region &launchFuncOpBody,
|
|
Region &launchOpBody, IRMapping &map) {
|
|
OpBuilder builder(loc->getContext());
|
|
Block &firstBlock = launchOpBody.front();
|
|
builder.setInsertionPointToStart(&launchFuncOpBody.front());
|
|
SmallVector<Value, 12> indexOps;
|
|
createForAllDimensions<gpu::BlockIdOp>(builder, loc, indexOps);
|
|
createForAllDimensions<gpu::ThreadIdOp>(builder, loc, indexOps);
|
|
createForAllDimensions<gpu::GridDimOp>(builder, loc, indexOps);
|
|
createForAllDimensions<gpu::BlockDimOp>(builder, loc, indexOps);
|
|
// Replace the leading 12 function args with the respective thread/block index
|
|
// operations. Iterate backwards since args are erased and indices change.
|
|
for (const auto &indexOp : enumerate(indexOps))
|
|
map.map(firstBlock.getArgument(indexOp.index()), indexOp.value());
|
|
}
|
|
|
|
/// Identifies operations that are beneficial to sink into kernels. These
|
|
/// operations may not have side-effects, as otherwise sinking (and hence
|
|
/// duplicating them) is not legal.
|
|
static bool isLikelyAnIndexComputation(Operation *op) {
|
|
return matchPattern(op, m_Constant()) ||
|
|
isa<memref::DimOp, arith::SelectOp, arith::CmpIOp>(op);
|
|
}
|
|
|
|
/// For a given operation `op`, computes whether it is beneficial to sink the
|
|
/// operation into the kernel. An operation can be sunk if doing so does not
|
|
/// introduce new kernel arguments. Whether a value is already available in the
|
|
/// kernel (and hence does not introduce new arguments) is checked by
|
|
/// querying `existingDependencies` and `availableValues`.
|
|
/// If an operand is not yet available, we recursively check whether it can be
|
|
/// made available by siking its defining op.
|
|
/// Operations that are indentified for sinking are added to `beneficiaryOps` in
|
|
/// the order they should appear in the kernel. Furthermore, `availableValues`
|
|
/// is updated with results that will be available after sinking the identified
|
|
/// ops.
|
|
static bool extractBeneficiaryOps(
|
|
Operation *op, const SetVector<Value> &existingDependencies,
|
|
SetVector<Operation *> &beneficiaryOps,
|
|
llvm::SmallPtrSetImpl<Value> &availableValues,
|
|
llvm::function_ref<bool(Operation *)> isSinkingBeneficiary) {
|
|
if (beneficiaryOps.count(op))
|
|
return true;
|
|
|
|
if (!isSinkingBeneficiary(op))
|
|
return false;
|
|
|
|
for (Value operand : op->getOperands()) {
|
|
// It is already visible in the kernel, keep going.
|
|
if (availableValues.count(operand))
|
|
continue;
|
|
// Else check whether it can be made available via sinking or already is a
|
|
// dependency.
|
|
Operation *definingOp = operand.getDefiningOp();
|
|
if ((!definingOp || !extractBeneficiaryOps(definingOp, existingDependencies,
|
|
beneficiaryOps, availableValues,
|
|
isSinkingBeneficiary)) &&
|
|
!existingDependencies.count(operand))
|
|
return false;
|
|
}
|
|
// We will sink the operation, mark its results as now available.
|
|
beneficiaryOps.insert(op);
|
|
for (Value result : op->getResults())
|
|
availableValues.insert(result);
|
|
return true;
|
|
}
|
|
|
|
LogicalResult mlir::sinkOperationsIntoLaunchOp(
|
|
gpu::LaunchOp launchOp,
|
|
llvm::function_ref<bool(Operation *)> isSinkingBeneficiary) {
|
|
assert(isSinkingBeneficiary);
|
|
Region &launchOpBody = launchOp.getBody();
|
|
|
|
// Identify uses from values defined outside of the scope of the launch
|
|
// operation.
|
|
SetVector<Value> sinkCandidates;
|
|
getUsedValuesDefinedAbove(launchOpBody, sinkCandidates);
|
|
|
|
SetVector<Operation *> toBeSunk;
|
|
llvm::SmallPtrSet<Value, 4> availableValues;
|
|
for (Value operand : sinkCandidates) {
|
|
Operation *operandOp = operand.getDefiningOp();
|
|
if (!operandOp)
|
|
continue;
|
|
extractBeneficiaryOps(operandOp, sinkCandidates, toBeSunk, availableValues,
|
|
isSinkingBeneficiary);
|
|
}
|
|
|
|
// Insert operations so that the defs get cloned before uses.
|
|
IRMapping map;
|
|
OpBuilder builder(launchOpBody);
|
|
for (Operation *op : toBeSunk) {
|
|
Operation *clonedOp = builder.clone(*op, map);
|
|
// Only replace uses within the launch op.
|
|
for (auto pair : llvm::zip(op->getResults(), clonedOp->getResults()))
|
|
replaceAllUsesInRegionWith(std::get<0>(pair), std::get<1>(pair),
|
|
launchOp.getBody());
|
|
}
|
|
return success();
|
|
}
|
|
|
|
/// Return the provided KernelDim3 as an array of i32 constants if possible.
|
|
static DenseI32ArrayAttr maybeConstantDimsAttr(gpu::KernelDim3 dims) {
|
|
SmallVector<int32_t, 3> constants;
|
|
MLIRContext *ctx = dims.x.getContext();
|
|
for (Value v : {dims.x, dims.y, dims.z}) {
|
|
APInt constValue;
|
|
if (!matchPattern(v, m_ConstantInt(&constValue)))
|
|
return nullptr;
|
|
// In the event someone called for a too-large block or grid dimension,
|
|
// don't set bounds as it is likely to cause more confusing behavior.
|
|
if (constValue.ugt(std::numeric_limits<uint32_t>::max()))
|
|
return nullptr;
|
|
constants.push_back(
|
|
constValue.getLimitedValue(std::numeric_limits<uint32_t>::max()));
|
|
}
|
|
return DenseI32ArrayAttr::get(ctx, constants);
|
|
}
|
|
|
|
/// Outline the `gpu.launch` operation body into a kernel function. Replace
|
|
/// `gpu.terminator` operations by `gpu.return` in the generated function.
|
|
/// Set block and grid size bounds if known.
|
|
static gpu::GPUFuncOp outlineKernelFuncImpl(gpu::LaunchOp launchOp,
|
|
StringRef kernelFnName,
|
|
SetVector<Value> &operands) {
|
|
Location loc = launchOp.getLoc();
|
|
// Create a builder with no insertion point, insertion will happen separately
|
|
// due to symbol table manipulation.
|
|
OpBuilder builder(launchOp.getContext());
|
|
Region &launchOpBody = launchOp.getBody();
|
|
|
|
// Identify uses from values defined outside of the scope of the launch
|
|
// operation.
|
|
getUsedValuesDefinedAbove(launchOpBody, operands);
|
|
|
|
// Create the gpu.func operation.
|
|
SmallVector<Type, 4> kernelOperandTypes;
|
|
kernelOperandTypes.reserve(operands.size());
|
|
for (Value operand : operands) {
|
|
kernelOperandTypes.push_back(operand.getType());
|
|
}
|
|
FunctionType type =
|
|
FunctionType::get(launchOp.getContext(), kernelOperandTypes, {});
|
|
auto outlinedFunc = builder.create<gpu::GPUFuncOp>(
|
|
loc, kernelFnName, type,
|
|
TypeRange(ValueRange(launchOp.getWorkgroupAttributions())),
|
|
TypeRange(ValueRange(launchOp.getPrivateAttributions())));
|
|
outlinedFunc->setAttr(gpu::GPUDialect::getKernelFuncAttrName(),
|
|
builder.getUnitAttr());
|
|
|
|
// If we can infer bounds on the grid and/or block sizes from the arguments
|
|
// to the launch op, propagate them to the generated kernel. This is safe
|
|
// because multiple launches with the same body are not deduplicated.
|
|
if (auto blockBounds =
|
|
maybeConstantDimsAttr(launchOp.getBlockSizeOperandValues()))
|
|
outlinedFunc->setAttr(gpu::GPUFuncOp::getKnownBlockSizeAttrName(),
|
|
blockBounds);
|
|
if (auto gridBounds =
|
|
maybeConstantDimsAttr(launchOp.getGridSizeOperandValues()))
|
|
outlinedFunc->setAttr(gpu::GPUFuncOp::getKnownGridSizeAttrName(),
|
|
gridBounds);
|
|
|
|
IRMapping map;
|
|
|
|
// Map the arguments corresponding to the launch parameters like blockIdx,
|
|
// threadIdx, etc.
|
|
Region &outlinedFuncBody = outlinedFunc.getBody();
|
|
injectGpuIndexOperations(loc, outlinedFuncBody, launchOpBody, map);
|
|
|
|
// Map memory attributions from the LaunOp op to the GPUFuncOp attributions.
|
|
for (const auto &[launchArg, funcArg] :
|
|
llvm::zip(launchOp.getWorkgroupAttributions(),
|
|
outlinedFunc.getWorkgroupAttributions()))
|
|
map.map(launchArg, funcArg);
|
|
for (const auto &[launchArg, funcArg] :
|
|
llvm::zip(launchOp.getPrivateAttributions(),
|
|
outlinedFunc.getPrivateAttributions()))
|
|
map.map(launchArg, funcArg);
|
|
|
|
// Map arguments from gpu.launch region to the arguments of the gpu.func
|
|
// operation.
|
|
Block &entryBlock = outlinedFuncBody.front();
|
|
for (const auto &operand : enumerate(operands))
|
|
map.map(operand.value(), entryBlock.getArgument(operand.index()));
|
|
|
|
// Clone the region of the gpu.launch operation into the gpu.func operation.
|
|
// TODO: If cloneInto can be modified such that if a mapping for
|
|
// a block exists, that block will be used to clone operations into (at the
|
|
// end of the block), instead of creating a new block, this would be much
|
|
// cleaner.
|
|
launchOpBody.cloneInto(&outlinedFuncBody, map);
|
|
|
|
// Branch from entry of the gpu.func operation to the block that is cloned
|
|
// from the entry block of the gpu.launch operation.
|
|
Block &launchOpEntry = launchOpBody.front();
|
|
Block *clonedLaunchOpEntry = map.lookup(&launchOpEntry);
|
|
builder.setInsertionPointToEnd(&entryBlock);
|
|
builder.create<cf::BranchOp>(loc, clonedLaunchOpEntry);
|
|
|
|
outlinedFunc.walk([](gpu::TerminatorOp op) {
|
|
OpBuilder replacer(op);
|
|
replacer.create<gpu::ReturnOp>(op.getLoc());
|
|
op.erase();
|
|
});
|
|
return outlinedFunc;
|
|
}
|
|
|
|
gpu::GPUFuncOp mlir::outlineKernelFunc(gpu::LaunchOp launchOp,
|
|
StringRef kernelFnName,
|
|
llvm::SmallVectorImpl<Value> &operands) {
|
|
DenseSet<Value> inputOperandSet;
|
|
inputOperandSet.insert(operands.begin(), operands.end());
|
|
SetVector<Value> operandSet(operands.begin(), operands.end());
|
|
auto funcOp = outlineKernelFuncImpl(launchOp, kernelFnName, operandSet);
|
|
for (auto operand : operandSet) {
|
|
if (!inputOperandSet.count(operand))
|
|
operands.push_back(operand);
|
|
}
|
|
return funcOp;
|
|
}
|
|
|
|
/// Replace `gpu.launch` operations with an `gpu.launch_func` operation
|
|
/// launching `kernelFunc`. The kernel func contains the body of the
|
|
/// `gpu.launch` with constant region arguments inlined.
|
|
static void convertToLaunchFuncOp(gpu::LaunchOp launchOp,
|
|
gpu::GPUFuncOp kernelFunc,
|
|
ValueRange operands) {
|
|
OpBuilder builder(launchOp);
|
|
// The launch op has an optional dynamic shared memory size. If it doesn't
|
|
// exist, we use zero.
|
|
Value asyncToken = launchOp.getAsyncToken();
|
|
auto launchFunc = builder.create<gpu::LaunchFuncOp>(
|
|
launchOp.getLoc(), kernelFunc, launchOp.getGridSizeOperandValues(),
|
|
launchOp.getBlockSizeOperandValues(),
|
|
launchOp.getDynamicSharedMemorySize(), operands,
|
|
asyncToken ? asyncToken.getType() : nullptr,
|
|
launchOp.getAsyncDependencies());
|
|
launchOp.replaceAllUsesWith(launchFunc);
|
|
launchOp.erase();
|
|
}
|
|
|
|
namespace {
|
|
/// Pass that moves ops which are likely an index computation into gpu.launch
|
|
/// body.
|
|
class GpuLaunchSinkIndexComputationsPass
|
|
: public impl::GpuLaunchSinkIndexComputationsBase<
|
|
GpuLaunchSinkIndexComputationsPass> {
|
|
public:
|
|
void runOnOperation() override {
|
|
Operation *op = getOperation();
|
|
if (op->walk([](gpu::LaunchOp launch) {
|
|
// Pull in instructions that can be sunk
|
|
if (failed(sinkOperationsIntoLaunchOp(launch,
|
|
isLikelyAnIndexComputation)))
|
|
return WalkResult::interrupt();
|
|
|
|
return WalkResult::advance();
|
|
}).wasInterrupted())
|
|
signalPassFailure();
|
|
}
|
|
};
|
|
|
|
/// Pass that moves the kernel of each LaunchOp into its separate nested module.
|
|
///
|
|
/// This pass moves the kernel code of each LaunchOp into a function created
|
|
/// inside a nested module. It also creates an external function of the same
|
|
/// name in the parent module.
|
|
///
|
|
/// The gpu.modules are intended to be compiled to a cubin blob independently in
|
|
/// a separate pass. The external functions can then be annotated with the
|
|
/// symbol of the cubin accessor function.
|
|
class GpuKernelOutliningPass
|
|
: public impl::GpuKernelOutliningBase<GpuKernelOutliningPass> {
|
|
public:
|
|
GpuKernelOutliningPass(StringRef dlStr) {
|
|
if (!dlStr.empty() && !dataLayoutStr.hasValue())
|
|
dataLayoutStr = dlStr.str();
|
|
}
|
|
|
|
GpuKernelOutliningPass(const GpuKernelOutliningPass &other)
|
|
: GpuKernelOutliningBase(other), dataLayoutSpec(other.dataLayoutSpec) {
|
|
dataLayoutStr = other.dataLayoutStr.getValue();
|
|
}
|
|
|
|
LogicalResult initialize(MLIRContext *context) override {
|
|
// Initialize the data layout specification from the data layout string.
|
|
if (!dataLayoutStr.empty()) {
|
|
Attribute resultAttr = mlir::parseAttribute(dataLayoutStr, context);
|
|
if (!resultAttr)
|
|
return failure();
|
|
|
|
dataLayoutSpec = dyn_cast<DataLayoutSpecInterface>(resultAttr);
|
|
if (!dataLayoutSpec)
|
|
return failure();
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
void runOnOperation() override {
|
|
SymbolTable symbolTable(getOperation());
|
|
bool modified = false;
|
|
for (auto func : getOperation().getOps<func::FuncOp>()) {
|
|
// Insert just after the function.
|
|
Block::iterator insertPt(func->getNextNode());
|
|
auto funcWalkResult = func.walk([&](gpu::LaunchOp op) {
|
|
SetVector<Value> operands;
|
|
std::string kernelFnName =
|
|
Twine(op->getParentOfType<func::FuncOp>().getName(), "_kernel")
|
|
.str();
|
|
|
|
gpu::GPUFuncOp outlinedFunc =
|
|
outlineKernelFuncImpl(op, kernelFnName, operands);
|
|
|
|
// Create nested module and insert outlinedFunc. The module will
|
|
// originally get the same name as the function, but may be renamed on
|
|
// insertion into the parent module.
|
|
auto kernelModule = createKernelModule(outlinedFunc, symbolTable);
|
|
symbolTable.insert(kernelModule, insertPt);
|
|
|
|
// Potentially changes signature, pulling in constants.
|
|
convertToLaunchFuncOp(op, outlinedFunc, operands.getArrayRef());
|
|
modified = true;
|
|
return WalkResult::advance();
|
|
});
|
|
if (funcWalkResult.wasInterrupted())
|
|
return signalPassFailure();
|
|
}
|
|
|
|
// If any new module was inserted in this module, annotate this module as
|
|
// a container module.
|
|
if (modified)
|
|
getOperation()->setAttr(gpu::GPUDialect::getContainerModuleAttrName(),
|
|
UnitAttr::get(&getContext()));
|
|
}
|
|
|
|
private:
|
|
/// Returns a gpu.module containing kernelFunc and all callees (recursive).
|
|
gpu::GPUModuleOp createKernelModule(gpu::GPUFuncOp kernelFunc,
|
|
const SymbolTable &parentSymbolTable) {
|
|
// TODO: This code cannot use an OpBuilder because it must be inserted into
|
|
// a SymbolTable by the caller. SymbolTable needs to be refactored to
|
|
// prevent manual building of Ops with symbols in code using SymbolTables
|
|
// and then this needs to use the OpBuilder.
|
|
auto *context = getOperation().getContext();
|
|
OpBuilder builder(context);
|
|
auto kernelModule = builder.create<gpu::GPUModuleOp>(kernelFunc.getLoc(),
|
|
kernelFunc.getName());
|
|
|
|
// If a valid data layout spec was provided, attach it to the kernel module.
|
|
// Otherwise, the default data layout will be used.
|
|
if (dataLayoutSpec)
|
|
kernelModule->setAttr(DLTIDialect::kDataLayoutAttrName, dataLayoutSpec);
|
|
|
|
SymbolTable symbolTable(kernelModule);
|
|
symbolTable.insert(kernelFunc);
|
|
|
|
SmallVector<Operation *, 8> symbolDefWorklist = {kernelFunc};
|
|
while (!symbolDefWorklist.empty()) {
|
|
if (std::optional<SymbolTable::UseRange> symbolUses =
|
|
SymbolTable::getSymbolUses(symbolDefWorklist.pop_back_val())) {
|
|
for (SymbolTable::SymbolUse symbolUse : *symbolUses) {
|
|
StringRef symbolName =
|
|
cast<FlatSymbolRefAttr>(symbolUse.getSymbolRef()).getValue();
|
|
if (symbolTable.lookup(symbolName))
|
|
continue;
|
|
|
|
Operation *symbolDefClone =
|
|
parentSymbolTable.lookup(symbolName)->clone();
|
|
symbolDefWorklist.push_back(symbolDefClone);
|
|
symbolTable.insert(symbolDefClone);
|
|
}
|
|
}
|
|
}
|
|
|
|
return kernelModule;
|
|
}
|
|
|
|
Option<std::string> dataLayoutStr{
|
|
*this, "data-layout-str",
|
|
llvm::cl::desc("String containing the data layout specification to be "
|
|
"attached to the GPU kernel module")};
|
|
|
|
DataLayoutSpecInterface dataLayoutSpec;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
std::unique_ptr<Pass> mlir::createGpuLauchSinkIndexComputationsPass() {
|
|
return std::make_unique<GpuLaunchSinkIndexComputationsPass>();
|
|
}
|
|
|
|
std::unique_ptr<OperationPass<ModuleOp>>
|
|
mlir::createGpuKernelOutliningPass(StringRef dataLayoutStr) {
|
|
return std::make_unique<GpuKernelOutliningPass>(dataLayoutStr);
|
|
}
|