Files
clang-p2996/mlir/lib/Dialect/Utils/ReshapeOpsUtils.cpp
Tres Popp 5550c82189 [mlir] Move casting calls from methods to function calls
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.

Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.

Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.

Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
  for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443

Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.

Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
   additional check:
   https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
   and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
   them to a pure state.
4. Some changes have been deleted for the following reasons:
   - Some files had a variable also named cast
   - Some files had not included a header file that defines the cast
     functions
   - Some files are definitions of the classes that have the casting
     methods, so the code still refers to the method instead of the
     function without adding a prefix or removing the method declaration
     at the same time.

```
ninja -C $BUILD_DIR clang-tidy

run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
               -header-filter=mlir/ mlir/* -fix

rm -rf $BUILD_DIR/tools/mlir/**/*.inc

git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
            mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
            mlir/lib/**/IR/\
            mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
            mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
            mlir/test/lib/Dialect/Test/TestTypes.cpp\
            mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
            mlir/test/lib/Dialect/Test/TestAttributes.cpp\
            mlir/unittests/TableGen/EnumsGenTest.cpp\
            mlir/test/python/lib/PythonTestCAPI.cpp\
            mlir/include/mlir/IR/
```

Differential Revision: https://reviews.llvm.org/D150123
2023-05-12 11:21:25 +02:00

493 lines
19 KiB
C++

//===- ReshapeOpsUtils.cpp - Utilities used by structured ops -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include <numeric>
#include <optional>
using namespace mlir;
std::optional<SmallVector<ReassociationIndices>>
mlir::getReassociationIndicesForReshape(ShapedType sourceType,
ShapedType targetType) {
if (sourceType.getRank() > targetType.getRank())
return getReassociationIndicesForCollapse(sourceType.getShape(),
targetType.getShape());
if (sourceType.getRank() < targetType.getRank())
return getReassociationIndicesForCollapse(targetType.getShape(),
sourceType.getShape());
return std::nullopt;
}
std::optional<SmallVector<ReassociationIndices>>
mlir::getReassociationIndicesForCollapse(ArrayRef<int64_t> sourceShape,
ArrayRef<int64_t> targetShape) {
if (sourceShape.size() <= targetShape.size())
return std::nullopt;
unsigned sourceDim = 0;
SmallVector<ReassociationIndices> reassociationMap;
reassociationMap.reserve(targetShape.size());
ReassociationIndices currIndices;
int64_t prodOfCollapsedDims = 1;
while (sourceDim < sourceShape.size()) {
unsigned targetDim = reassociationMap.size();
// If we have mapped all the target dimensions stop and handle the remaining
// tail of size-1 dimensions explictly.
if (targetDim == targetShape.size())
break;
int64_t currTargetShape = targetShape[targetDim];
while (sourceDim < sourceShape.size() &&
sourceShape[sourceDim] != ShapedType::kDynamic &&
prodOfCollapsedDims * sourceShape[sourceDim] < currTargetShape) {
prodOfCollapsedDims *= sourceShape[sourceDim];
currIndices.push_back(sourceDim++);
}
// If the current expanded dimension is dynamic, then the collapsed
// dimensions should also be dynamic and product of all previous unprocessed
// dimensions of the expanded shape should be 1.
if (sourceShape[sourceDim] == ShapedType::kDynamic &&
(currTargetShape != ShapedType::kDynamic || prodOfCollapsedDims != 1))
return std::nullopt;
// If the collapsed dim is dynamic, the current expanded dim should also
// be dynamic.
if (currTargetShape == ShapedType::kDynamic &&
sourceShape[sourceDim] != ShapedType::kDynamic)
return std::nullopt;
// For static shapes, if the product of dimensions of the expanded shape
// should match the collapsed dimension shape.
if (prodOfCollapsedDims * sourceShape[sourceDim] != currTargetShape)
return std::nullopt;
currIndices.push_back(sourceDim++);
reassociationMap.emplace_back(ReassociationIndices{});
std::swap(reassociationMap.back(), currIndices);
prodOfCollapsedDims = 1;
}
// All the dimensions in the target must have been processed.
if (reassociationMap.size() != targetShape.size())
return std::nullopt;
// Process any remaining entries in the source shape. They all need to be
// 1 or dynamic.
for (; sourceDim < sourceShape.size(); sourceDim++) {
if (sourceShape[sourceDim] != ShapedType::kDynamic &&
sourceShape[sourceDim] != 1)
return std::nullopt;
// The map is empty when the target type is a scalar.
if (!reassociationMap.empty())
reassociationMap.back().push_back(sourceDim);
}
return reassociationMap;
}
std::optional<SmallVector<ReassociationIndices>>
mlir::composeReassociationIndices(
ArrayRef<ReassociationIndices> producerReassociations,
ArrayRef<ReassociationIndices> consumerReassociations,
MLIRContext *context) {
SmallVector<ReassociationIndices> composedIndices;
// Make the producer the larger sized vector. If they are of same size, the
// resulting reshape is not a supported reshape op.
if (producerReassociations.size() == consumerReassociations.size())
return std::nullopt;
if (producerReassociations.size() < consumerReassociations.size())
std::swap(producerReassociations, consumerReassociations);
// Handle the corner case of the result being a rank 0 shaped type. Return an
// empty reassociation.
if (consumerReassociations.empty())
return composedIndices;
size_t consumerDims = std::accumulate(
consumerReassociations.begin(), consumerReassociations.end(), 0,
[](size_t all, ReassociationIndicesRef indices) {
return all + indices.size();
});
if (producerReassociations.size() != consumerDims)
return std::nullopt;
for (ReassociationIndicesRef consumerIndices : consumerReassociations) {
ReassociationIndices reassociations;
for (int64_t consumerIndex : consumerIndices) {
llvm::append_range(reassociations, producerReassociations[consumerIndex]);
}
composedIndices.push_back(std::move(reassociations));
}
return composedIndices;
}
SmallVector<SmallVector<AffineExpr, 2>, 2>
mlir::convertReassociationIndicesToExprs(
MLIRContext *context, ArrayRef<ReassociationIndices> reassociationIndices) {
SmallVector<SmallVector<AffineExpr, 2>, 2> reassociationMaps;
for (const auto &indices : reassociationIndices) {
SmallVector<AffineExpr, 2> reassociationMap;
reassociationMap.reserve(indices.size());
for (int64_t index : indices)
reassociationMap.push_back(mlir::getAffineDimExpr(index, context));
reassociationMaps.push_back(std::move(reassociationMap));
}
return reassociationMaps;
}
template <typename AffineExprTy>
unsigned getMaxPosOfType(ArrayRef<ReassociationExprs> exprArrays) {
unsigned pos = 0;
for (const auto &exprs : exprArrays) {
for (auto expr : exprs) {
expr.walk([&pos](AffineExpr e) {
if (auto d = e.dyn_cast<AffineExprTy>())
pos = std::max(pos, d.getPosition());
});
}
}
return pos;
}
ArrayAttr mlir::getReassociationIndicesAttribute(
OpBuilder &b, ArrayRef<ReassociationIndices> reassociation) {
SmallVector<Attribute, 4> reassociationAttr =
llvm::to_vector<4>(llvm::map_range(
reassociation, [&](const ReassociationIndices &indices) -> Attribute {
return cast<Attribute>(b.getI64ArrayAttr(indices));
}));
return b.getArrayAttr(reassociationAttr);
}
SmallVector<ReassociationIndices, 2> mlir::convertReassociationMapsToIndices(
OpBuilder &b, ArrayRef<ReassociationExprs> reassociationExprs) {
SmallVector<ReassociationIndices, 2> reassociationIndices;
for (const auto &exprs : reassociationExprs) {
ReassociationIndices indices;
indices.reserve(exprs.size());
for (const auto &expr : exprs)
indices.push_back(expr.cast<AffineDimExpr>().getPosition());
reassociationIndices.push_back(indices);
}
return reassociationIndices;
}
SmallVector<AffineMap, 4>
mlir::getSymbolLessAffineMaps(ArrayRef<ReassociationExprs> reassociation) {
unsigned maxDim = getMaxPosOfType<AffineDimExpr>(reassociation);
assert(getMaxPosOfType<AffineSymbolExpr>(reassociation) == 0 &&
"Expected symbol-less expressions");
SmallVector<AffineMap, 4> maps;
maps.reserve(reassociation.size());
for (const auto &exprs : reassociation) {
assert(!exprs.empty());
maps.push_back(AffineMap::get(maxDim + 1, 0, exprs, exprs[0].getContext()));
}
return maps;
}
bool mlir::isReassociationValid(ArrayRef<AffineMap> reassociation,
int *invalidIndex) {
if (reassociation.empty())
return true;
unsigned nDims = reassociation[0].getNumDims();
unsigned nextExpectedDim = 0;
for (const auto &it : llvm::enumerate(reassociation)) {
auto m = it.value();
if (m.getNumDims() != nDims || m.getNumSymbols() != 0) {
if (invalidIndex)
*invalidIndex = it.index();
return false;
}
for (auto e : m.getResults()) {
auto d = e.dyn_cast<AffineDimExpr>();
if (!d || d.getPosition() != nextExpectedDim++) {
if (invalidIndex)
*invalidIndex = it.index();
return false;
}
}
}
if (nextExpectedDim != nDims) {
if (invalidIndex)
*invalidIndex = reassociation.size() - 1;
return false;
}
return true;
}
LogicalResult mlir::reshapeLikeShapesAreCompatible(
function_ref<LogicalResult(const Twine &)> emitError,
ArrayRef<int64_t> collapsedShape, ArrayRef<int64_t> expandedShape,
ArrayRef<ReassociationIndices> reassociationMaps, bool isExpandingReshape) {
unsigned expandedDimStart = 0;
for (const auto &map : llvm::enumerate(reassociationMaps)) {
std::optional<int64_t> dynamicShape;
int64_t linearizedStaticShape = 1;
for (const auto &dim : llvm::enumerate(
expandedShape.slice(expandedDimStart, map.value().size()))) {
if (ShapedType::isDynamic(dim.value())) {
if (isExpandingReshape && dynamicShape) {
return emitError("invalid to have a single dimension (" +
Twine(map.index()) +
") expanded into multiple dynamic dims (" +
Twine(expandedDimStart + dynamicShape.value()) +
"," + Twine(expandedDimStart + dim.index()) + ")");
}
dynamicShape = dim.index();
} else {
linearizedStaticShape *= dim.value();
}
}
if (dynamicShape) {
if (!ShapedType::isDynamic(collapsedShape[map.index()])) {
return emitError(
"expected dimension " + Twine(map.index()) +
" of collapsed type to be dynamic since one or more of the "
"corresponding dimensions in the expanded type is dynamic");
}
} else {
if (collapsedShape[map.index()] != linearizedStaticShape) {
return emitError("expected dimension " + Twine(map.index()) +
" of collapsed type to be static value of " +
Twine(linearizedStaticShape));
}
}
expandedDimStart += map.value().size();
}
return success();
}
bool mlir::hasNonIdentityLayout(Type type) {
if (auto memrefType = dyn_cast<MemRefType>(type))
return !memrefType.getLayout().isIdentity();
return false;
}
llvm::SmallBitVector
mlir::getSlicedDimensions(ArrayRef<OpFoldResult> sliceInputShape,
ArrayRef<Range> sliceParams) {
assert(sliceParams.size() == sliceInputShape.size() &&
"only supports non rank-reducing case");
llvm::SmallBitVector mask(sliceInputShape.size());
unsigned idx = 0;
for (const auto &[offset, size, stride] : sliceParams) {
std::optional<int64_t> offsetConst = getConstantIntValue(offset);
std::optional<int64_t> strideConst = getConstantIntValue(stride);
mask[idx] = !isEqualConstantIntOrValue(size, sliceInputShape[idx]) ||
(!strideConst || *strideConst != 1) ||
(!offsetConst || *offsetConst != 0);
idx++;
}
return mask;
}
llvm::SmallBitVector mlir::getLinearizedDimensions(
ArrayRef<ReassociationIndices> reassociationIndices) {
llvm::SmallBitVector result(reassociationIndices.size());
for (const auto &it : llvm::enumerate(reassociationIndices))
result[it.index()] = it.value().size() > 1;
return result;
}
SmallVector<Range> SliceFromCollapseHelper::getExtractSliceParams(
MLIRContext *ctx, ArrayRef<ValueRange> multiIndices) {
unsigned loopIdx = 0;
auto oneAttr = IntegerAttr::get(IndexType::get(ctx), 1);
auto zeroAttr = IntegerAttr::get(IndexType::get(ctx), 0);
SmallVector<Range> offsetsSizesAndStrides;
offsetsSizesAndStrides.reserve(collapseShapeInputShape.size());
for (const auto &it : llvm::enumerate(reassociationIndices)) {
// Case 1: Linearized dimensions that have also been sliced. These
// are size of 1 because we are iterating over these dimensions. The
// offsets are exactly the de-linearized multi-indices.
if (slicedDimensions[it.index()] && linearizedDimensions[it.index()]) {
llvm::append_range(
offsetsSizesAndStrides,
llvm::map_range(multiIndices[loopIdx++], [&](Value v) -> Range {
return Range{getAsOpFoldResult(v), oneAttr, oneAttr};
}));
continue;
}
// Case 2: One or possibly multiple combined input dimensions, but we
// have proven that these are not sliced. In this case we just take
// the full extent of each dimension in the reassociation list.
if (linearizedDimensions[it.index()]) {
llvm::append_range(
offsetsSizesAndStrides,
llvm::map_range(it.value(), [&](int64_t idx) -> Range {
return {zeroAttr, collapseShapeInputShape[idx], oneAttr};
}));
continue;
}
// Case 3: A single index, but it may be sliced.
offsetsSizesAndStrides.push_back(sliceParams[it.index()]);
}
return offsetsSizesAndStrides;
}
SmallVector<Range>
SliceFromCollapseHelper::getInsertSliceParams(MLIRContext *ctx,
ValueRange tileIndices) {
auto one = IntegerAttr::get(IndexType::get(ctx), 1);
auto zero = IntegerAttr::get(IndexType::get(ctx), 0);
SmallVector<Range> insertParams;
insertParams.reserve(linearizedDimensions.size());
unsigned loopIdx = 0;
for (unsigned i = 0; i < linearizedDimensions.size(); i++) {
if (linearizedDimensions[i] && slicedDimensions[i]) {
insertParams.push_back(Range{tileIndices[loopIdx++], one, one});
continue;
}
insertParams.push_back(Range{zero, sliceParams[i].size, one});
}
return insertParams;
}
/// Returns the index of the only non-unit dimension among `indices` of `shape`,
/// if such a dimension exists and `indices` has more than one element.
/// Otherwise, return std::nullopt.
static std::optional<int64_t> getUniqueNonUnitDim(ArrayRef<int64_t> indices,
ArrayRef<int64_t> shape) {
// Return false if more than one of the dimensions in this group are not 1.
std::optional<int64_t> dimIndex;
if (indices.size() < 2)
return std::nullopt;
for (int64_t idx : indices) {
if (shape[idx] != 1) {
if (dimIndex != std::nullopt)
return std::nullopt;
dimIndex = idx;
}
}
return dimIndex;
}
// For each segment in the reassociation indices, check whether we can
// simplify that segment with a rank-reducing extract slice. We can do this if
// all but (exactly) one of the corresponding source dims is 1.
static SmallVector<std::optional<int64_t>> getCollapseShapeTrivialSegments(
RankedTensorType sourceType,
ArrayRef<ReassociationIndices> reassociationIndices) {
SmallVector<std::optional<int64_t>> trivialSegments;
for (const auto &indices : reassociationIndices)
trivialSegments.push_back(
getUniqueNonUnitDim(indices, sourceType.getShape()));
return trivialSegments;
}
/// Returns true if any of the segments of the reassociation indices for a
/// collapsing reshape can be simplified using a rank-reducing slice.
static FailureOr<SmallVector<std::optional<int64_t>>>
canCollapseShapeBeSimplifiedByRankReducingSlice(
RankedTensorType sourceType,
ArrayRef<ReassociationIndices> reassociationIndices) {
SmallVector<std::optional<int64_t>> trivialSegments =
getCollapseShapeTrivialSegments(sourceType, reassociationIndices);
if (!llvm::any_of(trivialSegments, [](const std::optional<int64_t> &idx) {
return idx.has_value();
}))
return failure();
return trivialSegments;
}
FailureOr<CollapseShapeRankReducingSliceSimplificationInfo>
mlir::getSimplifyCollapseShapeWithRankReducingSliceInfo(
RankedTensorType sourceType,
ArrayRef<ReassociationIndices> reassociationIndices) {
FailureOr<SmallVector<std::optional<int64_t>>> trivialSegments =
canCollapseShapeBeSimplifiedByRankReducingSlice(sourceType,
reassociationIndices);
if (failed(trivialSegments))
return failure();
// Create the expected result shape of the rank-reducing slice.
SmallVector<int64_t> sliceShape;
for (const auto &[nonUnitDim, indices] :
llvm::zip(*trivialSegments, reassociationIndices)) {
if (nonUnitDim) {
sliceShape.push_back(sourceType.getDimSize(*nonUnitDim));
continue;
}
llvm::append_range(sliceShape, llvm::map_range(indices, [&](int64_t idx) {
return sourceType.getDimSize(idx);
}));
}
auto sliceType =
RankedTensorType::get(sliceShape, sourceType.getElementType());
// If the rank-reducing slice simplified every segment, then we are done.
if (sliceShape.size() == reassociationIndices.size())
return CollapseShapeRankReducingSliceSimplificationInfo{sliceType,
std::nullopt};
// Otherwise, we need to create a new collapse_shape op for the segments that
// weren't covered by the slice. By design, the new reassociation indices has
// the same number of groups as the old reassociation indices.
SmallVector<ReassociationIndices> newReassociationIndices;
SmallVector<int64_t, 2> reassociation;
int64_t groupIdx = 0;
for (int64_t dimIdx = 0; dimIdx < sliceType.getRank(); dimIdx++) {
reassociation.push_back(dimIdx);
if ((*trivialSegments)[groupIdx] ||
reassociation.size() == reassociationIndices[groupIdx].size()) {
newReassociationIndices.push_back(reassociation);
reassociation.clear();
groupIdx++;
}
}
return CollapseShapeRankReducingSliceSimplificationInfo{
sliceType, newReassociationIndices};
}
PackingMetadata mlir::computePackingMetadata(int64_t packedRank,
ArrayRef<int64_t> innerDimPos) {
PackingMetadata res;
res.insertPositions.reserve(innerDimPos.size());
// The pack insert position is the position + the number of previously
// inserted positions + offset.
// The offset controls whether the packing dimension is the first or last.
//
// Example
// =======
// Consider packing from a hypothetical ABCD layout to ABCDba whose
// pack.inner_dims is [1, 0]. The first step consists in undoing the
// permutation and producing AaBbCD. This is achieved purely by computing the
// insert positions of `b` and `a` into `ABCD`, starting from [1, 0]. One
// possibility, is to produce insert positions [2, 0], this would result in an
// aAbBCD layout (i.e. offset 0). The other possibility, is to produce insert
// positions [3, 1], this would result in an AaBbCD layout (i.e. offset 1).
// The latter is what we expect from packing.
int64_t offset = 1;
for (int64_t pos : innerDimPos) {
int64_t numInsertedBefore = llvm::count_if(
innerDimPos, [&pos](int64_t pos2) { return pos > pos2; });
res.insertPositions.push_back(pos + numInsertedBefore + offset);
}
DenseSet<int64_t> posSet(res.insertPositions.begin(),
res.insertPositions.end());
res.reassociations.reserve(packedRank);
for (int64_t i = 1; i <= packedRank; ++i) {
res.outerPositions.push_back(i - 1);
if (!posSet.contains(i)) {
res.reassociations.push_back(ReassociationIndices{i - 1});
continue;
}
res.reassociations.push_back(ReassociationIndices{i - 1, i});
++i;
}
return res;
}