Files
clang-p2996/mlir/lib/Dialect/Vector/Transforms/LowerVectorTransfer.cpp
Benjamin Maxwell ccef726d09 [mlir][VectorOps] Don't drop scalable dims when lowering transfer_reads/writes (in VectorToLLVM)
This is a follow-on to D158753, and allows the lowering of a
transfer read/write of n-D vectors with a single trailing scalable dimension
to primitive vector ops.

The final conversion to LLVM depends on D158517 and D158752, without
these patches type conversion will fail (or an assert is hit in the LLVM
backend) if the final IR contains an array of scalable vectors.

This patch adds `transform.apply_patterns.vector.lower_create_mask`
which allows the lowering of vector.create_mask/constant_mask to be
tested independently of --convert-vector-to-llvm.

Reviewed By: c-rhodes, awarzynski, dcaballe

Differential Revision: https://reviews.llvm.org/D159482
2023-09-11 16:47:51 +00:00

625 lines
27 KiB
C++

//===- VectorTransferPermutationMapRewritePatterns.cpp - Xfer map rewrite -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements rewrite patterns for the permutation_map attribute of
// vector.transfer operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/Interfaces/VectorInterfaces.h"
using namespace mlir;
using namespace mlir::vector;
/// Transpose a vector transfer op's `in_bounds` attribute by applying reverse
/// permutation based on the given indices.
static ArrayAttr
inverseTransposeInBoundsAttr(OpBuilder &builder, ArrayAttr attr,
const SmallVector<unsigned> &permutation) {
SmallVector<bool> newInBoundsValues(permutation.size());
size_t index = 0;
for (unsigned pos : permutation)
newInBoundsValues[pos] =
cast<BoolAttr>(attr.getValue()[index++]).getValue();
return builder.getBoolArrayAttr(newInBoundsValues);
}
/// Extend the rank of a vector Value by `addedRanks` by adding outer unit
/// dimensions.
static Value extendVectorRank(OpBuilder &builder, Location loc, Value vec,
int64_t addedRank) {
auto originalVecType = cast<VectorType>(vec.getType());
SmallVector<int64_t> newShape(addedRank, 1);
newShape.append(originalVecType.getShape().begin(),
originalVecType.getShape().end());
VectorType newVecType =
VectorType::get(newShape, originalVecType.getElementType());
return builder.create<vector::BroadcastOp>(loc, newVecType, vec);
}
/// Extend the rank of a vector Value by `addedRanks` by adding inner unit
/// dimensions.
static Value extendMaskRank(OpBuilder &builder, Location loc, Value vec,
int64_t addedRank) {
Value broadcasted = extendVectorRank(builder, loc, vec, addedRank);
SmallVector<int64_t> permutation;
for (int64_t i = addedRank,
e = broadcasted.getType().cast<VectorType>().getRank();
i < e; ++i)
permutation.push_back(i);
for (int64_t i = 0; i < addedRank; ++i)
permutation.push_back(i);
return builder.create<vector::TransposeOp>(loc, broadcasted, permutation);
}
//===----------------------------------------------------------------------===//
// populateVectorTransferPermutationMapLoweringPatterns
//===----------------------------------------------------------------------===//
namespace {
/// Lower transfer_read op with permutation into a transfer_read with a
/// permutation map composed of leading zeros followed by a minor identiy +
/// vector.transpose op.
/// Ex:
/// vector.transfer_read ...
/// permutation_map: (d0, d1, d2) -> (0, d1)
/// into:
/// %v = vector.transfer_read ...
/// permutation_map: (d0, d1, d2) -> (d1, 0)
/// vector.transpose %v, [1, 0]
///
/// vector.transfer_read ...
/// permutation_map: (d0, d1, d2, d3) -> (0, 0, 0, d1, d3)
/// into:
/// %v = vector.transfer_read ...
/// permutation_map: (d0, d1, d2, d3) -> (0, 0, d1, 0, d3)
/// vector.transpose %v, [0, 1, 3, 2, 4]
/// Note that an alternative is to transform it to linalg.transpose +
/// vector.transfer_read to do the transpose in memory instead.
struct TransferReadPermutationLowering
: public OpRewritePattern<vector::TransferReadOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferReadOp op,
PatternRewriter &rewriter) const override {
// TODO: support 0-d corner case.
if (op.getTransferRank() == 0)
return rewriter.notifyMatchFailure(op, "0-d corner case not supported");
SmallVector<unsigned> permutation;
AffineMap map = op.getPermutationMap();
if (map.getNumResults() == 0)
return rewriter.notifyMatchFailure(op, "0 result permutation map");
if (!map.isPermutationOfMinorIdentityWithBroadcasting(permutation)) {
return rewriter.notifyMatchFailure(
op, "map is not permutable to minor identity, apply another pattern");
}
AffineMap permutationMap =
map.getPermutationMap(permutation, op.getContext());
if (permutationMap.isIdentity())
return rewriter.notifyMatchFailure(op, "map is not identity");
permutationMap = map.getPermutationMap(permutation, op.getContext());
// Caluclate the map of the new read by applying the inverse permutation.
permutationMap = inversePermutation(permutationMap);
AffineMap newMap = permutationMap.compose(map);
// Apply the reverse transpose to deduce the type of the transfer_read.
ArrayRef<int64_t> originalShape = op.getVectorType().getShape();
SmallVector<int64_t> newVectorShape(originalShape.size());
ArrayRef<bool> originalScalableDims = op.getVectorType().getScalableDims();
SmallVector<bool> newScalableDims(originalShape.size());
for (const auto &pos : llvm::enumerate(permutation)) {
newVectorShape[pos.value()] = originalShape[pos.index()];
newScalableDims[pos.value()] = originalScalableDims[pos.index()];
}
// Transpose in_bounds attribute.
ArrayAttr newInBoundsAttr =
op.getInBounds() ? inverseTransposeInBoundsAttr(
rewriter, op.getInBounds().value(), permutation)
: ArrayAttr();
// Generate new transfer_read operation.
VectorType newReadType = VectorType::get(
newVectorShape, op.getVectorType().getElementType(), newScalableDims);
Value newRead = rewriter.create<vector::TransferReadOp>(
op.getLoc(), newReadType, op.getSource(), op.getIndices(),
AffineMapAttr::get(newMap), op.getPadding(), op.getMask(),
newInBoundsAttr);
// Transpose result of transfer_read.
SmallVector<int64_t> transposePerm(permutation.begin(), permutation.end());
rewriter.replaceOpWithNewOp<vector::TransposeOp>(op, newRead,
transposePerm);
return success();
}
};
/// Lower transfer_write op with permutation into a transfer_write with a
/// minor identity permutation map. (transfer_write ops cannot have broadcasts.)
/// Ex:
/// vector.transfer_write %v ...
/// permutation_map: (d0, d1, d2) -> (d2, d0, d1)
/// into:
/// %tmp = vector.transpose %v, [2, 0, 1]
/// vector.transfer_write %tmp ...
/// permutation_map: (d0, d1, d2) -> (d0, d1, d2)
///
/// vector.transfer_write %v ...
/// permutation_map: (d0, d1, d2, d3) -> (d3, d2)
/// into:
/// %tmp = vector.transpose %v, [1, 0]
/// %v = vector.transfer_write %tmp ...
/// permutation_map: (d0, d1, d2, d3) -> (d2, d3)
struct TransferWritePermutationLowering
: public OpRewritePattern<vector::TransferWriteOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferWriteOp op,
PatternRewriter &rewriter) const override {
// TODO: support 0-d corner case.
if (op.getTransferRank() == 0)
return rewriter.notifyMatchFailure(op, "0-d corner case not supported");
SmallVector<unsigned> permutation;
AffineMap map = op.getPermutationMap();
if (map.isMinorIdentity())
return rewriter.notifyMatchFailure(op, "map is already minor identity");
if (!map.isPermutationOfMinorIdentityWithBroadcasting(permutation)) {
return rewriter.notifyMatchFailure(
op, "map is not permutable to minor identity, apply another pattern");
}
// Remove unused dims from the permutation map. E.g.:
// E.g.: (d0, d1, d2, d3, d4, d5) -> (d5, d3, d4)
// comp = (d0, d1, d2) -> (d2, d0, d1)
auto comp = compressUnusedDims(map);
AffineMap permutationMap = inversePermutation(comp);
// Get positions of remaining result dims.
SmallVector<int64_t> indices;
llvm::transform(permutationMap.getResults(), std::back_inserter(indices),
[](AffineExpr expr) {
return expr.dyn_cast<AffineDimExpr>().getPosition();
});
// Transpose in_bounds attribute.
ArrayAttr newInBoundsAttr =
op.getInBounds() ? inverseTransposeInBoundsAttr(
rewriter, op.getInBounds().value(), permutation)
: ArrayAttr();
// Generate new transfer_write operation.
Value newVec = rewriter.create<vector::TransposeOp>(
op.getLoc(), op.getVector(), indices);
auto newMap = AffineMap::getMinorIdentityMap(
map.getNumDims(), map.getNumResults(), rewriter.getContext());
rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
op, newVec, op.getSource(), op.getIndices(), AffineMapAttr::get(newMap),
op.getMask(), newInBoundsAttr);
return success();
}
};
/// Convert a transfer.write op with a map which isn't the permutation of a
/// minor identity into a vector.broadcast + transfer_write with permutation of
/// minor identity map by adding unit dim on inner dimension. Ex:
/// ```
/// vector.transfer_write %v
/// {permutation_map = affine_map<(d0, d1, d2, d3) -> (d1, d2)>} :
/// vector<8x16xf32>
/// ```
/// into:
/// ```
/// %v1 = vector.broadcast %v : vector<8x16xf32> to vector<1x8x16xf32>
/// vector.transfer_write %v1
/// {permutation_map = affine_map<(d0, d1, d2, d3) -> (d3, d1, d2)>} :
/// vector<1x8x16xf32>
/// ```
struct TransferWriteNonPermutationLowering
: public OpRewritePattern<vector::TransferWriteOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferWriteOp op,
PatternRewriter &rewriter) const override {
// TODO: support 0-d corner case.
if (op.getTransferRank() == 0)
return rewriter.notifyMatchFailure(op, "0-d corner case not supported");
SmallVector<unsigned> permutation;
AffineMap map = op.getPermutationMap();
if (map.isPermutationOfMinorIdentityWithBroadcasting(permutation)) {
return rewriter.notifyMatchFailure(
op,
"map is already permutable to minor identity, apply another pattern");
}
// Missing outer dimensions are allowed, find the most outer existing
// dimension then deduce the missing inner dimensions.
SmallVector<bool> foundDim(map.getNumDims(), false);
for (AffineExpr exp : map.getResults())
foundDim[exp.cast<AffineDimExpr>().getPosition()] = true;
SmallVector<AffineExpr> exprs;
bool foundFirstDim = false;
SmallVector<int64_t> missingInnerDim;
for (size_t i = 0; i < foundDim.size(); i++) {
if (foundDim[i]) {
foundFirstDim = true;
continue;
}
if (!foundFirstDim)
continue;
// Once we found one outer dimension existing in the map keep track of all
// the missing dimensions after that.
missingInnerDim.push_back(i);
exprs.push_back(rewriter.getAffineDimExpr(i));
}
// Vector: add unit dims at the beginning of the shape.
Value newVec = extendVectorRank(rewriter, op.getLoc(), op.getVector(),
missingInnerDim.size());
// Mask: add unit dims at the end of the shape.
Value newMask;
if (op.getMask())
newMask = extendMaskRank(rewriter, op.getLoc(), op.getMask(),
missingInnerDim.size());
exprs.append(map.getResults().begin(), map.getResults().end());
AffineMap newMap =
AffineMap::get(map.getNumDims(), 0, exprs, op.getContext());
// All the new dimensions added are inbound.
SmallVector<bool> newInBoundsValues(missingInnerDim.size(), true);
for (int64_t i = 0, e = op.getVectorType().getRank(); i < e; ++i) {
newInBoundsValues.push_back(op.isDimInBounds(i));
}
ArrayAttr newInBoundsAttr = rewriter.getBoolArrayAttr(newInBoundsValues);
rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
op, newVec, op.getSource(), op.getIndices(), AffineMapAttr::get(newMap),
newMask, newInBoundsAttr);
return success();
}
};
/// Lower transfer_read op with broadcast in the leading dimensions into
/// transfer_read of lower rank + vector.broadcast.
/// Ex: vector.transfer_read ...
/// permutation_map: (d0, d1, d2, d3) -> (0, d1, 0, d3)
/// into:
/// %v = vector.transfer_read ...
/// permutation_map: (d0, d1, d2, d3) -> (d1, 0, d3)
/// vector.broadcast %v
struct TransferOpReduceRank : public OpRewritePattern<vector::TransferReadOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferReadOp op,
PatternRewriter &rewriter) const override {
// TODO: support 0-d corner case.
if (op.getTransferRank() == 0)
return rewriter.notifyMatchFailure(op, "0-d corner case not supported");
AffineMap map = op.getPermutationMap();
unsigned numLeadingBroadcast = 0;
for (auto expr : map.getResults()) {
auto dimExpr = expr.dyn_cast<AffineConstantExpr>();
if (!dimExpr || dimExpr.getValue() != 0)
break;
numLeadingBroadcast++;
}
// If there are no leading zeros in the map there is nothing to do.
if (numLeadingBroadcast == 0)
return rewriter.notifyMatchFailure(op, "no leading broadcasts in map");
VectorType originalVecType = op.getVectorType();
unsigned reducedShapeRank = originalVecType.getRank() - numLeadingBroadcast;
// Calculate new map, vector type and masks without the leading zeros.
AffineMap newMap = AffineMap::get(
map.getNumDims(), 0, map.getResults().take_back(reducedShapeRank),
op.getContext());
// Only remove the leading zeros if the rest of the map is a minor identity
// with broadasting. Otherwise we first want to permute the map.
if (!newMap.isMinorIdentityWithBroadcasting()) {
return rewriter.notifyMatchFailure(
op, "map is not a minor identity with broadcasting");
}
// TODO: support zero-dimension vectors natively. See:
// https://llvm.discourse.group/t/should-we-have-0-d-vectors/3097.
// In the meantime, lower these to a scalar load when they pop up.
if (reducedShapeRank == 0) {
Value newRead;
if (isa<TensorType>(op.getShapedType())) {
newRead = rewriter.create<tensor::ExtractOp>(
op.getLoc(), op.getSource(), op.getIndices());
} else {
newRead = rewriter.create<memref::LoadOp>(
op.getLoc(), originalVecType.getElementType(), op.getSource(),
op.getIndices());
}
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(op, originalVecType,
newRead);
return success();
}
SmallVector<int64_t> newShape(
originalVecType.getShape().take_back(reducedShapeRank));
SmallVector<bool> newScalableDims(
originalVecType.getScalableDims().take_back(reducedShapeRank));
// Vector rank cannot be zero. Handled by TransferReadToVectorLoadLowering.
if (newShape.empty())
return rewriter.notifyMatchFailure(op, "rank-reduced vector is 0-d");
VectorType newReadType = VectorType::get(
newShape, originalVecType.getElementType(), newScalableDims);
ArrayAttr newInBoundsAttr =
op.getInBounds()
? rewriter.getArrayAttr(
op.getInBoundsAttr().getValue().take_back(reducedShapeRank))
: ArrayAttr();
Value newRead = rewriter.create<vector::TransferReadOp>(
op.getLoc(), newReadType, op.getSource(), op.getIndices(),
AffineMapAttr::get(newMap), op.getPadding(), op.getMask(),
newInBoundsAttr);
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(op, originalVecType,
newRead);
return success();
}
};
} // namespace
void mlir::vector::populateVectorTransferPermutationMapLoweringPatterns(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns
.add<TransferReadPermutationLowering, TransferWritePermutationLowering,
TransferOpReduceRank, TransferWriteNonPermutationLowering>(
patterns.getContext(), benefit);
}
//===----------------------------------------------------------------------===//
// populateVectorTransferLoweringPatterns
//===----------------------------------------------------------------------===//
namespace {
/// Progressive lowering of transfer_read. This pattern supports lowering of
/// `vector.transfer_read` to a combination of `vector.load` and
/// `vector.broadcast` if all of the following hold:
/// - Stride of most minor memref dimension must be 1.
/// - Out-of-bounds masking is not required.
/// - If the memref's element type is a vector type then it coincides with the
/// result type.
/// - The permutation map doesn't perform permutation (broadcasting is allowed).
struct TransferReadToVectorLoadLowering
: public OpRewritePattern<vector::TransferReadOp> {
TransferReadToVectorLoadLowering(MLIRContext *context,
std::optional<unsigned> maxRank,
PatternBenefit benefit = 1)
: OpRewritePattern<vector::TransferReadOp>(context, benefit),
maxTransferRank(maxRank) {}
LogicalResult matchAndRewrite(vector::TransferReadOp read,
PatternRewriter &rewriter) const override {
if (maxTransferRank && read.getVectorType().getRank() > *maxTransferRank) {
return rewriter.notifyMatchFailure(
read, "vector type is greater than max transfer rank");
}
SmallVector<unsigned> broadcastedDims;
// Permutations are handled by VectorToSCF or
// populateVectorTransferPermutationMapLoweringPatterns.
// We let the 0-d corner case pass-through as it is supported.
if (!read.getPermutationMap().isMinorIdentityWithBroadcasting(
&broadcastedDims))
return rewriter.notifyMatchFailure(read, "not minor identity + bcast");
auto memRefType = dyn_cast<MemRefType>(read.getShapedType());
if (!memRefType)
return rewriter.notifyMatchFailure(read, "not a memref source");
// Non-unit strides are handled by VectorToSCF.
if (!isLastMemrefDimUnitStride(memRefType))
return rewriter.notifyMatchFailure(read, "!= 1 stride needs VectorToSCF");
// If there is broadcasting involved then we first load the unbroadcasted
// vector, and then broadcast it with `vector.broadcast`.
ArrayRef<int64_t> vectorShape = read.getVectorType().getShape();
SmallVector<int64_t> unbroadcastedVectorShape(vectorShape.begin(),
vectorShape.end());
for (unsigned i : broadcastedDims)
unbroadcastedVectorShape[i] = 1;
VectorType unbroadcastedVectorType = read.getVectorType().cloneWith(
unbroadcastedVectorShape, read.getVectorType().getElementType());
// `vector.load` supports vector types as memref's elements only when the
// resulting vector type is the same as the element type.
auto memrefElTy = memRefType.getElementType();
if (isa<VectorType>(memrefElTy) && memrefElTy != unbroadcastedVectorType)
return rewriter.notifyMatchFailure(read, "incompatible element type");
// Otherwise, element types of the memref and the vector must match.
if (!isa<VectorType>(memrefElTy) &&
memrefElTy != read.getVectorType().getElementType())
return rewriter.notifyMatchFailure(read, "non-matching element type");
// Out-of-bounds dims are handled by MaterializeTransferMask.
if (read.hasOutOfBoundsDim())
return rewriter.notifyMatchFailure(read, "out-of-bounds needs mask");
// Create vector load op.
Operation *loadOp;
if (read.getMask()) {
Value fill = rewriter.create<vector::SplatOp>(
read.getLoc(), unbroadcastedVectorType, read.getPadding());
loadOp = rewriter.create<vector::MaskedLoadOp>(
read.getLoc(), unbroadcastedVectorType, read.getSource(),
read.getIndices(), read.getMask(), fill);
} else {
loadOp = rewriter.create<vector::LoadOp>(
read.getLoc(), unbroadcastedVectorType, read.getSource(),
read.getIndices());
}
// Insert a broadcasting op if required.
if (!broadcastedDims.empty()) {
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
read, read.getVectorType(), loadOp->getResult(0));
} else {
rewriter.replaceOp(read, loadOp->getResult(0));
}
return success();
}
std::optional<unsigned> maxTransferRank;
};
/// Replace a 0-d vector.load with a memref.load + vector.broadcast.
// TODO: we shouldn't cross the vector/scalar domains just for this
// but atm we lack the infra to avoid it. Possible solutions include:
// - go directly to LLVM + bitcast
// - introduce a bitcast op and likely a new pointer dialect
// - let memref.load/store additionally support the 0-d vector case
// There are still deeper data layout issues lingering even in this
// trivial case (for architectures for which this matters).
struct VectorLoadToMemrefLoadLowering
: public OpRewritePattern<vector::LoadOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::LoadOp loadOp,
PatternRewriter &rewriter) const override {
auto vecType = loadOp.getVectorType();
if (vecType.getNumElements() != 1)
return rewriter.notifyMatchFailure(loadOp, "not a single element vector");
auto memrefLoad = rewriter.create<memref::LoadOp>(
loadOp.getLoc(), loadOp.getBase(), loadOp.getIndices());
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(loadOp, vecType,
memrefLoad);
return success();
}
};
/// Replace a 0-d vector.store with a vector.extractelement + memref.store.
struct VectorStoreToMemrefStoreLowering
: public OpRewritePattern<vector::StoreOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::StoreOp storeOp,
PatternRewriter &rewriter) const override {
auto vecType = storeOp.getVectorType();
if (vecType.getNumElements() != 1)
return rewriter.notifyMatchFailure(storeOp, "not single element vector");
Value extracted;
if (vecType.getRank() == 0) {
// TODO: Unifiy once ExtractOp supports 0-d vectors.
extracted = rewriter.create<vector::ExtractElementOp>(
storeOp.getLoc(), storeOp.getValueToStore());
} else {
SmallVector<int64_t> indices(vecType.getRank(), 0);
extracted = rewriter.create<vector::ExtractOp>(
storeOp.getLoc(), storeOp.getValueToStore(), indices);
}
rewriter.replaceOpWithNewOp<memref::StoreOp>(
storeOp, extracted, storeOp.getBase(), storeOp.getIndices());
return success();
}
};
/// Progressive lowering of transfer_write. This pattern supports lowering of
/// `vector.transfer_write` to `vector.store` if all of the following hold:
/// - Stride of most minor memref dimension must be 1.
/// - Out-of-bounds masking is not required.
/// - If the memref's element type is a vector type then it coincides with the
/// type of the written value.
/// - The permutation map is the minor identity map (neither permutation nor
/// broadcasting is allowed).
struct TransferWriteToVectorStoreLowering
: public OpRewritePattern<vector::TransferWriteOp> {
TransferWriteToVectorStoreLowering(MLIRContext *context,
std::optional<unsigned> maxRank,
PatternBenefit benefit = 1)
: OpRewritePattern<vector::TransferWriteOp>(context, benefit),
maxTransferRank(maxRank) {}
LogicalResult matchAndRewrite(vector::TransferWriteOp write,
PatternRewriter &rewriter) const override {
if (maxTransferRank && write.getVectorType().getRank() > *maxTransferRank) {
return rewriter.notifyMatchFailure(
write, "vector type is greater than max transfer rank");
}
// Permutations are handled by VectorToSCF or
// populateVectorTransferPermutationMapLoweringPatterns.
if ( // pass-through for the 0-d corner case.
!write.getPermutationMap().isMinorIdentity())
return rewriter.notifyMatchFailure(write.getLoc(), [=](Diagnostic &diag) {
diag << "permutation map is not minor identity: " << write;
});
auto memRefType = dyn_cast<MemRefType>(write.getShapedType());
if (!memRefType)
return rewriter.notifyMatchFailure(write.getLoc(), [=](Diagnostic &diag) {
diag << "not a memref type: " << write;
});
// Non-unit strides are handled by VectorToSCF.
if (!isLastMemrefDimUnitStride(memRefType))
return rewriter.notifyMatchFailure(write.getLoc(), [=](Diagnostic &diag) {
diag << "most minor stride is not 1: " << write;
});
// `vector.store` supports vector types as memref's elements only when the
// type of the vector value being written is the same as the element type.
auto memrefElTy = memRefType.getElementType();
if (isa<VectorType>(memrefElTy) && memrefElTy != write.getVectorType())
return rewriter.notifyMatchFailure(write.getLoc(), [=](Diagnostic &diag) {
diag << "elemental type mismatch: " << write;
});
// Otherwise, element types of the memref and the vector must match.
if (!isa<VectorType>(memrefElTy) &&
memrefElTy != write.getVectorType().getElementType())
return rewriter.notifyMatchFailure(write.getLoc(), [=](Diagnostic &diag) {
diag << "elemental type mismatch: " << write;
});
// Out-of-bounds dims are handled by MaterializeTransferMask.
if (write.hasOutOfBoundsDim())
return rewriter.notifyMatchFailure(write.getLoc(), [=](Diagnostic &diag) {
diag << "out of bounds dim: " << write;
});
if (write.getMask()) {
rewriter.replaceOpWithNewOp<vector::MaskedStoreOp>(
write, write.getSource(), write.getIndices(), write.getMask(),
write.getVector());
} else {
rewriter.replaceOpWithNewOp<vector::StoreOp>(
write, write.getVector(), write.getSource(), write.getIndices());
}
return success();
}
std::optional<unsigned> maxTransferRank;
};
} // namespace
void mlir::vector::populateVectorTransferLoweringPatterns(
RewritePatternSet &patterns, std::optional<unsigned> maxTransferRank,
PatternBenefit benefit) {
patterns.add<TransferReadToVectorLoadLowering,
TransferWriteToVectorStoreLowering>(patterns.getContext(),
maxTransferRank, benefit);
patterns
.add<VectorLoadToMemrefLoadLowering, VectorStoreToMemrefStoreLowering>(
patterns.getContext(), benefit);
}