Files
clang-p2996/mlir/lib/Dialect/Vector/Transforms/LowerVectorTranspose.cpp
Tres Popp 5550c82189 [mlir] Move casting calls from methods to function calls
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.

Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.

Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.

Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
  for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443

Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.

Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
   additional check:
   https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
   and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
   them to a pure state.
4. Some changes have been deleted for the following reasons:
   - Some files had a variable also named cast
   - Some files had not included a header file that defines the cast
     functions
   - Some files are definitions of the classes that have the casting
     methods, so the code still refers to the method instead of the
     function without adding a prefix or removing the method declaration
     at the same time.

```
ninja -C $BUILD_DIR clang-tidy

run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
               -header-filter=mlir/ mlir/* -fix

rm -rf $BUILD_DIR/tools/mlir/**/*.inc

git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
            mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
            mlir/lib/**/IR/\
            mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
            mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
            mlir/test/lib/Dialect/Test/TestTypes.cpp\
            mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
            mlir/test/lib/Dialect/Test/TestAttributes.cpp\
            mlir/unittests/TableGen/EnumsGenTest.cpp\
            mlir/test/python/lib/PythonTestCAPI.cpp\
            mlir/include/mlir/IR/
```

Differential Revision: https://reviews.llvm.org/D150123
2023-05-12 11:21:25 +02:00

465 lines
19 KiB
C++

//===- LowerVectorTranspose.cpp - Lower 'vector.transpose' operation ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements target-independent rewrites and utilities to lower the
// 'vector.transpose' operation.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/BuiltinAttributeInterfaces.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/VectorInterfaces.h"
#include "mlir/Support/LogicalResult.h"
#define DEBUG_TYPE "lower-vector-transpose"
using namespace mlir;
using namespace mlir::vector;
/// Given a 'transpose' pattern, prune the rightmost dimensions that are not
/// transposed.
static void pruneNonTransposedDims(ArrayRef<int64_t> transpose,
SmallVectorImpl<int64_t> &result) {
size_t numTransposedDims = transpose.size();
for (size_t transpDim : llvm::reverse(transpose)) {
if (transpDim != numTransposedDims - 1)
break;
numTransposedDims--;
}
result.append(transpose.begin(), transpose.begin() + numTransposedDims);
}
/// Returns true if the lowering option is a vector shuffle based approach.
static bool isShuffleLike(VectorTransposeLowering lowering) {
return lowering == VectorTransposeLowering::Shuffle1D ||
lowering == VectorTransposeLowering::Shuffle16x16;
}
/// Returns a shuffle mask that builds on `vals`. `vals` is the offset base of
/// shuffle ops, i.e., the unpack pattern. The method iterates with `vals` to
/// create the mask for `numBits` bits vector. The `numBits` have to be a
/// multiple of 128. For example, if `vals` is {0, 1, 16, 17} and `numBits` is
/// 512, there should be 16 elements in the final result. It constructs the
/// below mask to get the unpack elements.
/// [0, 1, 16, 17,
/// 0+4, 1+4, 16+4, 17+4,
/// 0+8, 1+8, 16+8, 17+8,
/// 0+12, 1+12, 16+12, 17+12]
static SmallVector<int64_t>
getUnpackShufflePermFor128Lane(ArrayRef<int64_t> vals, int numBits) {
assert(numBits % 128 == 0 && "expected numBits is a multiple of 128");
int numElem = numBits / 32;
SmallVector<int64_t> res;
for (int i = 0; i < numElem; i += 4)
for (int64_t v : vals)
res.push_back(v + i);
return res;
}
/// Lower to vector.shuffle on v1 and v2 with UnpackLoPd shuffle mask. For
/// example, if it is targeting 512 bit vector, returns
/// vector.shuffle on v1, v2, [0, 1, 16, 17,
/// 0+4, 1+4, 16+4, 17+4,
/// 0+8, 1+8, 16+8, 17+8,
/// 0+12, 1+12, 16+12, 17+12].
static Value createUnpackLoPd(ImplicitLocOpBuilder &b, Value v1, Value v2,
int numBits) {
int numElem = numBits / 32;
return b.create<vector::ShuffleOp>(
v1, v2,
getUnpackShufflePermFor128Lane({0, 1, numElem, numElem + 1}, numBits));
}
/// Lower to vector.shuffle on v1 and v2 with UnpackHiPd shuffle mask. For
/// example, if it is targeting 512 bit vector, returns
/// vector.shuffle, v1, v2, [2, 3, 18, 19,
/// 2+4, 3+4, 18+4, 19+4,
/// 2+8, 3+8, 18+8, 19+8,
/// 2+12, 3+12, 18+12, 19+12].
static Value createUnpackHiPd(ImplicitLocOpBuilder &b, Value v1, Value v2,
int numBits) {
int numElem = numBits / 32;
return b.create<vector::ShuffleOp>(
v1, v2,
getUnpackShufflePermFor128Lane({2, 3, numElem + 2, numElem + 3},
numBits));
}
/// Lower to vector.shuffle on v1 and v2 with UnpackLoPs shuffle mask. For
/// example, if it is targeting 512 bit vector, returns
/// vector.shuffle, v1, v2, [0, 16, 1, 17,
/// 0+4, 16+4, 1+4, 17+4,
/// 0+8, 16+8, 1+8, 17+8,
/// 0+12, 16+12, 1+12, 17+12].
static Value createUnpackLoPs(ImplicitLocOpBuilder &b, Value v1, Value v2,
int numBits) {
int numElem = numBits / 32;
auto shuffle = b.create<vector::ShuffleOp>(
v1, v2,
getUnpackShufflePermFor128Lane({0, numElem, 1, numElem + 1}, numBits));
return shuffle;
}
/// Lower to vector.shuffle on v1 and v2 with UnpackHiPs shuffle mask. For
/// example, if it is targeting 512 bit vector, returns
/// vector.shuffle, v1, v2, [2, 18, 3, 19,
/// 2+4, 18+4, 3+4, 19+4,
/// 2+8, 18+8, 3+8, 19+8,
/// 2+12, 18+12, 3+12, 19+12].
static Value createUnpackHiPs(ImplicitLocOpBuilder &b, Value v1, Value v2,
int numBits) {
int numElem = numBits / 32;
return b.create<vector::ShuffleOp>(
v1, v2,
getUnpackShufflePermFor128Lane({2, numElem + 2, 3, numElem + 3},
numBits));
}
/// Returns a vector.shuffle that shuffles 128-bit lanes (composed of 4 32-bit
/// elements) selected by `mask` from `v1` and `v2`. I.e.,
///
/// DEFINE SELECT4(src, control) {
/// CASE(control[1:0]) OF
/// 0: tmp[127:0] := src[127:0]
/// 1: tmp[127:0] := src[255:128]
/// 2: tmp[127:0] := src[383:256]
/// 3: tmp[127:0] := src[511:384]
/// ESAC
/// RETURN tmp[127:0]
/// }
/// dst[127:0] := SELECT4(v1[511:0], mask[1:0])
/// dst[255:128] := SELECT4(v1[511:0], mask[3:2])
/// dst[383:256] := SELECT4(v2[511:0], mask[5:4])
/// dst[511:384] := SELECT4(v2[511:0], mask[7:6])
static Value create4x128BitSuffle(ImplicitLocOpBuilder &b, Value v1, Value v2,
uint8_t mask) {
assert(cast<VectorType>(v1.getType()).getShape()[0] == 16 &&
"expected a vector with length=16");
SmallVector<int64_t> shuffleMask;
auto appendToMask = [&](int64_t base, uint8_t control) {
switch (control) {
case 0:
llvm::append_range(shuffleMask, ArrayRef<int64_t>{base + 0, base + 1,
base + 2, base + 3});
break;
case 1:
llvm::append_range(shuffleMask, ArrayRef<int64_t>{base + 4, base + 5,
base + 6, base + 7});
break;
case 2:
llvm::append_range(shuffleMask, ArrayRef<int64_t>{base + 8, base + 9,
base + 10, base + 11});
break;
case 3:
llvm::append_range(shuffleMask, ArrayRef<int64_t>{base + 12, base + 13,
base + 14, base + 15});
break;
default:
llvm_unreachable("control > 3 : overflow");
}
};
uint8_t b01 = mask & 0x3;
uint8_t b23 = (mask >> 2) & 0x3;
uint8_t b45 = (mask >> 4) & 0x3;
uint8_t b67 = (mask >> 6) & 0x3;
appendToMask(0, b01);
appendToMask(0, b23);
appendToMask(16, b45);
appendToMask(16, b67);
return b.create<vector::ShuffleOp>(v1, v2, shuffleMask);
}
/// Lowers the value to a vector.shuffle op. The `source` is expected to be a
/// 1-D vector and have `m`x`n` elements.
static Value transposeToShuffle1D(OpBuilder &b, Value source, int m, int n) {
SmallVector<int64_t> mask;
mask.reserve(m * n);
for (int64_t j = 0; j < n; ++j)
for (int64_t i = 0; i < m; ++i)
mask.push_back(i * n + j);
return b.create<vector::ShuffleOp>(source.getLoc(), source, source, mask);
}
/// Lowers the value to a sequence of vector.shuffle ops. The `source` is
/// expected to be a 16x16 vector.
static Value transposeToShuffle16x16(OpBuilder &builder, Value source, int m,
int n) {
ImplicitLocOpBuilder b(source.getLoc(), builder);
SmallVector<Value> vs;
for (int64_t i = 0; i < m; ++i)
vs.push_back(b.create<vector::ExtractOp>(source, i));
// Interleave 32-bit lanes using
// 8x _mm512_unpacklo_epi32
// 8x _mm512_unpackhi_epi32
Value t0 = createUnpackLoPs(b, vs[0x0], vs[0x1], 512);
Value t1 = createUnpackHiPs(b, vs[0x0], vs[0x1], 512);
Value t2 = createUnpackLoPs(b, vs[0x2], vs[0x3], 512);
Value t3 = createUnpackHiPs(b, vs[0x2], vs[0x3], 512);
Value t4 = createUnpackLoPs(b, vs[0x4], vs[0x5], 512);
Value t5 = createUnpackHiPs(b, vs[0x4], vs[0x5], 512);
Value t6 = createUnpackLoPs(b, vs[0x6], vs[0x7], 512);
Value t7 = createUnpackHiPs(b, vs[0x6], vs[0x7], 512);
Value t8 = createUnpackLoPs(b, vs[0x8], vs[0x9], 512);
Value t9 = createUnpackHiPs(b, vs[0x8], vs[0x9], 512);
Value ta = createUnpackLoPs(b, vs[0xa], vs[0xb], 512);
Value tb = createUnpackHiPs(b, vs[0xa], vs[0xb], 512);
Value tc = createUnpackLoPs(b, vs[0xc], vs[0xd], 512);
Value td = createUnpackHiPs(b, vs[0xc], vs[0xd], 512);
Value te = createUnpackLoPs(b, vs[0xe], vs[0xf], 512);
Value tf = createUnpackHiPs(b, vs[0xe], vs[0xf], 512);
// Interleave 64-bit lanes using
// 8x _mm512_unpacklo_epi64
// 8x _mm512_unpackhi_epi64
Value r0 = createUnpackLoPd(b, t0, t2, 512);
Value r1 = createUnpackHiPd(b, t0, t2, 512);
Value r2 = createUnpackLoPd(b, t1, t3, 512);
Value r3 = createUnpackHiPd(b, t1, t3, 512);
Value r4 = createUnpackLoPd(b, t4, t6, 512);
Value r5 = createUnpackHiPd(b, t4, t6, 512);
Value r6 = createUnpackLoPd(b, t5, t7, 512);
Value r7 = createUnpackHiPd(b, t5, t7, 512);
Value r8 = createUnpackLoPd(b, t8, ta, 512);
Value r9 = createUnpackHiPd(b, t8, ta, 512);
Value ra = createUnpackLoPd(b, t9, tb, 512);
Value rb = createUnpackHiPd(b, t9, tb, 512);
Value rc = createUnpackLoPd(b, tc, te, 512);
Value rd = createUnpackHiPd(b, tc, te, 512);
Value re = createUnpackLoPd(b, td, tf, 512);
Value rf = createUnpackHiPd(b, td, tf, 512);
// Permute 128-bit lanes using
// 16x _mm512_shuffle_i32x4
t0 = create4x128BitSuffle(b, r0, r4, 0x88);
t1 = create4x128BitSuffle(b, r1, r5, 0x88);
t2 = create4x128BitSuffle(b, r2, r6, 0x88);
t3 = create4x128BitSuffle(b, r3, r7, 0x88);
t4 = create4x128BitSuffle(b, r0, r4, 0xdd);
t5 = create4x128BitSuffle(b, r1, r5, 0xdd);
t6 = create4x128BitSuffle(b, r2, r6, 0xdd);
t7 = create4x128BitSuffle(b, r3, r7, 0xdd);
t8 = create4x128BitSuffle(b, r8, rc, 0x88);
t9 = create4x128BitSuffle(b, r9, rd, 0x88);
ta = create4x128BitSuffle(b, ra, re, 0x88);
tb = create4x128BitSuffle(b, rb, rf, 0x88);
tc = create4x128BitSuffle(b, r8, rc, 0xdd);
td = create4x128BitSuffle(b, r9, rd, 0xdd);
te = create4x128BitSuffle(b, ra, re, 0xdd);
tf = create4x128BitSuffle(b, rb, rf, 0xdd);
// Permute 256-bit lanes using again
// 16x _mm512_shuffle_i32x4
vs[0x0] = create4x128BitSuffle(b, t0, t8, 0x88);
vs[0x1] = create4x128BitSuffle(b, t1, t9, 0x88);
vs[0x2] = create4x128BitSuffle(b, t2, ta, 0x88);
vs[0x3] = create4x128BitSuffle(b, t3, tb, 0x88);
vs[0x4] = create4x128BitSuffle(b, t4, tc, 0x88);
vs[0x5] = create4x128BitSuffle(b, t5, td, 0x88);
vs[0x6] = create4x128BitSuffle(b, t6, te, 0x88);
vs[0x7] = create4x128BitSuffle(b, t7, tf, 0x88);
vs[0x8] = create4x128BitSuffle(b, t0, t8, 0xdd);
vs[0x9] = create4x128BitSuffle(b, t1, t9, 0xdd);
vs[0xa] = create4x128BitSuffle(b, t2, ta, 0xdd);
vs[0xb] = create4x128BitSuffle(b, t3, tb, 0xdd);
vs[0xc] = create4x128BitSuffle(b, t4, tc, 0xdd);
vs[0xd] = create4x128BitSuffle(b, t5, td, 0xdd);
vs[0xe] = create4x128BitSuffle(b, t6, te, 0xdd);
vs[0xf] = create4x128BitSuffle(b, t7, tf, 0xdd);
auto reshInputType = VectorType::get(
{m, n}, cast<VectorType>(source.getType()).getElementType());
Value res =
b.create<arith::ConstantOp>(reshInputType, b.getZeroAttr(reshInputType));
for (int64_t i = 0; i < m; ++i)
res = b.create<vector::InsertOp>(vs[i], res, i);
return res;
}
namespace {
/// Progressive lowering of TransposeOp.
/// One:
/// %x = vector.transpose %y, [1, 0]
/// is replaced by:
/// %z = arith.constant dense<0.000000e+00>
/// %0 = vector.extract %y[0, 0]
/// %1 = vector.insert %0, %z [0, 0]
/// ..
/// %x = vector.insert .., .. [.., ..]
class TransposeOpLowering : public OpRewritePattern<vector::TransposeOp> {
public:
using OpRewritePattern::OpRewritePattern;
TransposeOpLowering(vector::VectorTransformsOptions vectorTransformOptions,
MLIRContext *context, PatternBenefit benefit = 1)
: OpRewritePattern<vector::TransposeOp>(context, benefit),
vectorTransformOptions(vectorTransformOptions) {}
LogicalResult matchAndRewrite(vector::TransposeOp op,
PatternRewriter &rewriter) const override {
auto loc = op.getLoc();
Value input = op.getVector();
VectorType inputType = op.getSourceVectorType();
VectorType resType = op.getResultVectorType();
// Set up convenience transposition table.
SmallVector<int64_t> transp;
for (auto attr : op.getTransp())
transp.push_back(cast<IntegerAttr>(attr).getInt());
if (isShuffleLike(vectorTransformOptions.vectorTransposeLowering) &&
succeeded(isTranspose2DSlice(op)))
return rewriter.notifyMatchFailure(
op, "Options specifies lowering to shuffle");
// Handle a true 2-D matrix transpose differently when requested.
if (vectorTransformOptions.vectorTransposeLowering ==
vector::VectorTransposeLowering::Flat &&
resType.getRank() == 2 && transp[0] == 1 && transp[1] == 0) {
Type flattenedType =
VectorType::get(resType.getNumElements(), resType.getElementType());
auto matrix =
rewriter.create<vector::ShapeCastOp>(loc, flattenedType, input);
auto rows = rewriter.getI32IntegerAttr(resType.getShape()[0]);
auto columns = rewriter.getI32IntegerAttr(resType.getShape()[1]);
Value trans = rewriter.create<vector::FlatTransposeOp>(
loc, flattenedType, matrix, rows, columns);
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, resType, trans);
return success();
}
// Generate unrolled extract/insert ops. We do not unroll the rightmost
// (i.e., highest-order) dimensions that are not transposed and leave them
// in vector form to improve performance. Therefore, we prune those
// dimensions from the shape/transpose data structures used to generate the
// extract/insert ops.
SmallVector<int64_t> prunedTransp;
pruneNonTransposedDims(transp, prunedTransp);
size_t numPrunedDims = transp.size() - prunedTransp.size();
auto prunedInShape = inputType.getShape().drop_back(numPrunedDims);
auto prunedInStrides = computeStrides(prunedInShape);
// Generates the extract/insert operations for every scalar/vector element
// of the leftmost transposed dimensions. We traverse every transpose
// element using a linearized index that we delinearize to generate the
// appropriate indices for the extract/insert operations.
Value result = rewriter.create<arith::ConstantOp>(
loc, resType, rewriter.getZeroAttr(resType));
int64_t numTransposedElements = ShapedType::getNumElements(prunedInShape);
for (int64_t linearIdx = 0; linearIdx < numTransposedElements;
++linearIdx) {
auto extractIdxs = delinearize(linearIdx, prunedInStrides);
SmallVector<int64_t> insertIdxs(extractIdxs);
applyPermutationToVector(insertIdxs, prunedTransp);
Value extractOp =
rewriter.create<vector::ExtractOp>(loc, input, extractIdxs);
result =
rewriter.create<vector::InsertOp>(loc, extractOp, result, insertIdxs);
}
rewriter.replaceOp(op, result);
return success();
}
private:
/// Options to control the vector patterns.
vector::VectorTransformsOptions vectorTransformOptions;
};
/// Rewrite a 2-D vector.transpose as a sequence of shuffle ops.
/// If the strategy is Shuffle1D, it will be lowered to:
/// vector.shape_cast 2D -> 1D
/// vector.shuffle
/// vector.shape_cast 1D -> 2D
/// If the strategy is Shuffle16x16, it will be lowered to a sequence of shuffle
/// ops on 16xf32 vectors.
class TransposeOp2DToShuffleLowering
: public OpRewritePattern<vector::TransposeOp> {
public:
using OpRewritePattern::OpRewritePattern;
TransposeOp2DToShuffleLowering(
vector::VectorTransformsOptions vectorTransformOptions,
MLIRContext *context, PatternBenefit benefit = 1)
: OpRewritePattern<vector::TransposeOp>(context, benefit),
vectorTransformOptions(vectorTransformOptions) {}
LogicalResult matchAndRewrite(vector::TransposeOp op,
PatternRewriter &rewriter) const override {
if (!isShuffleLike(vectorTransformOptions.vectorTransposeLowering))
return rewriter.notifyMatchFailure(
op, "not using vector shuffle based lowering");
auto srcGtOneDims = isTranspose2DSlice(op);
if (failed(srcGtOneDims))
return rewriter.notifyMatchFailure(
op, "expected transposition on a 2D slice");
VectorType srcType = op.getSourceVectorType();
int64_t m = srcType.getDimSize(std::get<0>(srcGtOneDims.value()));
int64_t n = srcType.getDimSize(std::get<1>(srcGtOneDims.value()));
// Reshape the n-D input vector with only two dimensions greater than one
// to a 2-D vector.
Location loc = op.getLoc();
auto flattenedType = VectorType::get({n * m}, srcType.getElementType());
auto reshInputType = VectorType::get({m, n}, srcType.getElementType());
auto reshInput = rewriter.create<vector::ShapeCastOp>(loc, flattenedType,
op.getVector());
Value res;
if (vectorTransformOptions.vectorTransposeLowering ==
VectorTransposeLowering::Shuffle16x16 &&
m == 16 && n == 16) {
reshInput =
rewriter.create<vector::ShapeCastOp>(loc, reshInputType, reshInput);
res = transposeToShuffle16x16(rewriter, reshInput, m, n);
} else {
// Fallback to shuffle on 1D approach.
res = transposeToShuffle1D(rewriter, reshInput, m, n);
}
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(
op, op.getResultVectorType(), res);
return success();
}
private:
/// Options to control the vector patterns.
vector::VectorTransformsOptions vectorTransformOptions;
};
} // namespace
void mlir::vector::populateVectorTransposeLoweringPatterns(
RewritePatternSet &patterns, VectorTransformsOptions options,
PatternBenefit benefit) {
patterns.add<TransposeOpLowering, TransposeOp2DToShuffleLowering>(
options, patterns.getContext(), benefit);
}