Files
clang-p2996/mlir/test/Dialect/SparseTensor/roundtrip_encoding.mlir
Yinying Li 3dc621124f [mlir][sparse] Migrate tests to use new syntax (#66543)
**COO**
`lvlTypes = [ "compressed_nu", "singleton" ]` to `map = (d0, d1) -> (d0
: compressed(nonunique), d1 : singleton)`
`lvlTypes = [ "compressed_nu_no", "singleton_no" ]` to `map = (d0, d1)
-> (d0 : compressed(nonunique, nonordered), d1 : singleton(nonordered))`

**SortedCOO**
`lvlTypes = [ "compressed_nu", "singleton" ]` to `map = (d0, d1) -> (d0
: compressed(nonunique), d1 : singleton)`

**BCOO**
`lvlTypes = [ "dense", "compressed_hi_nu", "singleton" ]` to `map = (d0,
d1, d2) -> (d0 : dense, d1 : compressed(nonunique, high), d2 :
singleton)`

**BCSR**
`lvlTypes = [ "compressed", "compressed", "dense", "dense" ], dimToLvl =
affine_map<(d0, d1) -> (d0 floordiv 2, d1 floordiv 3, d0 mod 2, d1 mod
3)>` to
`map = ( i, j ) ->
      ( i floordiv 2 : compressed,
        j floordiv 3 : compressed,
        i mod 2 : dense,
        j mod 3 : dense
      )`

**Tensor and other supported formats(e.g. CCC, CDC, CCCC)**

Currently, ELL and slice are not supported yet in the new syntax and the
CHECK tests will be updated once printing is set to output the new
syntax.

Previous PRs: #66146, #66309, #66443
2023-09-15 16:12:20 -04:00

211 lines
6.8 KiB
MLIR

// RUN: mlir-opt %s -split-input-file | mlir-opt | FileCheck %s
// CHECK-LABEL: func private @sparse_1d_tensor(
// CHECK-SAME: tensor<32xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>)
func.func private @sparse_1d_tensor(tensor<32xf64, #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }>>)
// -----
#CSR = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : dense, d1 : compressed),
posWidth = 64,
crdWidth = 64
}>
// CHECK-LABEL: func private @sparse_csr(
// CHECK-SAME: tensor<?x?xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ], posWidth = 64, crdWidth = 64 }>>)
func.func private @sparse_csr(tensor<?x?xf32, #CSR>)
// -----
#CSR_explicit = #sparse_tensor.encoding<{
map = {l0, l1} (d0 = l0, d1 = l1) -> (l0 = d0 : dense, l1 = d1 : compressed)
}>
// CHECK-LABEL: func private @CSR_explicit(
// CHECK-SAME: tensor<?x?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ] }>>
func.func private @CSR_explicit(%arg0: tensor<?x?xf64, #CSR_explicit>) {
return
}
// -----
#CSC = #sparse_tensor.encoding<{
map = (d0, d1) -> (d1 : dense, d0 : compressed),
posWidth = 0,
crdWidth = 0
}>
// CHECK-LABEL: func private @sparse_csc(
// CHECK-SAME: tensor<?x?xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ], dimToLvl = affine_map<(d0, d1) -> (d1, d0)> }>>)
func.func private @sparse_csc(tensor<?x?xf32, #CSC>)
// -----
#DCSC = #sparse_tensor.encoding<{
map = (d0, d1) -> (d1 : compressed, d0 : compressed),
posWidth = 0,
crdWidth = 64
}>
// CHECK-LABEL: func private @sparse_dcsc(
// CHECK-SAME: tensor<?x?xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed", "compressed" ], dimToLvl = affine_map<(d0, d1) -> (d1, d0)>, crdWidth = 64 }>>)
func.func private @sparse_dcsc(tensor<?x?xf32, #DCSC>)
// -----
#COO = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : compressed(nonunique, nonordered), d1 : singleton(nonordered))
}>
// CHECK-LABEL: func private @sparse_coo(
// CHECK-SAME: tensor<?x?xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed_nu_no", "singleton_no" ] }>>)
func.func private @sparse_coo(tensor<?x?xf32, #COO>)
// -----
#BCOO = #sparse_tensor.encoding<{
map = (d0, d1, d2) -> (d0 : dense, d1 : compressed(nonunique, high), d2 : singleton)
}>
// CHECK-LABEL: func private @sparse_bcoo(
// CHECK-SAME: tensor<?x?x?xf32, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed_hi_nu", "singleton" ] }>>)
func.func private @sparse_bcoo(tensor<?x?x?xf32, #BCOO>)
// -----
#SortedCOO = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton)
}>
// CHECK-LABEL: func private @sparse_sorted_coo(
// CHECK-SAME: tensor<10x10xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed_nu", "singleton" ] }>>)
func.func private @sparse_sorted_coo(tensor<10x10xf64, #SortedCOO>)
// -----
#BCSR = #sparse_tensor.encoding<{
map = ( i, j ) ->
( i floordiv 2 : compressed,
j floordiv 3 : compressed,
i mod 2 : dense,
j mod 3 : dense
)
}>
// CHECK-LABEL: func private @sparse_bcsr(
// CHECK-SAME: tensor<10x60xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed", "compressed", "dense", "dense" ], dimToLvl = affine_map<(d0, d1) -> (d0 floordiv 2, d1 floordiv 3, d0 mod 2, d1 mod 3)> }>>
func.func private @sparse_bcsr(tensor<10x60xf64, #BCSR>)
// -----
#ELL = #sparse_tensor.encoding<{
lvlTypes = [ "dense", "dense", "compressed" ],
dimToLvl = affine_map<(i,j)[c] -> (c*4*i, i, j)>
}>
// CHECK-LABEL: func private @sparse_ell(
// CHECK-SAME: tensor<?x?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "dense", "compressed" ], dimToLvl = affine_map<(d0, d1)[s0] -> (d0 * (s0 * 4), d0, d1)> }>>
func.func private @sparse_ell(tensor<?x?xf64, #ELL>)
// -----
#CSR_SLICE = #sparse_tensor.encoding<{
lvlTypes = [ "dense", "compressed" ],
dimSlices = [ (1, 4, 1), (1, 4, 2) ]
}>
// CHECK-LABEL: func private @sparse_slice(
// CHECK-SAME: tensor<?x?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ], dimSlices = [ (1, 4, 1), (1, 4, 2) ] }>>
func.func private @sparse_slice(tensor<?x?xf64, #CSR_SLICE>)
// -----
#CSR_SLICE = #sparse_tensor.encoding<{
lvlTypes = [ "dense", "compressed" ],
dimSlices = [ (1, 4, 1), (1, 4, 2) ]
}>
// CHECK-LABEL: func private @sparse_slice(
// CHECK-SAME: tensor<?x?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ], dimSlices = [ (1, 4, 1), (1, 4, 2) ] }>>
func.func private @sparse_slice(tensor<?x?xf64, #CSR_SLICE>)
// -----
#CSR_SLICE = #sparse_tensor.encoding<{
lvlTypes = [ "dense", "compressed" ],
dimSlices = [ (1, ?, 1), (?, 4, 2) ]
}>
// CHECK-LABEL: func private @sparse_slice(
// CHECK-SAME: tensor<?x?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ], dimSlices = [ (1, ?, 1), (?, 4, 2) ] }>>
func.func private @sparse_slice(tensor<?x?xf64, #CSR_SLICE>)
// -----
// TODO: It is probably better to use [dense, dense, 2:4] (see NV_24 defined using new syntax
// below) to encode a 2D matrix, but it would require dim2lvl mapping which is not ready yet.
// So we take the simple path for now.
#NV_24= #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : dense, d1 : compressed(block2_4))
}>
// CHECK-LABEL: func private @sparse_2_out_of_4(
// CHECK-SAME: tensor<?x?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed24" ] }>>
func.func private @sparse_2_out_of_4(tensor<?x?xf64, #NV_24>)
// -----
#BCSR = #sparse_tensor.encoding<{
map = ( i, j ) ->
( i floordiv 2 : compressed,
j floordiv 3 : compressed,
i mod 2 : dense,
j mod 3 : dense
)
}>
// CHECK-LABEL: func private @BCSR(
// CHECK-SAME: tensor<?x?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed", "compressed", "dense", "dense" ], dimToLvl = affine_map<(d0, d1) -> (d0 floordiv 2, d1 floordiv 3, d0 mod 2, d1 mod 3)> }>>
func.func private @BCSR(%arg0: tensor<?x?xf64, #BCSR>) {
return
}
// -----
#BCSR_explicit = #sparse_tensor.encoding<{
map =
{il, jl, ii, jj}
( i = il * 2 + ii,
j = jl * 3 + jj
) ->
( il = i floordiv 2 : compressed,
jl = j floordiv 3 : compressed,
ii = i mod 2 : dense,
jj = j mod 3 : dense
)
}>
// CHECK-LABEL: func private @BCSR_explicit(
// CHECK-SAME: tensor<?x?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed", "compressed", "dense", "dense" ], dimToLvl = affine_map<(d0, d1) -> (d0 floordiv 2, d1 floordiv 3, d0 mod 2, d1 mod 3)> }>>
func.func private @BCSR_explicit(%arg0: tensor<?x?xf64, #BCSR_explicit>) {
return
}
// -----
#NV_24 = #sparse_tensor.encoding<{
map = ( i, j ) ->
( i : dense,
j floordiv 4 : dense,
j mod 4 : compressed(block2_4)
)
}>
// CHECK-LABEL: func private @NV_24(
// CHECK-SAME: tensor<?x?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "dense", "compressed24" ], dimToLvl = affine_map<(d0, d1) -> (d0, d1 floordiv 4, d1 mod 4)> }>>
func.func private @NV_24(%arg0: tensor<?x?xf64, #NV_24>) {
return
}