Files
clang-p2996/mlir/test/Dialect/SparseTensor/sparse_perm_lower.mlir
Yinying Li 3dc621124f [mlir][sparse] Migrate tests to use new syntax (#66543)
**COO**
`lvlTypes = [ "compressed_nu", "singleton" ]` to `map = (d0, d1) -> (d0
: compressed(nonunique), d1 : singleton)`
`lvlTypes = [ "compressed_nu_no", "singleton_no" ]` to `map = (d0, d1)
-> (d0 : compressed(nonunique, nonordered), d1 : singleton(nonordered))`

**SortedCOO**
`lvlTypes = [ "compressed_nu", "singleton" ]` to `map = (d0, d1) -> (d0
: compressed(nonunique), d1 : singleton)`

**BCOO**
`lvlTypes = [ "dense", "compressed_hi_nu", "singleton" ]` to `map = (d0,
d1, d2) -> (d0 : dense, d1 : compressed(nonunique, high), d2 :
singleton)`

**BCSR**
`lvlTypes = [ "compressed", "compressed", "dense", "dense" ], dimToLvl =
affine_map<(d0, d1) -> (d0 floordiv 2, d1 floordiv 3, d0 mod 2, d1 mod
3)>` to
`map = ( i, j ) ->
      ( i floordiv 2 : compressed,
        j floordiv 3 : compressed,
        i mod 2 : dense,
        j mod 3 : dense
      )`

**Tensor and other supported formats(e.g. CCC, CDC, CCCC)**

Currently, ELL and slice are not supported yet in the new syntax and the
CHECK tests will be updated once printing is set to output the new
syntax.

Previous PRs: #66146, #66309, #66443
2023-09-15 16:12:20 -04:00

92 lines
5.8 KiB
MLIR

// RUN: mlir-opt %s -sparsification --canonicalize | FileCheck %s --check-prefix=CHECK-HIR
//
// RUN: mlir-opt %s -sparsification --sparse-tensor-conversion --canonicalize | \
// RUN: FileCheck %s --check-prefix=CHECK-MIR
#X = #sparse_tensor.encoding<{
map = (d0, d1, d2) -> (d2 : dense, d0 : dense, d1 : dense)
}>
#trait = {
indexing_maps = [
affine_map<(i,j,k) -> (k,i,j)>, // A (in)
affine_map<(i,j,k) -> ()> // X (out)
],
iterator_types = ["reduction", "reduction", "reduction"]
}
// CHECK-HIR-LABEL: func @sparse_dynamic_dims(
// CHECK-HIR-SAME: %[[VAL_0:.*]]: tensor<?x?x?xf32, #sparse_tensor.encoding<{{{.*}}}>>,
// CHECK-HIR-SAME: %[[VAL_1:.*]]: tensor<f32>) -> tensor<f32> {
// CHECK-HIR-DAG: %[[VAL_2:.*]] = arith.constant 1 : index
// CHECK-HIR-DAG: %[[VAL_3:.*]] = arith.constant 0 : index
// CHECK-HIR-DAG: %[[VAL_4:.*]] = arith.constant 2 : index
// CHECK-HIR-DAG: %[[VAL_5:.*]] = tensor.dim %[[VAL_0]], %[[VAL_4]] : tensor<?x?x?xf32, #sparse_tensor.encoding<{{{.*}}}>>
// CHECK-HIR-DAG: %[[VAL_6:.*]] = tensor.dim %[[VAL_0]], %[[VAL_3]] : tensor<?x?x?xf32, #sparse_tensor.encoding<{{{.*}}}>>
// CHECK-HIR-DAG: %[[VAL_7:.*]] = tensor.dim %[[VAL_0]], %[[VAL_2]] : tensor<?x?x?xf32, #sparse_tensor.encoding<{{{.*}}}>>
// CHECK-HIR-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<?x?x?xf32, #sparse_tensor.encoding<{{{.*}}}>>
// CHECK-HIR-DAG: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<f32>
// CHECK-HIR: %[[VAL_11:.*]] = tensor.extract %[[VAL_1]][] : tensor<f32>
// CHECK-HIR: %[[VAL_12:.*]] = scf.for %[[VAL_13:.*]] = %[[VAL_3]] to %[[VAL_5]] step %[[VAL_2]] iter_args(%[[VAL_14:.*]] = %[[VAL_11]]) -> (f32) {
// CHECK-HIR: %[[VAL_15:.*]] = scf.for %[[VAL_16:.*]] = %[[VAL_3]] to %[[VAL_6]] step %[[VAL_2]] iter_args(%[[VAL_17:.*]] = %[[VAL_14]]) -> (f32) {
// CHECK-HIR: %[[VAL_18:.*]] = arith.muli %[[VAL_6]], %[[VAL_13]] : index
// CHECK-HIR: %[[VAL_19:.*]] = arith.addi %[[VAL_18]], %[[VAL_16]] : index
// CHECK-HIR: %[[VAL_20:.*]] = scf.for %[[VAL_21:.*]] = %[[VAL_3]] to %[[VAL_7]] step %[[VAL_2]] iter_args(%[[VAL_22:.*]] = %[[VAL_17]]) -> (f32) {
// CHECK-HIR: %[[VAL_23:.*]] = arith.muli %[[VAL_7]], %[[VAL_19]] : index
// CHECK-HIR: %[[VAL_24:.*]] = arith.addi %[[VAL_23]], %[[VAL_21]] : index
// CHECK-HIR: %[[VAL_25:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_24]]] : memref<?xf32>
// CHECK-HIR: %[[VAL_26:.*]] = arith.addf %[[VAL_22]], %[[VAL_25]] : f32
// CHECK-HIR: scf.yield %[[VAL_26]] : f32
// CHECK-HIR: }
// CHECK-HIR: scf.yield %[[VAL_20]] : f32
// CHECK-HIR: }
// CHECK-HIR: scf.yield %[[VAL_15]] : f32
// CHECK-HIR: }
// CHECK-HIR: memref.store %[[VAL_12]], %[[VAL_10]][] : memref<f32>
// CHECK-HIR: %[[VAL_30:.*]] = bufferization.to_tensor %[[VAL_10]] : memref<f32>
// CHECK-HIR: return %[[VAL_30]] : tensor<f32>
// CHECK-HIR: }
//
// CHECK-MIR-LABEL: func @sparse_dynamic_dims(
// CHECK-MIR-SAME: %[[ARGA:.*]]: !llvm.ptr<i8>,
// CHECK-MIR-SAME: %[[ARGX:.*]]: tensor<f32>) -> tensor<f32> {
// CHECK-MIR-DAG: %[[I0:.*]] = arith.constant 0 : index
// CHECK-MIR-DAG: %[[I1:.*]] = arith.constant 1 : index
// CHECK-MIR-DAG: %[[I2:.*]] = arith.constant 2 : index
// CHECK-MIR-DAG: %[[DimSize0:.*]] = call @sparseDimSize(%[[ARGA]], %[[I0]])
// CHECK-MIR-DAG: %[[DimSize1:.*]] = call @sparseDimSize(%[[ARGA]], %[[I1]])
// CHECK-MIR-DAG: %[[DimSize2:.*]] = call @sparseDimSize(%[[ARGA]], %[[I2]])
// CHECK-MIR-DAG: %[[VAL_8:.*]] = call @sparseValuesF32(%[[ARGA]]) : (!llvm.ptr<i8>) -> memref<?xf32>
// CHECK-MIR-DAG: %[[VAL_10:.*]] = bufferization.to_memref %[[ARGX]] : memref<f32>
// CHECK-MIR: %[[VAL_11:.*]] = tensor.extract %[[ARGX]][] : tensor<f32>
// CHECK-MIR: %[[VAL_12:.*]] = scf.for %[[D2:.*]] = %[[I0]] to %[[DimSize2]] step %[[I1]] iter_args(%[[VAL_14:.*]] = %[[VAL_11]]) -> (f32) {
// CHECK-MIR: %[[VAL_15:.*]] = scf.for %[[D0:.*]] = %[[I0]] to %[[DimSize0]] step %[[I1]] iter_args(%[[VAL_17:.*]] = %[[VAL_14]]) -> (f32) {
// CHECK-MIR: %[[VAL_18:.*]] = arith.muli %[[DimSize0]], %[[D2]] : index
// CHECK-MIR: %[[VAL_19:.*]] = arith.addi %[[VAL_18]], %[[D0]] : index
// CHECK-MIR: %[[VAL_20:.*]] = scf.for %[[D1:.*]] = %[[I0]] to %[[DimSize1]] step %[[I1]] iter_args(%[[VAL_22:.*]] = %[[VAL_17]]) -> (f32) {
// CHECK-MIR: %[[VAL_23:.*]] = arith.muli %[[DimSize1]], %[[VAL_19]] : index
// CHECK-MIR: %[[VAL_24:.*]] = arith.addi %[[VAL_23]], %[[D1]] : index
// CHECK-MIR: %[[VAL_25:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_24]]] : memref<?xf32>
// CHECK-MIR: %[[VAL_26:.*]] = arith.addf %[[VAL_22]], %[[VAL_25]] : f32
// CHECK-MIR: scf.yield %[[VAL_26]] : f32
// CHECK-MIR: }
// CHECK-MIR: scf.yield %[[VAL_20]] : f32
// CHECK-MIR: }
// CHECK-MIR: scf.yield %[[VAL_15]] : f32
// CHECK-MIR: }
// CHECK-MIR: memref.store %[[VAL_12]], %[[VAL_10]][] : memref<f32>
// CHECK-MIR: %[[VAL_30:.*]] = bufferization.to_tensor %[[VAL_10]] : memref<f32>
// CHECK-MIR: return %[[VAL_30]] : tensor<f32>
// CHECK-MIR: }
func.func @sparse_dynamic_dims(%arga: tensor<?x?x?xf32, #X>,
%argx: tensor<f32>) -> tensor<f32> {
%0 = linalg.generic #trait
ins(%arga: tensor<?x?x?xf32, #X>)
outs(%argx: tensor<f32>) {
^bb(%a : f32, %x: f32):
%0 = arith.addf %x, %a : f32
linalg.yield %0 : f32
} -> tensor<f32>
return %0 : tensor<f32>
}