Files
clang-p2996/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_flatten.mlir
Yinying Li 3dc621124f [mlir][sparse] Migrate tests to use new syntax (#66543)
**COO**
`lvlTypes = [ "compressed_nu", "singleton" ]` to `map = (d0, d1) -> (d0
: compressed(nonunique), d1 : singleton)`
`lvlTypes = [ "compressed_nu_no", "singleton_no" ]` to `map = (d0, d1)
-> (d0 : compressed(nonunique, nonordered), d1 : singleton(nonordered))`

**SortedCOO**
`lvlTypes = [ "compressed_nu", "singleton" ]` to `map = (d0, d1) -> (d0
: compressed(nonunique), d1 : singleton)`

**BCOO**
`lvlTypes = [ "dense", "compressed_hi_nu", "singleton" ]` to `map = (d0,
d1, d2) -> (d0 : dense, d1 : compressed(nonunique, high), d2 :
singleton)`

**BCSR**
`lvlTypes = [ "compressed", "compressed", "dense", "dense" ], dimToLvl =
affine_map<(d0, d1) -> (d0 floordiv 2, d1 floordiv 3, d0 mod 2, d1 mod
3)>` to
`map = ( i, j ) ->
      ( i floordiv 2 : compressed,
        j floordiv 3 : compressed,
        i mod 2 : dense,
        j mod 3 : dense
      )`

**Tensor and other supported formats(e.g. CCC, CDC, CCCC)**

Currently, ELL and slice are not supported yet in the new syntax and the
CHECK tests will be updated once printing is set to output the new
syntax.

Previous PRs: #66146, #66309, #66443
2023-09-15 16:12:20 -04:00

122 lines
4.9 KiB
MLIR

//--------------------------------------------------------------------------------------------------
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
//
// Set-up that's shared across all tests in this directory. In principle, this
// config could be moved to lit.local.cfg. However, there are downstream users that
// do not use these LIT config files. Hence why this is kept inline.
//
// DEFINE: %{sparse_compiler_opts} = enable-runtime-library=true
// DEFINE: %{sparse_compiler_opts_sve} = enable-arm-sve=true %{sparse_compiler_opts}
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler="%{sparse_compiler_opts}"
// DEFINE: %{compile_sve} = mlir-opt %s --sparse-compiler="%{sparse_compiler_opts_sve}"
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
// DEFINE: %{run_opts} = -e entry -entry-point-result=void
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
//
// DEFINE: %{env} =
//--------------------------------------------------------------------------------------------------
// REDEFINE: %{env} = TENSOR0="%mlir_src_dir/test/Integration/data/test.tns"
// RUN: %{compile} | env %{env} %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{sparse_compiler_opts} = enable-runtime-library=false
// RUN: %{compile} | env %{env} %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{sparse_compiler_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
// RUN: %{compile} | env %{env} %{run} | FileCheck %s
//
// Do the same run, but now with direct IR generation and VLA vectorization.
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | env %{env} %{run_sve} | FileCheck %s %}
!Filename = !llvm.ptr<i8>
#SparseTensor = #sparse_tensor.encoding<{
// Note that any dimToLvl permutation should give the same results
// since, even though it impacts the sparse storage scheme layout,
// it should not change the semantics.
map = (d0, d1, d2, d3,
d4, d5, d6, d7) -> (d7 : compressed, d6 : compressed,
d1 : compressed, d2 : compressed,
d0 : compressed, d3 : compressed,
d4 : compressed, d5 : compressed)
}>
#trait_flatten = {
indexing_maps = [
affine_map<(i,j,k,l,m,n,o,p) -> (i,j,k,l,m,n,o,p)>, // A
affine_map<(i,j,k,l,m,n,o,p) -> (i,j)> // X (out)
],
iterator_types = [ "parallel", "parallel", "reduction", "reduction",
"reduction", "reduction", "reduction", "reduction" ],
doc = "X(i,j) += A(i,j,k,l,m,n,o,p)"
}
//
// Integration test that lowers a kernel annotated as sparse to
// actual sparse code, initializes a matching sparse storage scheme
// from file, and runs the resulting code with the JIT compiler.
//
module {
//
// A kernel that flattens a rank 8 tensor into a dense matrix.
//
func.func @kernel_flatten(%arga: tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor>,
%argx: tensor<7x3xf64>)
-> tensor<7x3xf64> {
%0 = linalg.generic #trait_flatten
ins(%arga: tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor>)
outs(%argx: tensor<7x3xf64>) {
^bb(%a: f64, %x: f64):
%0 = arith.addf %x, %a : f64
linalg.yield %0 : f64
} -> tensor<7x3xf64>
return %0 : tensor<7x3xf64>
}
func.func private @getTensorFilename(index) -> (!Filename)
func.func private @printMemrefF64(%ptr : tensor<*xf64>)
//
// Main driver that reads tensor from file and calls the sparse kernel.
//
func.func @entry() {
%d0 = arith.constant 0.0 : f64
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c3 = arith.constant 3 : index
%c7 = arith.constant 7 : index
// Setup matrix memory that is initialized to zero.
%x = arith.constant dense<0.000000e+00> : tensor<7x3xf64>
// Read the sparse tensor from file, construct sparse storage.
%fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
%a = sparse_tensor.new %fileName : !Filename to tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor>
// Call the kernel.
%0 = call @kernel_flatten(%a, %x)
: (tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor>, tensor<7x3xf64>) -> tensor<7x3xf64>
// Print the result for verification.
//
// CHECK: {{\[}}[6.25, 0, 0],
// CHECK-NEXT: [4.224, 6.21, 0],
// CHECK-NEXT: [0, 0, 15.455],
// CHECK-NEXT: [0, 0, 0],
// CHECK-NEXT: [0, 0, 0],
// CHECK-NEXT: [0, 0, 0],
// CHECK-NEXT: [7, 0, 0]]
//
%1 = tensor.cast %0 : tensor<7x3xf64> to tensor<*xf64>
call @printMemrefF64(%1) : (tensor<*xf64>) -> ()
// Release the resources.
bufferization.dealloc_tensor %a : tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor>
return
}
}