**COO**
`lvlTypes = [ "compressed_nu", "singleton" ]` to `map = (d0, d1) -> (d0
: compressed(nonunique), d1 : singleton)`
`lvlTypes = [ "compressed_nu_no", "singleton_no" ]` to `map = (d0, d1)
-> (d0 : compressed(nonunique, nonordered), d1 : singleton(nonordered))`
**SortedCOO**
`lvlTypes = [ "compressed_nu", "singleton" ]` to `map = (d0, d1) -> (d0
: compressed(nonunique), d1 : singleton)`
**BCOO**
`lvlTypes = [ "dense", "compressed_hi_nu", "singleton" ]` to `map = (d0,
d1, d2) -> (d0 : dense, d1 : compressed(nonunique, high), d2 :
singleton)`
**BCSR**
`lvlTypes = [ "compressed", "compressed", "dense", "dense" ], dimToLvl =
affine_map<(d0, d1) -> (d0 floordiv 2, d1 floordiv 3, d0 mod 2, d1 mod
3)>` to
`map = ( i, j ) ->
( i floordiv 2 : compressed,
j floordiv 3 : compressed,
i mod 2 : dense,
j mod 3 : dense
)`
**Tensor and other supported formats(e.g. CCC, CDC, CCCC)**
Currently, ELL and slice are not supported yet in the new syntax and the
CHECK tests will be updated once printing is set to output the new
syntax.
Previous PRs: #66146, #66309, #66443
240 lines
7.6 KiB
MLIR
240 lines
7.6 KiB
MLIR
//--------------------------------------------------------------------------------------------------
|
|
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
|
|
//
|
|
// Set-up that's shared across all tests in this directory. In principle, this
|
|
// config could be moved to lit.local.cfg. However, there are downstream users that
|
|
// do not use these LIT config files. Hence why this is kept inline.
|
|
//
|
|
// DEFINE: %{sparse_compiler_opts} = enable-runtime-library=true
|
|
// DEFINE: %{sparse_compiler_opts_sve} = enable-arm-sve=true %{sparse_compiler_opts}
|
|
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler="%{sparse_compiler_opts}"
|
|
// DEFINE: %{compile_sve} = mlir-opt %s --sparse-compiler="%{sparse_compiler_opts_sve}"
|
|
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
|
|
// DEFINE: %{run_opts} = -e entry -entry-point-result=void
|
|
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
|
|
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
|
|
//
|
|
// DEFINE: %{env} =
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
// REDEFINE: %{sparse_compiler_opts} = enable-runtime-library=false
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with VLA vectorization.
|
|
// REDEFINE: %{sparse_compiler_opts} = enable-runtime-library=false vl=4
|
|
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
|
|
|
|
// TODO: support sparse_tensor.unpack on libgen path.
|
|
|
|
#SortedCOO = #sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton)
|
|
}>
|
|
|
|
#SortedCOOI32 = #sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton),
|
|
posWidth = 32,
|
|
crdWidth = 32
|
|
}>
|
|
|
|
#CSR = #sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d0 : dense, d1 : compressed),
|
|
posWidth = 32,
|
|
crdWidth = 32
|
|
}>
|
|
|
|
#BCOO = #sparse_tensor.encoding<{
|
|
map = (d0, d1, d2) -> (d0 : dense, d1 : compressed(nonunique, high), d2 : singleton)
|
|
}>
|
|
|
|
module {
|
|
//
|
|
// Main driver.
|
|
//
|
|
func.func @entry() {
|
|
%c0 = arith.constant 0 : index
|
|
%f0 = arith.constant 0.0 : f64
|
|
%i0 = arith.constant 0 : i32
|
|
//
|
|
// Initialize a 3-dim dense tensor.
|
|
//
|
|
%data = arith.constant dense<
|
|
[ 1.0, 2.0, 3.0]
|
|
> : tensor<3xf64>
|
|
|
|
%pos = arith.constant dense<
|
|
[0, 3]
|
|
> : tensor<2xindex>
|
|
|
|
%index = arith.constant dense<
|
|
[[ 1, 2],
|
|
[ 5, 6],
|
|
[ 7, 8]]
|
|
> : tensor<3x2xindex>
|
|
|
|
%pos32 = arith.constant dense<
|
|
[0, 3]
|
|
> : tensor<2xi32>
|
|
|
|
%index32 = arith.constant dense<
|
|
[[ 1, 2],
|
|
[ 5, 6],
|
|
[ 7, 8]]
|
|
> : tensor<3x2xi32>
|
|
|
|
%s4 = sparse_tensor.pack %data, %pos, %index : tensor<3xf64>, tensor<2xindex>, tensor<3x2xindex>
|
|
to tensor<10x10xf64, #SortedCOO>
|
|
%s5= sparse_tensor.pack %data, %pos32, %index32 : tensor<3xf64>, tensor<2xi32>, tensor<3x2xi32>
|
|
to tensor<10x10xf64, #SortedCOOI32>
|
|
|
|
%csr_data = arith.constant dense<
|
|
[ 1.0, 2.0, 3.0, 4.0]
|
|
> : tensor<4xf64>
|
|
|
|
%csr_pos32 = arith.constant dense<
|
|
[0, 1, 3]
|
|
> : tensor<3xi32>
|
|
|
|
%csr_index32 = arith.constant dense<
|
|
[1, 0, 1]
|
|
> : tensor<3xi32>
|
|
%csr= sparse_tensor.pack %csr_data, %csr_pos32, %csr_index32 : tensor<4xf64>, tensor<3xi32>, tensor<3xi32>
|
|
to tensor<2x2xf64, #CSR>
|
|
|
|
%bdata = arith.constant dense<
|
|
[ 1.0, 2.0, 3.0, 4.0, 5.0, 0.0]
|
|
> : tensor<6xf64>
|
|
|
|
%bpos = arith.constant dense<
|
|
[0, 3, 3, 5]
|
|
> : tensor<4xindex>
|
|
|
|
%bindex = arith.constant dense<
|
|
[[ 1, 2],
|
|
[ 5, 6],
|
|
[ 7, 8],
|
|
[ 2, 3],
|
|
[ 4, 2],
|
|
[ 10, 10]]
|
|
> : tensor<6x2xindex>
|
|
%bs = sparse_tensor.pack %bdata, %bpos, %bindex :
|
|
tensor<6xf64>, tensor<4xindex>, tensor<6x2xindex> to tensor<2x10x10xf64, #BCOO>
|
|
|
|
// CHECK:1
|
|
// CHECK-NEXT:2
|
|
// CHECK-NEXT:1
|
|
//
|
|
// CHECK-NEXT:5
|
|
// CHECK-NEXT:6
|
|
// CHECK-NEXT:2
|
|
//
|
|
// CHECK-NEXT:7
|
|
// CHECK-NEXT:8
|
|
// CHECK-NEXT:3
|
|
sparse_tensor.foreach in %s4 : tensor<10x10xf64, #SortedCOO> do {
|
|
^bb0(%1: index, %2: index, %v: f64) :
|
|
vector.print %1: index
|
|
vector.print %2: index
|
|
vector.print %v: f64
|
|
}
|
|
|
|
// CHECK-NEXT:1
|
|
// CHECK-NEXT:2
|
|
// CHECK-NEXT:1
|
|
//
|
|
// CHECK-NEXT:5
|
|
// CHECK-NEXT:6
|
|
// CHECK-NEXT:2
|
|
//
|
|
// CHECK-NEXT:7
|
|
// CHECK-NEXT:8
|
|
// CHECK-NEXT:3
|
|
sparse_tensor.foreach in %s5 : tensor<10x10xf64, #SortedCOOI32> do {
|
|
^bb0(%1: index, %2: index, %v: f64) :
|
|
vector.print %1: index
|
|
vector.print %2: index
|
|
vector.print %v: f64
|
|
}
|
|
|
|
// CHECK-NEXT:0
|
|
// CHECK-NEXT:1
|
|
// CHECK-NEXT:1
|
|
//
|
|
// CHECK-NEXT:1
|
|
// CHECK-NEXT:0
|
|
// CHECK-NEXT:2
|
|
//
|
|
// CHECK-NEXT:1
|
|
// CHECK-NEXT:1
|
|
// CHECK-NEXT:3
|
|
sparse_tensor.foreach in %csr : tensor<2x2xf64, #CSR> do {
|
|
^bb0(%1: index, %2: index, %v: f64) :
|
|
vector.print %1: index
|
|
vector.print %2: index
|
|
vector.print %v: f64
|
|
}
|
|
|
|
%d_csr = tensor.empty() : tensor<4xf64>
|
|
%p_csr = tensor.empty() : tensor<3xi32>
|
|
%i_csr = tensor.empty() : tensor<3xi32>
|
|
%rd_csr, %rp_csr, %ri_csr, %ld_csr, %lp_csr, %li_csr = sparse_tensor.unpack %csr : tensor<2x2xf64, #CSR>
|
|
outs(%d_csr, %p_csr, %i_csr : tensor<4xf64>, tensor<3xi32>, tensor<3xi32>)
|
|
-> tensor<4xf64>, (tensor<3xi32>, tensor<3xi32>), index, (i32, i64)
|
|
|
|
// CHECK-NEXT: ( 1, 2, 3, {{.*}} )
|
|
%vd_csr = vector.transfer_read %rd_csr[%c0], %f0 : tensor<4xf64>, vector<4xf64>
|
|
vector.print %vd_csr : vector<4xf64>
|
|
|
|
// CHECK-NEXT:1
|
|
// CHECK-NEXT:2
|
|
// CHECK-NEXT:3
|
|
//
|
|
// CHECK-NEXT:4
|
|
// CHECK-NEXT:5
|
|
//
|
|
// Make sure the trailing zeros are not traversed.
|
|
// CHECK-NOT: 0
|
|
sparse_tensor.foreach in %bs : tensor<2x10x10xf64, #BCOO> do {
|
|
^bb0(%0: index, %1: index, %2: index, %v: f64) :
|
|
vector.print %v: f64
|
|
}
|
|
|
|
%od = tensor.empty() : tensor<3xf64>
|
|
%op = tensor.empty() : tensor<2xi32>
|
|
%oi = tensor.empty() : tensor<3x2xi32>
|
|
%d, %p, %i, %dl, %pl, %il = sparse_tensor.unpack %s5 : tensor<10x10xf64, #SortedCOOI32>
|
|
outs(%od, %op, %oi : tensor<3xf64>, tensor<2xi32>, tensor<3x2xi32>)
|
|
-> tensor<3xf64>, (tensor<2xi32>, tensor<3x2xi32>), index, (i32, i64)
|
|
|
|
// CHECK-NEXT: ( 1, 2, 3 )
|
|
%vd = vector.transfer_read %d[%c0], %f0 : tensor<3xf64>, vector<3xf64>
|
|
vector.print %vd : vector<3xf64>
|
|
|
|
// CHECK-NEXT: ( ( 1, 2 ), ( 5, 6 ), ( 7, 8 ) )
|
|
%vi = vector.transfer_read %i[%c0, %c0], %i0 : tensor<3x2xi32>, vector<3x2xi32>
|
|
vector.print %vi : vector<3x2xi32>
|
|
|
|
|
|
%bod = tensor.empty() : tensor<6xf64>
|
|
%bop = tensor.empty() : tensor<4xindex>
|
|
%boi = tensor.empty() : tensor<6x2xindex>
|
|
%bd, %bp, %bi, %ld, %lp, %li = sparse_tensor.unpack %bs : tensor<2x10x10xf64, #BCOO>
|
|
outs(%bod, %bop, %boi : tensor<6xf64>, tensor<4xindex>, tensor<6x2xindex>)
|
|
-> tensor<6xf64>, (tensor<4xindex>, tensor<6x2xindex>), index, (i32, tensor<i64>)
|
|
|
|
// CHECK-NEXT: ( 1, 2, 3, 4, 5, {{.*}} )
|
|
%vbd = vector.transfer_read %bd[%c0], %f0 : tensor<6xf64>, vector<6xf64>
|
|
vector.print %vbd : vector<6xf64>
|
|
// CHECK-NEXT: 5
|
|
vector.print %ld : index
|
|
|
|
// CHECK-NEXT: ( ( 1, 2 ), ( 5, 6 ), ( 7, 8 ), ( 2, 3 ), ( 4, 2 ), ( {{.*}}, {{.*}} ) )
|
|
%vbi = vector.transfer_read %bi[%c0, %c0], %c0 : tensor<6x2xindex>, vector<6x2xindex>
|
|
vector.print %vbi : vector<6x2xindex>
|
|
// CHECK-NEXT: 10
|
|
%si = tensor.extract %li[] : tensor<i64>
|
|
vector.print %si : i64
|
|
|
|
return
|
|
}
|
|
}
|