Files
clang-p2996/mlir/test/python/dialects/transform.py
max 92233062c1 [mlir][python bindings] generate all the enums
This PR implements python enum bindings for *all* the enums - this includes `I*Attrs` (including positional/bit) and `Dialect/EnumAttr`.

There are a few parts to this:

1. CMake: a small addition to `declare_mlir_dialect_python_bindings` and `declare_mlir_dialect_extension_python_bindings` to generate the enum, a boolean arg `GEN_ENUM_BINDINGS` to make it opt-in (even though it works for basically all of the dialects), and an optional `GEN_ENUM_BINDINGS_TD_FILE` for handling corner cases.
2. EnumPythonBindingGen.cpp: there are two weedy aspects here that took investigation:
    1. If an enum attribute is not a `Dialect/EnumAttr` then the `EnumAttrInfo` record is canonical, as far as both the cases of the enum **and the `AttrDefName`**. On the otherhand, if an enum is a `Dialect/EnumAttr` then the `EnumAttr` record has the correct `AttrDefName` ("load bearing", i.e., populates `ods.ir.AttributeBuilder('<NAME>')`) but its `enum` field contains the cases, which is an instance of `EnumAttrInfo`. The solution is to generate an one enum class for both `Dialect/EnumAttr` and "independent" `EnumAttrInfo` but to make that class interopable with two builder registrations that both do the right thing (see next sub-bullet).
    2. Because we don't have a good connection to cpp `EnumAttr`, i.e., only the `enum class` getters are exposed (like `DimensionAttr::get(Dimension value)`), we have to resort to parsing e.g., `Attribute.parse(f'#gpu<dim {x}>')`. This means that the set of supported `assemblyFormat`s (for the enum) is fixed at compile of MLIR (currently 2, the only 2 I saw). There might be some things that could be done here but they would require quite a bit more C API work to support generically (e.g., casting ints to enum cases and binding all the getters or going generically through the `symbolize*` methods, like `symbolizeDimension(uint32_t)` or `symbolizeDimension(StringRef)`).

A few small changes:

1. In addition, since this patch registers default builders for attributes where people might've had their own builders already written, I added a `replace` param to `AttributeBuilder.insert` (`False` by default).
2. `makePythonEnumCaseName` can't handle all the different ways in which people write their enum cases, e.g., `llvm.CConv.Intel_OCL_BI`, which gets turned into `INTEL_O_C_L_B_I` (because `llvm::convertToSnakeFromCamelCase` doesn't look for runs of caps). So I dropped it. On the otherhand regularization does need to done because some enums have `None` as a case (and others might have other python keywords).
3. I turned on `llvm` dialect generation here in order to test `nvvm.WGMMAScaleIn`, which is an enum with [[ d7e26b5620/mlir/include/mlir/IR/EnumAttr.td (L22-L25) | no explicit discriminator ]] for the `neg` case.

Note, dialects that didn't get a `GEN_ENUM_BINDINGS` don't have any enums to generate.

Let me know if I should add more tests (the three trivial ones I added exercise both the supported `assemblyFormat`s and `replace=True`).

Reviewed By: stellaraccident

Differential Revision: https://reviews.llvm.org/D157934
2023-08-23 15:03:55 -05:00

229 lines
7.7 KiB
Python

# RUN: %PYTHON %s | FileCheck %s
from mlir.ir import *
from mlir.dialects import transform
from mlir.dialects.transform import pdl as transform_pdl
def run(f):
with Context(), Location.unknown():
module = Module.create()
with InsertionPoint(module.body):
print("\nTEST:", f.__name__)
f()
print(module)
return f
@run
def testTypes():
# CHECK-LABEL: TEST: testTypes
# CHECK: !transform.any_op
any_op = transform.AnyOpType.get()
print(any_op)
# CHECK: !transform.any_value
any_value = transform.AnyValueType.get()
print(any_value)
# CHECK: !transform.op<"foo.bar">
# CHECK: foo.bar
concrete_op = transform.OperationType.get("foo.bar")
print(concrete_op)
print(concrete_op.operation_name)
@run
def testSequenceOp():
sequence = transform.SequenceOp(
transform.FailurePropagationMode.Propagate,
[transform.AnyOpType.get()],
transform.AnyOpType.get(),
)
with InsertionPoint(sequence.body):
transform.YieldOp([sequence.bodyTarget])
# CHECK-LABEL: TEST: testSequenceOp
# CHECK: = transform.sequence -> !transform.any_op failures(propagate) {
# CHECK: ^{{.*}}(%[[ARG0:.+]]: !transform.any_op):
# CHECK: yield %[[ARG0]] : !transform.any_op
# CHECK: }
@run
def testNestedSequenceOp():
sequence = transform.SequenceOp(
transform.FailurePropagationMode.Propagate, [], transform.AnyOpType.get()
)
with InsertionPoint(sequence.body):
nested = transform.SequenceOp(
transform.FailurePropagationMode.Propagate, [], sequence.bodyTarget
)
with InsertionPoint(nested.body):
doubly_nested = transform.SequenceOp(
transform.FailurePropagationMode.Propagate,
[transform.AnyOpType.get()],
nested.bodyTarget,
)
with InsertionPoint(doubly_nested.body):
transform.YieldOp([doubly_nested.bodyTarget])
transform.YieldOp()
transform.YieldOp()
# CHECK-LABEL: TEST: testNestedSequenceOp
# CHECK: transform.sequence failures(propagate) {
# CHECK: ^{{.*}}(%[[ARG0:.+]]: !transform.any_op):
# CHECK: sequence %[[ARG0]] : !transform.any_op failures(propagate) {
# CHECK: ^{{.*}}(%[[ARG1:.+]]: !transform.any_op):
# CHECK: = sequence %[[ARG1]] : !transform.any_op -> !transform.any_op failures(propagate) {
# CHECK: ^{{.*}}(%[[ARG2:.+]]: !transform.any_op):
# CHECK: yield %[[ARG2]] : !transform.any_op
# CHECK: }
# CHECK: }
# CHECK: }
@run
def testSequenceOpWithExtras():
sequence = transform.SequenceOp(
transform.FailurePropagationMode.Propagate,
[],
transform.AnyOpType.get(),
[transform.AnyOpType.get(), transform.OperationType.get("foo.bar")],
)
with InsertionPoint(sequence.body):
transform.YieldOp()
# CHECK-LABEL: TEST: testSequenceOpWithExtras
# CHECK: transform.sequence failures(propagate)
# CHECK: ^{{.*}}(%{{.*}}: !transform.any_op, %{{.*}}: !transform.any_op, %{{.*}}: !transform.op<"foo.bar">):
@run
def testNestedSequenceOpWithExtras():
sequence = transform.SequenceOp(
transform.FailurePropagationMode.Propagate,
[],
transform.AnyOpType.get(),
[transform.AnyOpType.get(), transform.OperationType.get("foo.bar")],
)
with InsertionPoint(sequence.body):
nested = transform.SequenceOp(
transform.FailurePropagationMode.Propagate,
[],
sequence.bodyTarget,
sequence.bodyExtraArgs,
)
with InsertionPoint(nested.body):
transform.YieldOp()
transform.YieldOp()
# CHECK-LABEL: TEST: testNestedSequenceOpWithExtras
# CHECK: transform.sequence failures(propagate)
# CHECK: ^{{.*}}(%[[ARG0:.*]]: !transform.any_op, %[[ARG1:.*]]: !transform.any_op, %[[ARG2:.*]]: !transform.op<"foo.bar">):
# CHECK: sequence %[[ARG0]], %[[ARG1]], %[[ARG2]] : (!transform.any_op, !transform.any_op, !transform.op<"foo.bar">)
@run
def testTransformPDLOps():
withPdl = transform_pdl.WithPDLPatternsOp(transform.AnyOpType.get())
with InsertionPoint(withPdl.body):
sequence = transform.SequenceOp(
transform.FailurePropagationMode.Propagate,
[transform.AnyOpType.get()],
withPdl.bodyTarget,
)
with InsertionPoint(sequence.body):
match = transform_pdl.PDLMatchOp(
transform.AnyOpType.get(), sequence.bodyTarget, "pdl_matcher"
)
transform.YieldOp(match)
# CHECK-LABEL: TEST: testTransformPDLOps
# CHECK: transform.with_pdl_patterns {
# CHECK: ^{{.*}}(%[[ARG0:.+]]: !transform.any_op):
# CHECK: = sequence %[[ARG0]] : !transform.any_op -> !transform.any_op failures(propagate) {
# CHECK: ^{{.*}}(%[[ARG1:.+]]: !transform.any_op):
# CHECK: %[[RES:.+]] = pdl_match @pdl_matcher in %[[ARG1]]
# CHECK: yield %[[RES]] : !transform.any_op
# CHECK: }
# CHECK: }
@run
def testGetParentOp():
sequence = transform.SequenceOp(
transform.FailurePropagationMode.Propagate, [], transform.AnyOpType.get()
)
with InsertionPoint(sequence.body):
transform.GetParentOp(
transform.AnyOpType.get(), sequence.bodyTarget, isolated_from_above=True
)
transform.YieldOp()
# CHECK-LABEL: TEST: testGetParentOp
# CHECK: transform.sequence
# CHECK: ^{{.*}}(%[[ARG1:.+]]: !transform.any_op):
# CHECK: = get_parent_op %[[ARG1]] {isolated_from_above}
@run
def testMergeHandlesOp():
sequence = transform.SequenceOp(
transform.FailurePropagationMode.Propagate, [], transform.AnyOpType.get()
)
with InsertionPoint(sequence.body):
transform.MergeHandlesOp([sequence.bodyTarget])
transform.YieldOp()
# CHECK-LABEL: TEST: testMergeHandlesOp
# CHECK: transform.sequence
# CHECK: ^{{.*}}(%[[ARG1:.+]]: !transform.any_op):
# CHECK: = merge_handles %[[ARG1]]
@run
def testApplyPatternsOpCompact():
sequence = transform.SequenceOp(
transform.FailurePropagationMode.Propagate, [], transform.AnyOpType.get()
)
with InsertionPoint(sequence.body):
with InsertionPoint(transform.ApplyPatternsOp(sequence.bodyTarget).patterns):
transform.ApplyCanonicalizationPatternsOp()
transform.YieldOp()
# CHECK-LABEL: TEST: testApplyPatternsOpCompact
# CHECK: apply_patterns to
# CHECK: transform.apply_patterns.canonicalization
# CHECK: !transform.any_op
@run
def testApplyPatternsOpWithType():
sequence = transform.SequenceOp(
transform.FailurePropagationMode.Propagate, [],
transform.OperationType.get('test.dummy')
)
with InsertionPoint(sequence.body):
with InsertionPoint(transform.ApplyPatternsOp(sequence.bodyTarget).patterns):
transform.ApplyCanonicalizationPatternsOp()
transform.YieldOp()
# CHECK-LABEL: TEST: testApplyPatternsOp
# CHECK: apply_patterns to
# CHECK: transform.apply_patterns.canonicalization
# CHECK: !transform.op<"test.dummy">
@run
def testReplicateOp():
with_pdl = transform_pdl.WithPDLPatternsOp(transform.AnyOpType.get())
with InsertionPoint(with_pdl.body):
sequence = transform.SequenceOp(
transform.FailurePropagationMode.Propagate, [], with_pdl.bodyTarget
)
with InsertionPoint(sequence.body):
m1 = transform_pdl.PDLMatchOp(
transform.AnyOpType.get(), sequence.bodyTarget, "first"
)
m2 = transform_pdl.PDLMatchOp(
transform.AnyOpType.get(), sequence.bodyTarget, "second"
)
transform.ReplicateOp(m1, [m2])
transform.YieldOp()
# CHECK-LABEL: TEST: testReplicateOp
# CHECK: %[[FIRST:.+]] = pdl_match
# CHECK: %[[SECOND:.+]] = pdl_match
# CHECK: %{{.*}} = replicate num(%[[FIRST]]) %[[SECOND]]