Files
clang-p2996/llvm/lib/Analysis/ConstraintSystem.cpp
Florian Hahn 9b6127d76d [ConstraintSystem] Remove GCD handling (NFCI).
As @dtcxzyw pointed out in
https://github.com/llvm/llvm-project/pull/76299#pullrequestreview-1795471115
the current GCD handling is effectively a no-op, as NewGCD will always
by 1, as it is initially initialized as 1.

This patch removes the uses of GCD and its computation. This slightly
reduces compile-time [1], while not causing any binary changes (due to always
dividing by 1) in the large test-set I checked.

Division by GCD could be added in the future again and it in theory
should help reduce overflows by normalizing the coefficients (sketched
in cadbfdf8605e743e092217c54e2b837245a0a330), but this also doesn't seem
to have much (any) impact in practice.

[1] https://llvm-compile-time-tracker.com/compare.php?from=0de030e4dcb798228731ab25d4dd31df4dcaba2b&to=cadbfdf8605e743e092217c54e2b837245a0a330&stat=instructions:u
2023-12-28 15:22:23 +00:00

210 lines
6.5 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
//===- ConstraintSytem.cpp - A system of linear constraints. ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ConstraintSystem.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Debug.h"
#include <string>
using namespace llvm;
#define DEBUG_TYPE "constraint-system"
bool ConstraintSystem::eliminateUsingFM() {
// Implementation of FourierMotzkin elimination, with some tricks from the
// paper Pugh, William. "The Omega test: a fast and practical integer
// programming algorithm for dependence
// analysis."
// Supercomputing'91: Proceedings of the 1991 ACM/
// IEEE conference on Supercomputing. IEEE, 1991.
assert(!Constraints.empty() &&
"should only be called for non-empty constraint systems");
unsigned LastIdx = NumVariables - 1;
// First, either remove the variable in place if it is 0 or add the row to
// RemainingRows and remove it from the system.
SmallVector<SmallVector<Entry, 8>, 4> RemainingRows;
for (unsigned R1 = 0; R1 < Constraints.size();) {
SmallVector<Entry, 8> &Row1 = Constraints[R1];
if (getLastCoefficient(Row1, LastIdx) == 0) {
if (Row1.size() > 0 && Row1.back().Id == LastIdx)
Row1.pop_back();
R1++;
} else {
std::swap(Constraints[R1], Constraints.back());
RemainingRows.push_back(std::move(Constraints.back()));
Constraints.pop_back();
}
}
// Process rows where the variable is != 0.
unsigned NumRemainingConstraints = RemainingRows.size();
for (unsigned R1 = 0; R1 < NumRemainingConstraints; R1++) {
// FIXME do not use copy
for (unsigned R2 = R1 + 1; R2 < NumRemainingConstraints; R2++) {
if (R1 == R2)
continue;
int64_t UpperLast = getLastCoefficient(RemainingRows[R2], LastIdx);
int64_t LowerLast = getLastCoefficient(RemainingRows[R1], LastIdx);
assert(
UpperLast != 0 && LowerLast != 0 &&
"RemainingRows should only contain rows where the variable is != 0");
if ((LowerLast < 0 && UpperLast < 0) || (LowerLast > 0 && UpperLast > 0))
continue;
unsigned LowerR = R1;
unsigned UpperR = R2;
if (UpperLast < 0) {
std::swap(LowerR, UpperR);
std::swap(LowerLast, UpperLast);
}
SmallVector<Entry, 8> NR;
unsigned IdxUpper = 0;
unsigned IdxLower = 0;
auto &LowerRow = RemainingRows[LowerR];
auto &UpperRow = RemainingRows[UpperR];
while (true) {
if (IdxUpper >= UpperRow.size() || IdxLower >= LowerRow.size())
break;
int64_t M1, M2, N;
int64_t UpperV = 0;
int64_t LowerV = 0;
uint16_t CurrentId = std::numeric_limits<uint16_t>::max();
if (IdxUpper < UpperRow.size()) {
CurrentId = std::min(UpperRow[IdxUpper].Id, CurrentId);
}
if (IdxLower < LowerRow.size()) {
CurrentId = std::min(LowerRow[IdxLower].Id, CurrentId);
}
if (IdxUpper < UpperRow.size() && UpperRow[IdxUpper].Id == CurrentId) {
UpperV = UpperRow[IdxUpper].Coefficient;
IdxUpper++;
}
if (MulOverflow(UpperV, ((-1) * LowerLast), M1))
return false;
if (IdxLower < LowerRow.size() && LowerRow[IdxLower].Id == CurrentId) {
LowerV = LowerRow[IdxLower].Coefficient;
IdxLower++;
}
if (MulOverflow(LowerV, (UpperLast), M2))
return false;
if (AddOverflow(M1, M2, N))
return false;
if (N == 0)
continue;
NR.emplace_back(N, CurrentId);
}
if (NR.empty())
continue;
Constraints.push_back(std::move(NR));
// Give up if the new system gets too big.
if (Constraints.size() > 500)
return false;
}
}
NumVariables -= 1;
return true;
}
bool ConstraintSystem::mayHaveSolutionImpl() {
while (!Constraints.empty() && NumVariables > 1) {
if (!eliminateUsingFM())
return true;
}
if (Constraints.empty() || NumVariables > 1)
return true;
return all_of(Constraints, [](auto &R) {
if (R.empty())
return true;
if (R[0].Id == 0)
return R[0].Coefficient >= 0;
return true;
});
}
SmallVector<std::string> ConstraintSystem::getVarNamesList() const {
SmallVector<std::string> Names(Value2Index.size(), "");
#ifndef NDEBUG
for (auto &[V, Index] : Value2Index) {
std::string OperandName;
if (V->getName().empty())
OperandName = V->getNameOrAsOperand();
else
OperandName = std::string("%") + V->getName().str();
Names[Index - 1] = OperandName;
}
#endif
return Names;
}
void ConstraintSystem::dump() const {
#ifndef NDEBUG
if (Constraints.empty())
return;
SmallVector<std::string> Names = getVarNamesList();
for (const auto &Row : Constraints) {
SmallVector<std::string, 16> Parts;
for (unsigned I = 0, S = Row.size(); I < S; ++I) {
if (Row[I].Id >= NumVariables)
break;
if (Row[I].Id == 0)
continue;
std::string Coefficient;
if (Row[I].Coefficient != 1)
Coefficient = std::to_string(Row[I].Coefficient) + " * ";
Parts.push_back(Coefficient + Names[Row[I].Id - 1]);
}
// assert(!Parts.empty() && "need to have at least some parts");
int64_t ConstPart = 0;
if (Row[0].Id == 0)
ConstPart = Row[0].Coefficient;
LLVM_DEBUG(dbgs() << join(Parts, std::string(" + "))
<< " <= " << std::to_string(ConstPart) << "\n");
}
#endif
}
bool ConstraintSystem::mayHaveSolution() {
LLVM_DEBUG(dbgs() << "---\n");
LLVM_DEBUG(dump());
bool HasSolution = mayHaveSolutionImpl();
LLVM_DEBUG(dbgs() << (HasSolution ? "sat" : "unsat") << "\n");
return HasSolution;
}
bool ConstraintSystem::isConditionImplied(SmallVector<int64_t, 8> R) const {
// If all variable coefficients are 0, we have 'C >= 0'. If the constant is >=
// 0, R is always true, regardless of the system.
if (all_of(ArrayRef(R).drop_front(1), [](int64_t C) { return C == 0; }))
return R[0] >= 0;
// If there is no solution with the negation of R added to the system, the
// condition must hold based on the existing constraints.
R = ConstraintSystem::negate(R);
if (R.empty())
return false;
auto NewSystem = *this;
NewSystem.addVariableRow(R);
return !NewSystem.mayHaveSolution();
}