This PR adds unroll patterns for vector.load and vector.store. This PR is follow up of #137558
815 lines
33 KiB
C++
815 lines
33 KiB
C++
//===- VectorUnrollDistribute.cpp - patterns to do vector unrolling -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements patterns to do vector unrolling and vector distribution.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Utils/IndexingUtils.h"
|
|
#include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
|
|
#include "mlir/Interfaces/VectorInterfaces.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/InterleavedRange.h"
|
|
#include <optional>
|
|
|
|
#define DEBUG_TYPE "vector-unroll"
|
|
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE "]: ")
|
|
#define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n")
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::vector;
|
|
|
|
/// Compute the indices of the slice `index` for a transfer op.
|
|
static SmallVector<Value> sliceTransferIndices(ArrayRef<int64_t> elementOffsets,
|
|
ArrayRef<Value> indices,
|
|
AffineMap permutationMap,
|
|
Location loc,
|
|
OpBuilder &builder) {
|
|
MLIRContext *ctx = builder.getContext();
|
|
auto isBroadcast = [](AffineExpr expr) {
|
|
if (auto constExpr = dyn_cast<AffineConstantExpr>(expr))
|
|
return constExpr.getValue() == 0;
|
|
return false;
|
|
};
|
|
// Compute 'sliceIndices' by adding 'sliceOffsets[i]' to 'indices[i]'.
|
|
SmallVector<Value> slicedIndices(indices);
|
|
for (const auto &dim : llvm::enumerate(permutationMap.getResults())) {
|
|
if (isBroadcast(dim.value()))
|
|
continue;
|
|
unsigned pos = cast<AffineDimExpr>(dim.value()).getPosition();
|
|
auto expr = getAffineDimExpr(0, builder.getContext()) +
|
|
getAffineConstantExpr(elementOffsets[dim.index()], ctx);
|
|
auto map = AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, expr);
|
|
slicedIndices[pos] =
|
|
builder.create<affine::AffineApplyOp>(loc, map, indices[pos]);
|
|
}
|
|
return slicedIndices;
|
|
}
|
|
|
|
// Compute the new indices by adding `offsets` to `originalIndices`.
|
|
// If m < n (m = offsets.size(), n = originalIndices.size()),
|
|
// then only the trailing m values in `originalIndices` are updated.
|
|
static SmallVector<Value> sliceLoadStoreIndices(PatternRewriter &rewriter,
|
|
Location loc,
|
|
OperandRange originalIndices,
|
|
ArrayRef<int64_t> offsets) {
|
|
assert(offsets.size() <= originalIndices.size() &&
|
|
"Offsets should not exceed the number of original indices");
|
|
SmallVector<Value> indices(originalIndices);
|
|
|
|
auto start = indices.size() - offsets.size();
|
|
for (auto [i, offset] : llvm::enumerate(offsets)) {
|
|
if (offset != 0) {
|
|
indices[start + i] = rewriter.create<arith::AddIOp>(
|
|
loc, originalIndices[start + i],
|
|
rewriter.create<arith::ConstantIndexOp>(loc, offset));
|
|
}
|
|
}
|
|
return indices;
|
|
}
|
|
|
|
// Clones `op` into a new operations that takes `operands` and returns
|
|
// `resultTypes`.
|
|
static Operation *cloneOpWithOperandsAndTypes(OpBuilder &builder, Location loc,
|
|
Operation *op,
|
|
ArrayRef<Value> operands,
|
|
ArrayRef<Type> resultTypes) {
|
|
return builder.create(loc, op->getName().getIdentifier(), operands,
|
|
resultTypes, op->getAttrs());
|
|
}
|
|
|
|
/// Return the target shape for unrolling for the given `op`. Return
|
|
/// std::nullopt if the op shouldn't be or cannot be unrolled.
|
|
static std::optional<SmallVector<int64_t>>
|
|
getTargetShape(const vector::UnrollVectorOptions &options, Operation *op) {
|
|
LDBG("");
|
|
LDBG("Get unroll shape for op " << op->getName().getStringRef());
|
|
if (options.filterConstraint && failed(options.filterConstraint(op))) {
|
|
LDBG("--no filter constraint -> BAIL");
|
|
return std::nullopt;
|
|
}
|
|
assert(options.nativeShape &&
|
|
"vector unrolling expects the native shape or native"
|
|
"shape call back function to be set");
|
|
auto unrollableVectorOp = dyn_cast<VectorUnrollOpInterface>(op);
|
|
if (!unrollableVectorOp) {
|
|
LDBG("--not an unrollable op -> BAIL");
|
|
return std::nullopt;
|
|
}
|
|
auto maybeUnrollShape = unrollableVectorOp.getShapeForUnroll();
|
|
if (!maybeUnrollShape) {
|
|
LDBG("--could not get shape of op " << *op << " -> BAIL");
|
|
return std::nullopt;
|
|
}
|
|
LDBG("--vector op shape: " << llvm::interleaved(*maybeUnrollShape));
|
|
|
|
std::optional<SmallVector<int64_t>> targetShape = options.nativeShape(op);
|
|
if (!targetShape) {
|
|
LDBG("--no unrolling target shape defined " << *op << "-> SKIP");
|
|
return std::nullopt;
|
|
}
|
|
LDBG("--target shape: " << llvm::interleaved(*targetShape));
|
|
|
|
auto maybeShapeRatio = computeShapeRatio(*maybeUnrollShape, *targetShape);
|
|
if (!maybeShapeRatio) {
|
|
LDBG("--could not compute integral shape ratio -> BAIL");
|
|
return std::nullopt;
|
|
}
|
|
if (llvm::all_of(*maybeShapeRatio, [](int64_t v) { return v == 1; })) {
|
|
LDBG("--no unrolling needed -> SKIP");
|
|
return std::nullopt;
|
|
}
|
|
LDBG("--found an integral shape ratio to unroll to -> SUCCESS");
|
|
return targetShape;
|
|
}
|
|
|
|
static SmallVector<int64_t>
|
|
getUnrollOrder(unsigned numLoops, Operation *op,
|
|
const vector::UnrollVectorOptions &options) {
|
|
SmallVector<int64_t> loopOrder =
|
|
llvm::to_vector(llvm::seq<int64_t>(0, static_cast<int64_t>(numLoops)));
|
|
if (options.traversalOrderCallback != nullptr) {
|
|
std::optional<SmallVector<int64_t>> order =
|
|
options.traversalOrderCallback(op);
|
|
if (order) {
|
|
loopOrder = std::move(*order);
|
|
}
|
|
}
|
|
return loopOrder;
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct UnrollTransferReadPattern
|
|
: public OpRewritePattern<vector::TransferReadOp> {
|
|
UnrollTransferReadPattern(MLIRContext *context,
|
|
const vector::UnrollVectorOptions &options,
|
|
PatternBenefit benefit = 1)
|
|
: OpRewritePattern<vector::TransferReadOp>(context, benefit),
|
|
options(options) {}
|
|
|
|
LogicalResult matchAndRewrite(vector::TransferReadOp readOp,
|
|
PatternRewriter &rewriter) const override {
|
|
// TODO: support 0-d corner case.
|
|
if (readOp.getTransferRank() == 0)
|
|
return failure();
|
|
if (readOp.getMask())
|
|
return failure();
|
|
auto targetShape = getTargetShape(options, readOp);
|
|
if (!targetShape)
|
|
return failure();
|
|
auto sourceVectorType = readOp.getVectorType();
|
|
SmallVector<int64_t> strides(targetShape->size(), 1);
|
|
Location loc = readOp.getLoc();
|
|
ArrayRef<int64_t> originalSize = readOp.getVectorType().getShape();
|
|
|
|
// Prepare the result vector;
|
|
Value result = rewriter.create<arith::ConstantOp>(
|
|
loc, sourceVectorType, rewriter.getZeroAttr(sourceVectorType));
|
|
auto targetType =
|
|
VectorType::get(*targetShape, sourceVectorType.getElementType());
|
|
SmallVector<Value> originalIndices(readOp.getIndices().begin(),
|
|
readOp.getIndices().end());
|
|
SmallVector<int64_t> loopOrder =
|
|
getUnrollOrder(originalSize.size(), readOp, options);
|
|
for (SmallVector<int64_t> elementOffsets :
|
|
StaticTileOffsetRange(originalSize, *targetShape, loopOrder)) {
|
|
SmallVector<Value> indices =
|
|
sliceTransferIndices(elementOffsets, originalIndices,
|
|
readOp.getPermutationMap(), loc, rewriter);
|
|
auto slicedRead = rewriter.create<vector::TransferReadOp>(
|
|
loc, targetType, readOp.getBase(), indices,
|
|
readOp.getPermutationMapAttr(), readOp.getPadding(), readOp.getMask(),
|
|
readOp.getInBoundsAttr());
|
|
|
|
result = rewriter.createOrFold<vector::InsertStridedSliceOp>(
|
|
loc, slicedRead, result, elementOffsets, strides);
|
|
}
|
|
rewriter.replaceOp(readOp, result);
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
vector::UnrollVectorOptions options;
|
|
};
|
|
|
|
struct UnrollTransferWritePattern
|
|
: public OpRewritePattern<vector::TransferWriteOp> {
|
|
UnrollTransferWritePattern(MLIRContext *context,
|
|
const vector::UnrollVectorOptions &options,
|
|
PatternBenefit benefit = 1)
|
|
: OpRewritePattern<vector::TransferWriteOp>(context, benefit),
|
|
options(options) {}
|
|
|
|
LogicalResult matchAndRewrite(vector::TransferWriteOp writeOp,
|
|
PatternRewriter &rewriter) const override {
|
|
// TODO: support 0-d corner case.
|
|
if (writeOp.getTransferRank() == 0)
|
|
return failure();
|
|
|
|
if (writeOp.getMask())
|
|
return failure();
|
|
auto targetShape = getTargetShape(options, writeOp);
|
|
if (!targetShape)
|
|
return failure();
|
|
auto sourceVectorType = writeOp.getVectorType();
|
|
SmallVector<int64_t> strides(targetShape->size(), 1);
|
|
Location loc = writeOp.getLoc();
|
|
ArrayRef<int64_t> originalSize = sourceVectorType.getShape();
|
|
SmallVector<Value> originalIndices(writeOp.getIndices().begin(),
|
|
writeOp.getIndices().end());
|
|
SmallVector<int64_t> loopOrder =
|
|
getUnrollOrder(originalSize.size(), writeOp, options);
|
|
Value resultTensor;
|
|
for (SmallVector<int64_t> elementOffsets :
|
|
StaticTileOffsetRange(originalSize, *targetShape, loopOrder)) {
|
|
Value slicedVector = rewriter.createOrFold<vector::ExtractStridedSliceOp>(
|
|
loc, writeOp.getVector(), elementOffsets, *targetShape, strides);
|
|
SmallVector<Value> indices =
|
|
sliceTransferIndices(elementOffsets, originalIndices,
|
|
writeOp.getPermutationMap(), loc, rewriter);
|
|
Operation *slicedWrite = rewriter.create<vector::TransferWriteOp>(
|
|
loc, slicedVector, resultTensor ? resultTensor : writeOp.getBase(),
|
|
indices, writeOp.getPermutationMapAttr(), writeOp.getInBoundsAttr());
|
|
// For the tensor case update the destination for the next transfer write.
|
|
if (!slicedWrite->getResults().empty())
|
|
resultTensor = slicedWrite->getResult(0);
|
|
}
|
|
if (resultTensor)
|
|
rewriter.replaceOp(writeOp, resultTensor);
|
|
else
|
|
rewriter.eraseOp(writeOp);
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
vector::UnrollVectorOptions options;
|
|
};
|
|
|
|
struct OffsetMapInfo {
|
|
static SmallVector<int64_t> getEmptyKey() { return {int64_t(-1)}; }
|
|
|
|
static SmallVector<int64_t> getTombstoneKey() { return {int64_t(-2)}; }
|
|
|
|
static unsigned getHashValue(const SmallVector<int64_t> &v) {
|
|
return static_cast<unsigned>(llvm::hash_combine_range(v));
|
|
}
|
|
|
|
static bool isEqual(const SmallVector<int64_t> &lhs,
|
|
const SmallVector<int64_t> &rhs) {
|
|
return lhs == rhs;
|
|
}
|
|
};
|
|
|
|
struct UnrollContractionPattern
|
|
: public OpRewritePattern<vector::ContractionOp> {
|
|
UnrollContractionPattern(MLIRContext *context,
|
|
const vector::UnrollVectorOptions &options,
|
|
PatternBenefit benefit = 1)
|
|
: OpRewritePattern<vector::ContractionOp>(context, benefit),
|
|
options(options) {}
|
|
|
|
LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto targetShape = getTargetShape(options, contractOp);
|
|
if (!targetShape)
|
|
return failure();
|
|
auto dstVecType = cast<VectorType>(contractOp.getResultType());
|
|
SmallVector<int64_t> originalSize = *contractOp.getShapeForUnroll();
|
|
|
|
Location loc = contractOp.getLoc();
|
|
unsigned accIndex = vector::ContractionOp::getAccOperandIndex();
|
|
AffineMap dstAffineMap = contractOp.getIndexingMapsArray()[accIndex];
|
|
llvm::MapVector<
|
|
SmallVector<int64_t>, Value,
|
|
llvm::DenseMap<SmallVector<int64_t>, unsigned, OffsetMapInfo>>
|
|
accCache;
|
|
|
|
SmallVector<int64_t> loopOrder = getUnrollOrder(
|
|
contractOp.getIteratorTypes().size(), contractOp, options);
|
|
|
|
for (SmallVector<int64_t> offsets :
|
|
StaticTileOffsetRange(originalSize, *targetShape, loopOrder)) {
|
|
SmallVector<Value> slicesOperands(contractOp.getNumOperands());
|
|
|
|
// Helper to compute the new shape of each operand and extract the slice.
|
|
auto extractOperand = [&](unsigned index, Value operand,
|
|
AffineMap permutationMap,
|
|
ArrayRef<int64_t> operandOffets) {
|
|
SmallVector<int64_t> operandShape = applyPermutationMap(
|
|
permutationMap, ArrayRef<int64_t>(*targetShape));
|
|
SmallVector<int64_t> operandStrides(operandOffets.size(), 1);
|
|
slicesOperands[index] =
|
|
rewriter.createOrFold<vector::ExtractStridedSliceOp>(
|
|
loc, operand, operandOffets, operandShape, operandStrides);
|
|
};
|
|
|
|
// Extract the new lhs operand.
|
|
AffineMap lhsPermutationMap = contractOp.getIndexingMapsArray()[0];
|
|
SmallVector<int64_t> lhsOffets =
|
|
applyPermutationMap(lhsPermutationMap, ArrayRef<int64_t>(offsets));
|
|
extractOperand(0, contractOp.getLhs(), lhsPermutationMap, lhsOffets);
|
|
|
|
// Extract the new rhs operand.
|
|
AffineMap rhsPermutationMap = contractOp.getIndexingMapsArray()[1];
|
|
SmallVector<int64_t> rhsOffets =
|
|
applyPermutationMap(rhsPermutationMap, ArrayRef<int64_t>(offsets));
|
|
extractOperand(1, contractOp.getRhs(), rhsPermutationMap, rhsOffets);
|
|
|
|
AffineMap accPermutationMap = contractOp.getIndexingMapsArray()[2];
|
|
SmallVector<int64_t> accOffets =
|
|
applyPermutationMap(accPermutationMap, ArrayRef<int64_t>(offsets));
|
|
// If a version of the accumulator has already been computed, use it
|
|
// otherwise extract the first version from the original operand.
|
|
auto *accIt = accCache.find(accOffets);
|
|
if (accIt != accCache.end())
|
|
slicesOperands[2] = accIt->second;
|
|
else
|
|
extractOperand(2, contractOp.getAcc(), accPermutationMap, accOffets);
|
|
|
|
SmallVector<int64_t> dstShape =
|
|
applyPermutationMap(dstAffineMap, ArrayRef<int64_t>(*targetShape));
|
|
auto targetType = VectorType::get(dstShape, dstVecType.getElementType());
|
|
Operation *newOp = cloneOpWithOperandsAndTypes(
|
|
rewriter, loc, contractOp, slicesOperands, targetType);
|
|
|
|
SmallVector<int64_t> dstOffets =
|
|
applyPermutationMap(dstAffineMap, ArrayRef<int64_t>(offsets));
|
|
// Save the accumulated value untill all the loops are unrolled since
|
|
// reduction loop keep updating the accumulator.
|
|
accCache[dstOffets] = newOp->getResult(0);
|
|
}
|
|
// Assemble back the accumulator into a single vector.
|
|
Value result = rewriter.create<arith::ConstantOp>(
|
|
loc, dstVecType, rewriter.getZeroAttr(dstVecType));
|
|
for (const auto &it : accCache) {
|
|
SmallVector<int64_t> dstStrides(it.first.size(), 1);
|
|
result = rewriter.createOrFold<vector::InsertStridedSliceOp>(
|
|
loc, it.second, result, it.first, dstStrides);
|
|
}
|
|
rewriter.replaceOp(contractOp, result);
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
vector::UnrollVectorOptions options;
|
|
};
|
|
|
|
struct UnrollMultiReductionPattern
|
|
: public OpRewritePattern<vector::MultiDimReductionOp> {
|
|
UnrollMultiReductionPattern(MLIRContext *context,
|
|
const vector::UnrollVectorOptions &options,
|
|
PatternBenefit benefit = 1)
|
|
: OpRewritePattern<vector::MultiDimReductionOp>(context, benefit),
|
|
options(options) {}
|
|
|
|
LogicalResult matchAndRewrite(vector::MultiDimReductionOp reductionOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto resultType = reductionOp->getResult(0).getType();
|
|
if (resultType.isIntOrFloat()) {
|
|
return rewriter.notifyMatchFailure(reductionOp,
|
|
"Unrolling scalars is not supported");
|
|
}
|
|
std::optional<SmallVector<int64_t>> targetShape =
|
|
getTargetShape(options, reductionOp);
|
|
if (!targetShape)
|
|
return failure();
|
|
SmallVector<int64_t> originalSize = *reductionOp.getShapeForUnroll();
|
|
llvm::MapVector<
|
|
SmallVector<int64_t>, Value,
|
|
llvm::DenseMap<SmallVector<int64_t>, unsigned, OffsetMapInfo>>
|
|
accCache;
|
|
Location loc = reductionOp.getLoc();
|
|
|
|
// Stride of the ratios, this gives us the offsets of sliceCount in a basis
|
|
// of multiples of the targetShape.
|
|
for (SmallVector<int64_t> offsets :
|
|
StaticTileOffsetRange(originalSize, *targetShape)) {
|
|
SmallVector<Value> operands;
|
|
SmallVector<int64_t> operandStrides(offsets.size(), 1);
|
|
Value slicedOperand =
|
|
rewriter.createOrFold<vector::ExtractStridedSliceOp>(
|
|
loc, reductionOp.getSource(), offsets, *targetShape,
|
|
operandStrides);
|
|
operands.push_back(slicedOperand);
|
|
SmallVector<int64_t> dstShape;
|
|
SmallVector<int64_t> destOffset;
|
|
for (size_t i : llvm::seq(size_t(0), targetShape->size())) {
|
|
if (!reductionOp.isReducedDim(i)) {
|
|
destOffset.push_back(offsets[i]);
|
|
dstShape.push_back((*targetShape)[i]);
|
|
}
|
|
}
|
|
Value acc;
|
|
SmallVector<int64_t> accStrides(destOffset.size(), 1);
|
|
// If a version of the accumulator has already been computed, use it
|
|
// otherwise extract the first version from the original operand.
|
|
auto *accIt = accCache.find(destOffset);
|
|
if (accIt != accCache.end())
|
|
acc = accIt->second;
|
|
else
|
|
acc = rewriter.createOrFold<vector::ExtractStridedSliceOp>(
|
|
loc, reductionOp.getAcc(), destOffset, dstShape, accStrides);
|
|
operands.push_back(acc);
|
|
auto targetType = VectorType::get(
|
|
dstShape, reductionOp.getSourceVectorType().getElementType());
|
|
Operation *newOp = cloneOpWithOperandsAndTypes(rewriter, loc, reductionOp,
|
|
operands, targetType);
|
|
Value result = newOp->getResult(0);
|
|
accCache[destOffset] = result;
|
|
}
|
|
// Assemble back the accumulator into a single vector.
|
|
Value result = rewriter.create<arith::ConstantOp>(
|
|
loc, reductionOp.getDestType(),
|
|
rewriter.getZeroAttr(reductionOp.getDestType()));
|
|
for (const auto &it : accCache) {
|
|
SmallVector<int64_t> dstStrides(it.first.size(), 1);
|
|
result = rewriter.createOrFold<vector::InsertStridedSliceOp>(
|
|
loc, it.second, result, it.first, dstStrides);
|
|
}
|
|
rewriter.replaceOp(reductionOp, result);
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
vector::UnrollVectorOptions options;
|
|
};
|
|
|
|
struct UnrollElementwisePattern : public RewritePattern {
|
|
UnrollElementwisePattern(MLIRContext *context,
|
|
const vector::UnrollVectorOptions &options,
|
|
PatternBenefit benefit = 1)
|
|
: RewritePattern(MatchAnyOpTypeTag(), benefit, context),
|
|
options(options) {}
|
|
|
|
LogicalResult matchAndRewrite(Operation *op,
|
|
PatternRewriter &rewriter) const override {
|
|
if (!OpTrait::hasElementwiseMappableTraits(op) || op->getNumResults() != 1)
|
|
return failure();
|
|
auto targetShape = getTargetShape(options, op);
|
|
if (!targetShape)
|
|
return failure();
|
|
auto dstVecType = cast<VectorType>(op->getResult(0).getType());
|
|
SmallVector<int64_t> originalSize =
|
|
*cast<VectorUnrollOpInterface>(op).getShapeForUnroll();
|
|
// Bail-out if rank(source) != rank(target). The main limitation here is the
|
|
// fact that `ExtractStridedSlice` requires the rank for the input and
|
|
// output to match. If needed, we can relax this later.
|
|
if (originalSize.size() != targetShape->size())
|
|
return rewriter.notifyMatchFailure(
|
|
op, "expected input vector rank to match target shape rank");
|
|
Location loc = op->getLoc();
|
|
// Prepare the result vector.
|
|
Value result = rewriter.create<arith::ConstantOp>(
|
|
loc, dstVecType, rewriter.getZeroAttr(dstVecType));
|
|
SmallVector<int64_t> strides(targetShape->size(), 1);
|
|
VectorType newVecType =
|
|
VectorType::get(*targetShape, dstVecType.getElementType());
|
|
|
|
// Create the unrolled computation.
|
|
for (SmallVector<int64_t> offsets :
|
|
StaticTileOffsetRange(originalSize, *targetShape)) {
|
|
SmallVector<Value> extractOperands;
|
|
for (OpOperand &operand : op->getOpOperands()) {
|
|
auto vecType = dyn_cast<VectorType>(operand.get().getType());
|
|
if (!vecType) {
|
|
extractOperands.push_back(operand.get());
|
|
continue;
|
|
}
|
|
extractOperands.push_back(
|
|
rewriter.createOrFold<vector::ExtractStridedSliceOp>(
|
|
loc, operand.get(), offsets, *targetShape, strides));
|
|
}
|
|
Operation *newOp = cloneOpWithOperandsAndTypes(
|
|
rewriter, loc, op, extractOperands, newVecType);
|
|
result = rewriter.createOrFold<vector::InsertStridedSliceOp>(
|
|
loc, newOp->getResult(0), result, offsets, strides);
|
|
}
|
|
rewriter.replaceOp(op, result);
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
vector::UnrollVectorOptions options;
|
|
};
|
|
|
|
struct UnrollReductionPattern : public OpRewritePattern<vector::ReductionOp> {
|
|
UnrollReductionPattern(MLIRContext *context,
|
|
const vector::UnrollVectorOptions &options,
|
|
PatternBenefit benefit = 1)
|
|
: OpRewritePattern<vector::ReductionOp>(context, benefit),
|
|
options(options) {}
|
|
|
|
LogicalResult matchAndRewrite(vector::ReductionOp reductionOp,
|
|
PatternRewriter &rewriter) const override {
|
|
std::optional<SmallVector<int64_t>> targetShape =
|
|
getTargetShape(options, reductionOp);
|
|
if (!targetShape)
|
|
return failure();
|
|
SmallVector<int64_t> originalSize = *reductionOp.getShapeForUnroll();
|
|
|
|
// Create unrolled vector reduction.
|
|
Location loc = reductionOp.getLoc();
|
|
Value accumulator = nullptr;
|
|
for (SmallVector<int64_t> offsets :
|
|
StaticTileOffsetRange(originalSize, *targetShape)) {
|
|
SmallVector<int64_t> strides(offsets.size(), 1);
|
|
Value slicedOperand =
|
|
rewriter.createOrFold<vector::ExtractStridedSliceOp>(
|
|
loc, reductionOp.getVector(), offsets, *targetShape, strides);
|
|
Operation *newOp = cloneOpWithOperandsAndTypes(
|
|
rewriter, loc, reductionOp, slicedOperand, reductionOp.getType());
|
|
Value result = newOp->getResult(0);
|
|
|
|
if (!accumulator) {
|
|
// This is the first reduction.
|
|
accumulator = result;
|
|
} else {
|
|
// On subsequent reduction, combine with the accumulator.
|
|
accumulator = makeArithReduction(rewriter, loc, reductionOp.getKind(),
|
|
accumulator, result);
|
|
}
|
|
}
|
|
|
|
rewriter.replaceOp(reductionOp, accumulator);
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
const vector::UnrollVectorOptions options;
|
|
};
|
|
|
|
struct UnrollTransposePattern : public OpRewritePattern<vector::TransposeOp> {
|
|
UnrollTransposePattern(MLIRContext *context,
|
|
const vector::UnrollVectorOptions &options,
|
|
PatternBenefit benefit = 1)
|
|
: OpRewritePattern<vector::TransposeOp>(context, benefit),
|
|
options(options) {}
|
|
|
|
LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
|
|
PatternRewriter &rewriter) const override {
|
|
if (transposeOp.getResultVectorType().getRank() == 0)
|
|
return failure();
|
|
auto targetShape = getTargetShape(options, transposeOp);
|
|
if (!targetShape)
|
|
return failure();
|
|
auto originalVectorType = transposeOp.getResultVectorType();
|
|
SmallVector<int64_t> strides(targetShape->size(), 1);
|
|
Location loc = transposeOp.getLoc();
|
|
ArrayRef<int64_t> originalSize = originalVectorType.getShape();
|
|
|
|
// Prepare the result vector;
|
|
Value result = rewriter.create<arith::ConstantOp>(
|
|
loc, originalVectorType, rewriter.getZeroAttr(originalVectorType));
|
|
ArrayRef<int64_t> permutation = transposeOp.getPermutation();
|
|
|
|
// Unroll the computation.
|
|
for (SmallVector<int64_t> elementOffsets :
|
|
StaticTileOffsetRange(originalSize, *targetShape)) {
|
|
SmallVector<int64_t> permutedOffsets(elementOffsets.size());
|
|
SmallVector<int64_t> permutedShape(elementOffsets.size());
|
|
// Compute the source offsets and shape.
|
|
for (auto indices : llvm::enumerate(permutation)) {
|
|
permutedOffsets[indices.value()] = elementOffsets[indices.index()];
|
|
permutedShape[indices.value()] = (*targetShape)[indices.index()];
|
|
}
|
|
Value slicedOperand =
|
|
rewriter.createOrFold<vector::ExtractStridedSliceOp>(
|
|
loc, transposeOp.getVector(), permutedOffsets, permutedShape,
|
|
strides);
|
|
Value transposedSlice = rewriter.createOrFold<vector::TransposeOp>(
|
|
loc, slicedOperand, permutation);
|
|
result = rewriter.createOrFold<vector::InsertStridedSliceOp>(
|
|
loc, transposedSlice, result, elementOffsets, strides);
|
|
}
|
|
rewriter.replaceOp(transposeOp, result);
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
vector::UnrollVectorOptions options;
|
|
};
|
|
|
|
struct UnrollGatherPattern : public OpRewritePattern<vector::GatherOp> {
|
|
UnrollGatherPattern(MLIRContext *context,
|
|
const vector::UnrollVectorOptions &options,
|
|
PatternBenefit benefit = 1)
|
|
: OpRewritePattern<vector::GatherOp>(context, benefit), options(options) {
|
|
}
|
|
|
|
LogicalResult matchAndRewrite(vector::GatherOp gatherOp,
|
|
PatternRewriter &rewriter) const override {
|
|
VectorType sourceVectorType = gatherOp.getVectorType();
|
|
if (sourceVectorType.getRank() == 0)
|
|
return failure();
|
|
auto targetShape = getTargetShape(options, gatherOp);
|
|
if (!targetShape)
|
|
return failure();
|
|
SmallVector<int64_t> strides(targetShape->size(), 1);
|
|
Location loc = gatherOp.getLoc();
|
|
ArrayRef<int64_t> originalSize = gatherOp.getVectorType().getShape();
|
|
|
|
// Prepare the result vector;
|
|
Value result = rewriter.create<arith::ConstantOp>(
|
|
loc, sourceVectorType, rewriter.getZeroAttr(sourceVectorType));
|
|
auto targetType =
|
|
VectorType::get(*targetShape, sourceVectorType.getElementType());
|
|
|
|
SmallVector<int64_t> loopOrder =
|
|
getUnrollOrder(originalSize.size(), gatherOp, options);
|
|
for (SmallVector<int64_t> elementOffsets :
|
|
StaticTileOffsetRange(originalSize, *targetShape, loopOrder)) {
|
|
// To get the unrolled gather, extract the same slice based on the
|
|
// decomposed shape from each of the index, mask, and pass-through
|
|
// vectors.
|
|
Value indexSubVec = rewriter.createOrFold<vector::ExtractStridedSliceOp>(
|
|
loc, gatherOp.getIndexVec(), elementOffsets, *targetShape, strides);
|
|
Value maskSubVec = rewriter.createOrFold<vector::ExtractStridedSliceOp>(
|
|
loc, gatherOp.getMask(), elementOffsets, *targetShape, strides);
|
|
Value passThruSubVec =
|
|
rewriter.createOrFold<vector::ExtractStridedSliceOp>(
|
|
loc, gatherOp.getPassThru(), elementOffsets, *targetShape,
|
|
strides);
|
|
auto slicedGather = rewriter.create<vector::GatherOp>(
|
|
loc, targetType, gatherOp.getBase(), gatherOp.getIndices(),
|
|
indexSubVec, maskSubVec, passThruSubVec);
|
|
|
|
result = rewriter.createOrFold<vector::InsertStridedSliceOp>(
|
|
loc, slicedGather, result, elementOffsets, strides);
|
|
}
|
|
rewriter.replaceOp(gatherOp, result);
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
vector::UnrollVectorOptions options;
|
|
};
|
|
|
|
struct UnrollLoadPattern : public OpRewritePattern<vector::LoadOp> {
|
|
UnrollLoadPattern(MLIRContext *context,
|
|
const vector::UnrollVectorOptions &options,
|
|
PatternBenefit benefit = 1)
|
|
: OpRewritePattern<vector::LoadOp>(context, benefit), options(options) {}
|
|
|
|
LogicalResult matchAndRewrite(vector::LoadOp loadOp,
|
|
PatternRewriter &rewriter) const override {
|
|
VectorType vecType = loadOp.getVectorType();
|
|
|
|
auto targetShape = getTargetShape(options, loadOp);
|
|
if (!targetShape)
|
|
return failure();
|
|
|
|
Location loc = loadOp.getLoc();
|
|
ArrayRef<int64_t> originalShape = vecType.getShape();
|
|
SmallVector<int64_t> strides(targetShape->size(), 1);
|
|
|
|
Value result = rewriter.create<arith::ConstantOp>(
|
|
loc, vecType, rewriter.getZeroAttr(vecType));
|
|
|
|
SmallVector<int64_t> loopOrder =
|
|
getUnrollOrder(originalShape.size(), loadOp, options);
|
|
|
|
auto targetVecType =
|
|
VectorType::get(*targetShape, vecType.getElementType());
|
|
|
|
for (SmallVector<int64_t> offsets :
|
|
StaticTileOffsetRange(originalShape, *targetShape, loopOrder)) {
|
|
SmallVector<Value> indices =
|
|
sliceLoadStoreIndices(rewriter, loc, loadOp.getIndices(), offsets);
|
|
Value slicedLoad = rewriter.create<vector::LoadOp>(
|
|
loc, targetVecType, loadOp.getBase(), indices);
|
|
result = rewriter.createOrFold<vector::InsertStridedSliceOp>(
|
|
loc, slicedLoad, result, offsets, strides);
|
|
}
|
|
rewriter.replaceOp(loadOp, result);
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
vector::UnrollVectorOptions options;
|
|
};
|
|
|
|
struct UnrollStorePattern : public OpRewritePattern<vector::StoreOp> {
|
|
UnrollStorePattern(MLIRContext *context,
|
|
const vector::UnrollVectorOptions &options,
|
|
PatternBenefit benefit = 1)
|
|
: OpRewritePattern<vector::StoreOp>(context, benefit), options(options) {}
|
|
|
|
LogicalResult matchAndRewrite(vector::StoreOp storeOp,
|
|
PatternRewriter &rewriter) const override {
|
|
VectorType vecType = storeOp.getVectorType();
|
|
|
|
auto targetShape = getTargetShape(options, storeOp);
|
|
if (!targetShape)
|
|
return failure();
|
|
|
|
Location loc = storeOp.getLoc();
|
|
ArrayRef<int64_t> originalShape = vecType.getShape();
|
|
SmallVector<int64_t> strides(targetShape->size(), 1);
|
|
|
|
Value base = storeOp.getBase();
|
|
Value vector = storeOp.getValueToStore();
|
|
|
|
SmallVector<int64_t> loopOrder =
|
|
getUnrollOrder(originalShape.size(), storeOp, options);
|
|
|
|
for (SmallVector<int64_t> offsets :
|
|
StaticTileOffsetRange(originalShape, *targetShape, loopOrder)) {
|
|
SmallVector<Value> indices =
|
|
sliceLoadStoreIndices(rewriter, loc, storeOp.getIndices(), offsets);
|
|
Value slice = rewriter.createOrFold<vector::ExtractStridedSliceOp>(
|
|
loc, vector, offsets, *targetShape, strides);
|
|
rewriter.create<vector::StoreOp>(loc, slice, base, indices);
|
|
}
|
|
rewriter.eraseOp(storeOp);
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
vector::UnrollVectorOptions options;
|
|
};
|
|
|
|
struct UnrollBroadcastPattern : public OpRewritePattern<vector::BroadcastOp> {
|
|
UnrollBroadcastPattern(MLIRContext *context,
|
|
const vector::UnrollVectorOptions &options,
|
|
PatternBenefit benefit = 1)
|
|
: OpRewritePattern<vector::BroadcastOp>(context, benefit),
|
|
options(options) {}
|
|
|
|
LogicalResult matchAndRewrite(vector::BroadcastOp broadcastOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto targetShape = getTargetShape(options, broadcastOp);
|
|
if (!targetShape)
|
|
return failure();
|
|
|
|
Location loc = broadcastOp.getLoc();
|
|
VectorType srcType = dyn_cast<VectorType>(broadcastOp.getSourceType());
|
|
VectorType resType = broadcastOp.getResultVectorType();
|
|
VectorType targetType =
|
|
resType.cloneWith(*targetShape, resType.getElementType());
|
|
Value result = rewriter.create<arith::ConstantOp>(
|
|
loc, resType, rewriter.getZeroAttr(resType));
|
|
|
|
SmallVector<int64_t> originalShape = *broadcastOp.getShapeForUnroll();
|
|
SmallVector<int64_t> strides(originalShape.size(), 1);
|
|
|
|
for (SmallVector<int64_t> offsets :
|
|
StaticTileOffsetRange(originalShape, *targetShape)) {
|
|
Value newSrc;
|
|
if (!srcType) {
|
|
// Scalar to vector broadcast.
|
|
newSrc = broadcastOp.getSource();
|
|
} else {
|
|
// Vector to vector broadcast.
|
|
int64_t rank = srcType.getRank();
|
|
SmallVector<int64_t> srcOffsets(offsets.end() - rank, offsets.end());
|
|
SmallVector<int64_t> srcShape(targetShape->end() - rank,
|
|
targetShape->end());
|
|
SmallVector<int64_t> srcStrides(strides.end() - rank, strides.end());
|
|
// adjust the offset and shape for src if the corresponding dim is 1.
|
|
for (int64_t i = 0; i < rank; ++i) {
|
|
if (srcType.getDimSize(i) == 1) {
|
|
srcOffsets[i] = 0;
|
|
srcShape[i] = 1;
|
|
}
|
|
}
|
|
newSrc = rewriter.createOrFold<vector::ExtractStridedSliceOp>(
|
|
loc, broadcastOp.getSource(), srcOffsets, srcShape, srcStrides);
|
|
}
|
|
|
|
Operation *newOp = cloneOpWithOperandsAndTypes(rewriter, loc, broadcastOp,
|
|
newSrc, targetType);
|
|
|
|
result = rewriter.createOrFold<vector::InsertStridedSliceOp>(
|
|
loc, newOp->getResult(0), result, offsets, strides);
|
|
}
|
|
|
|
rewriter.replaceOp(broadcastOp, result);
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
vector::UnrollVectorOptions options;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void mlir::vector::populateVectorUnrollPatterns(
|
|
RewritePatternSet &patterns, const UnrollVectorOptions &options,
|
|
PatternBenefit benefit) {
|
|
patterns.add<UnrollTransferReadPattern, UnrollTransferWritePattern,
|
|
UnrollContractionPattern, UnrollElementwisePattern,
|
|
UnrollReductionPattern, UnrollMultiReductionPattern,
|
|
UnrollTransposePattern, UnrollGatherPattern, UnrollLoadPattern,
|
|
UnrollStorePattern, UnrollBroadcastPattern>(
|
|
patterns.getContext(), options, benefit);
|
|
}
|