Files
clang-p2996/lldb/tools/debugserver/source/MacOSX/ppc/DNBArchImpl.cpp
Chandler Carruth 2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

492 lines
17 KiB
C++

//===-- DNBArchImpl.cpp -----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/25/07.
//
//===----------------------------------------------------------------------===//
#if defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__)
#if __DARWIN_UNIX03
#define PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(reg) __##reg
#else
#define PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(reg) reg
#endif
#include "MacOSX/ppc/DNBArchImpl.h"
#include "DNBBreakpoint.h"
#include "DNBLog.h"
#include "DNBRegisterInfo.h"
#include "MacOSX/MachThread.h"
static const uint8_t g_breakpoint_opcode[] = {0x7F, 0xC0, 0x00, 0x08};
const uint8_t *DNBArchMachPPC::SoftwareBreakpointOpcode(nub_size_t size) {
if (size == 4)
return g_breakpoint_opcode;
return NULL;
}
uint32_t DNBArchMachPPC::GetCPUType() { return CPU_TYPE_POWERPC; }
uint64_t DNBArchMachPPC::GetPC(uint64_t failValue) {
// Get program counter
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr0);
return failValue;
}
kern_return_t DNBArchMachPPC::SetPC(uint64_t value) {
// Get program counter
kern_return_t err = GetGPRState(false);
if (err == KERN_SUCCESS) {
m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr0) = value;
err = SetGPRState();
}
return err == KERN_SUCCESS;
}
uint64_t DNBArchMachPPC::GetSP(uint64_t failValue) {
// Get stack pointer
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(r1);
return failValue;
}
kern_return_t DNBArchMachPPC::GetGPRState(bool force) {
if (force || m_state.GetError(e_regSetGPR, Read)) {
mach_msg_type_number_t count = e_regSetWordSizeGPR;
m_state.SetError(e_regSetGPR, Read,
::thread_get_state(m_thread->MachPortNumber(), e_regSetGPR,
(thread_state_t)&m_state.gpr, &count));
}
return m_state.GetError(e_regSetGPR, Read);
}
kern_return_t DNBArchMachPPC::GetFPRState(bool force) {
if (force || m_state.GetError(e_regSetFPR, Read)) {
mach_msg_type_number_t count = e_regSetWordSizeFPR;
m_state.SetError(e_regSetFPR, Read,
::thread_get_state(m_thread->MachPortNumber(), e_regSetFPR,
(thread_state_t)&m_state.fpr, &count));
}
return m_state.GetError(e_regSetFPR, Read);
}
kern_return_t DNBArchMachPPC::GetEXCState(bool force) {
if (force || m_state.GetError(e_regSetEXC, Read)) {
mach_msg_type_number_t count = e_regSetWordSizeEXC;
m_state.SetError(e_regSetEXC, Read,
::thread_get_state(m_thread->MachPortNumber(), e_regSetEXC,
(thread_state_t)&m_state.exc, &count));
}
return m_state.GetError(e_regSetEXC, Read);
}
kern_return_t DNBArchMachPPC::GetVECState(bool force) {
if (force || m_state.GetError(e_regSetVEC, Read)) {
mach_msg_type_number_t count = e_regSetWordSizeVEC;
m_state.SetError(e_regSetVEC, Read,
::thread_get_state(m_thread->MachPortNumber(), e_regSetVEC,
(thread_state_t)&m_state.vec, &count));
}
return m_state.GetError(e_regSetVEC, Read);
}
kern_return_t DNBArchMachPPC::SetGPRState() {
m_state.SetError(e_regSetGPR, Write,
::thread_set_state(m_thread->MachPortNumber(), e_regSetGPR,
(thread_state_t)&m_state.gpr,
e_regSetWordSizeGPR));
return m_state.GetError(e_regSetGPR, Write);
}
kern_return_t DNBArchMachPPC::SetFPRState() {
m_state.SetError(e_regSetFPR, Write,
::thread_set_state(m_thread->MachPortNumber(), e_regSetFPR,
(thread_state_t)&m_state.fpr,
e_regSetWordSizeFPR));
return m_state.GetError(e_regSetFPR, Write);
}
kern_return_t DNBArchMachPPC::SetEXCState() {
m_state.SetError(e_regSetEXC, Write,
::thread_set_state(m_thread->MachPortNumber(), e_regSetEXC,
(thread_state_t)&m_state.exc,
e_regSetWordSizeEXC));
return m_state.GetError(e_regSetEXC, Write);
}
kern_return_t DNBArchMachPPC::SetVECState() {
m_state.SetError(e_regSetVEC, Write,
::thread_set_state(m_thread->MachPortNumber(), e_regSetVEC,
(thread_state_t)&m_state.vec,
e_regSetWordSizeVEC));
return m_state.GetError(e_regSetVEC, Write);
}
bool DNBArchMachPPC::ThreadWillResume() {
bool success = true;
// Do we need to step this thread? If so, let the mach thread tell us so.
if (m_thread->IsStepping()) {
// This is the primary thread, let the arch do anything it needs
success = EnableHardwareSingleStep(true) == KERN_SUCCESS;
}
return success;
}
bool DNBArchMachPPC::ThreadDidStop() {
bool success = true;
m_state.InvalidateAllRegisterStates();
// Are we stepping a single instruction?
if (GetGPRState(true) == KERN_SUCCESS) {
// We are single stepping, was this the primary thread?
if (m_thread->IsStepping()) {
// This was the primary thread, we need to clear the trace
// bit if so.
success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
} else {
// The MachThread will automatically restore the suspend count
// in ThreadDidStop(), so we don't need to do anything here if
// we weren't the primary thread the last time
}
}
return success;
}
// Set the single step bit in the processor status register.
kern_return_t DNBArchMachPPC::EnableHardwareSingleStep(bool enable) {
DNBLogThreadedIf(LOG_STEP,
"DNBArchMachPPC::EnableHardwareSingleStep( enable = %d )",
enable);
if (GetGPRState(false) == KERN_SUCCESS) {
const uint32_t trace_bit = 0x400;
if (enable)
m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr1) |= trace_bit;
else
m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr1) &= ~trace_bit;
return SetGPRState();
}
return m_state.GetError(e_regSetGPR, Read);
}
//----------------------------------------------------------------------
// Register information definitions for 32 bit PowerPC.
//----------------------------------------------------------------------
enum gpr_regnums {
e_regNumGPR_srr0,
e_regNumGPR_srr1,
e_regNumGPR_r0,
e_regNumGPR_r1,
e_regNumGPR_r2,
e_regNumGPR_r3,
e_regNumGPR_r4,
e_regNumGPR_r5,
e_regNumGPR_r6,
e_regNumGPR_r7,
e_regNumGPR_r8,
e_regNumGPR_r9,
e_regNumGPR_r10,
e_regNumGPR_r11,
e_regNumGPR_r12,
e_regNumGPR_r13,
e_regNumGPR_r14,
e_regNumGPR_r15,
e_regNumGPR_r16,
e_regNumGPR_r17,
e_regNumGPR_r18,
e_regNumGPR_r19,
e_regNumGPR_r20,
e_regNumGPR_r21,
e_regNumGPR_r22,
e_regNumGPR_r23,
e_regNumGPR_r24,
e_regNumGPR_r25,
e_regNumGPR_r26,
e_regNumGPR_r27,
e_regNumGPR_r28,
e_regNumGPR_r29,
e_regNumGPR_r30,
e_regNumGPR_r31,
e_regNumGPR_cr,
e_regNumGPR_xer,
e_regNumGPR_lr,
e_regNumGPR_ctr,
e_regNumGPR_mq,
e_regNumGPR_vrsave
};
// General purpose registers
static DNBRegisterInfo g_gpr_registers[] = {
{"srr0", Uint, 4, Hex}, {"srr1", Uint, 4, Hex}, {"r0", Uint, 4, Hex},
{"r1", Uint, 4, Hex}, {"r2", Uint, 4, Hex}, {"r3", Uint, 4, Hex},
{"r4", Uint, 4, Hex}, {"r5", Uint, 4, Hex}, {"r6", Uint, 4, Hex},
{"r7", Uint, 4, Hex}, {"r8", Uint, 4, Hex}, {"r9", Uint, 4, Hex},
{"r10", Uint, 4, Hex}, {"r11", Uint, 4, Hex}, {"r12", Uint, 4, Hex},
{"r13", Uint, 4, Hex}, {"r14", Uint, 4, Hex}, {"r15", Uint, 4, Hex},
{"r16", Uint, 4, Hex}, {"r17", Uint, 4, Hex}, {"r18", Uint, 4, Hex},
{"r19", Uint, 4, Hex}, {"r20", Uint, 4, Hex}, {"r21", Uint, 4, Hex},
{"r22", Uint, 4, Hex}, {"r23", Uint, 4, Hex}, {"r24", Uint, 4, Hex},
{"r25", Uint, 4, Hex}, {"r26", Uint, 4, Hex}, {"r27", Uint, 4, Hex},
{"r28", Uint, 4, Hex}, {"r29", Uint, 4, Hex}, {"r30", Uint, 4, Hex},
{"r31", Uint, 4, Hex}, {"cr", Uint, 4, Hex}, {"xer", Uint, 4, Hex},
{"lr", Uint, 4, Hex}, {"ctr", Uint, 4, Hex}, {"mq", Uint, 4, Hex},
{"vrsave", Uint, 4, Hex},
};
// Floating point registers
static DNBRegisterInfo g_fpr_registers[] = {
{"fp0", IEEE754, 8, Float}, {"fp1", IEEE754, 8, Float},
{"fp2", IEEE754, 8, Float}, {"fp3", IEEE754, 8, Float},
{"fp4", IEEE754, 8, Float}, {"fp5", IEEE754, 8, Float},
{"fp6", IEEE754, 8, Float}, {"fp7", IEEE754, 8, Float},
{"fp8", IEEE754, 8, Float}, {"fp9", IEEE754, 8, Float},
{"fp10", IEEE754, 8, Float}, {"fp11", IEEE754, 8, Float},
{"fp12", IEEE754, 8, Float}, {"fp13", IEEE754, 8, Float},
{"fp14", IEEE754, 8, Float}, {"fp15", IEEE754, 8, Float},
{"fp16", IEEE754, 8, Float}, {"fp17", IEEE754, 8, Float},
{"fp18", IEEE754, 8, Float}, {"fp19", IEEE754, 8, Float},
{"fp20", IEEE754, 8, Float}, {"fp21", IEEE754, 8, Float},
{"fp22", IEEE754, 8, Float}, {"fp23", IEEE754, 8, Float},
{"fp24", IEEE754, 8, Float}, {"fp25", IEEE754, 8, Float},
{"fp26", IEEE754, 8, Float}, {"fp27", IEEE754, 8, Float},
{"fp28", IEEE754, 8, Float}, {"fp29", IEEE754, 8, Float},
{"fp30", IEEE754, 8, Float}, {"fp31", IEEE754, 8, Float},
{"fpscr", Uint, 4, Hex}};
// Exception registers
static DNBRegisterInfo g_exc_registers[] = {{"dar", Uint, 4, Hex},
{"dsisr", Uint, 4, Hex},
{"exception", Uint, 4, Hex}};
// Altivec registers
static DNBRegisterInfo g_vec_registers[] = {
{"vr0", Vector, 16, VectorOfFloat32},
{"vr1", Vector, 16, VectorOfFloat32},
{"vr2", Vector, 16, VectorOfFloat32},
{"vr3", Vector, 16, VectorOfFloat32},
{"vr4", Vector, 16, VectorOfFloat32},
{"vr5", Vector, 16, VectorOfFloat32},
{"vr6", Vector, 16, VectorOfFloat32},
{"vr7", Vector, 16, VectorOfFloat32},
{"vr8", Vector, 16, VectorOfFloat32},
{"vr9", Vector, 16, VectorOfFloat32},
{"vr10", Vector, 16, VectorOfFloat32},
{"vr11", Vector, 16, VectorOfFloat32},
{"vr12", Vector, 16, VectorOfFloat32},
{"vr13", Vector, 16, VectorOfFloat32},
{"vr14", Vector, 16, VectorOfFloat32},
{"vr15", Vector, 16, VectorOfFloat32},
{"vr16", Vector, 16, VectorOfFloat32},
{"vr17", Vector, 16, VectorOfFloat32},
{"vr18", Vector, 16, VectorOfFloat32},
{"vr19", Vector, 16, VectorOfFloat32},
{"vr20", Vector, 16, VectorOfFloat32},
{"vr21", Vector, 16, VectorOfFloat32},
{"vr22", Vector, 16, VectorOfFloat32},
{"vr23", Vector, 16, VectorOfFloat32},
{"vr24", Vector, 16, VectorOfFloat32},
{"vr25", Vector, 16, VectorOfFloat32},
{"vr26", Vector, 16, VectorOfFloat32},
{"vr27", Vector, 16, VectorOfFloat32},
{"vr28", Vector, 16, VectorOfFloat32},
{"vr29", Vector, 16, VectorOfFloat32},
{"vr30", Vector, 16, VectorOfFloat32},
{"vr31", Vector, 16, VectorOfFloat32},
{"vscr", Uint, 16, Hex},
{"vrvalid", Uint, 4, Hex}};
// Number of registers in each register set
const size_t k_num_gpr_registers =
sizeof(g_gpr_registers) / sizeof(DNBRegisterInfo);
const size_t k_num_fpr_registers =
sizeof(g_fpr_registers) / sizeof(DNBRegisterInfo);
const size_t k_num_exc_registers =
sizeof(g_exc_registers) / sizeof(DNBRegisterInfo);
const size_t k_num_vec_registers =
sizeof(g_vec_registers) / sizeof(DNBRegisterInfo);
// Total number of registers for this architecture
const size_t k_num_ppc_registers = k_num_gpr_registers + k_num_fpr_registers +
k_num_exc_registers + k_num_vec_registers;
//----------------------------------------------------------------------
// Register set definitions. The first definitions at register set index
// of zero is for all registers, followed by other registers sets. The
// register information for the all register set need not be filled in.
//----------------------------------------------------------------------
static const DNBRegisterSetInfo g_reg_sets[] = {
{"PowerPC Registers", NULL, k_num_ppc_registers},
{"General Purpose Registers", g_gpr_registers, k_num_gpr_registers},
{"Floating Point Registers", g_fpr_registers, k_num_fpr_registers},
{"Exception State Registers", g_exc_registers, k_num_exc_registers},
{"Altivec Registers", g_vec_registers, k_num_vec_registers}};
// Total number of register sets for this architecture
const size_t k_num_register_sets =
sizeof(g_reg_sets) / sizeof(DNBRegisterSetInfo);
const DNBRegisterSetInfo *
DNBArchMachPPC::GetRegisterSetInfo(nub_size_t *num_reg_sets) const {
*num_reg_sets = k_num_register_sets;
return g_reg_sets;
}
bool DNBArchMachPPC::GetRegisterValue(uint32_t set, uint32_t reg,
DNBRegisterValue *value) const {
if (set == REGISTER_SET_GENERIC) {
switch (reg) {
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = e_regNumGPR_srr0;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = e_regNumGPR_r1;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
// Return false for now instead of returning r30 as gcc 3.x would
// use a variety of registers for the FP and it takes inspecting
// the stack to make sure there is a frame pointer before we can
// determine the FP.
return false;
case GENERIC_REGNUM_RA: // Return Address
set = e_regSetGPR;
reg = e_regNumGPR_lr;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = e_regNumGPR_srr1;
break;
default:
return false;
}
}
if (!m_state.RegsAreValid(set))
return false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo) {
value->info = *regInfo;
switch (set) {
case e_regSetGPR:
if (reg < k_num_gpr_registers) {
value->value.uint32 =
(&m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr0))[reg];
return true;
}
break;
case e_regSetFPR:
if (reg < 32) {
value->value.float64 =
m_state.fpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(fpregs)[reg];
return true;
} else if (reg == 32) {
value->value.uint32 =
m_state.fpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(fpscr);
return true;
}
break;
case e_regSetEXC:
if (reg < k_num_exc_registers) {
value->value.uint32 =
(&m_state.exc.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(dar))[reg];
return true;
}
break;
case e_regSetVEC:
if (reg < k_num_vec_registers) {
if (reg < 33) // FP0 - FP31 and VSCR
{
// Copy all 4 uint32 values for this vector register
value->value.v_uint32[0] =
m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vr)[reg]
[0];
value->value.v_uint32[1] =
m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vr)[reg]
[1];
value->value.v_uint32[2] =
m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vr)[reg]
[2];
value->value.v_uint32[3] =
m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vr)[reg]
[3];
return true;
} else if (reg == 34) // VRVALID
{
value->value.uint32 =
m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vrvalid);
return true;
}
}
break;
}
}
return false;
}
kern_return_t DNBArchMachPPC::GetRegisterState(int set, bool force) {
switch (set) {
case e_regSetALL:
return GetGPRState(force) | GetFPRState(force) | GetEXCState(force) |
GetVECState(force);
case e_regSetGPR:
return GetGPRState(force);
case e_regSetFPR:
return GetFPRState(force);
case e_regSetEXC:
return GetEXCState(force);
case e_regSetVEC:
return GetVECState(force);
default:
break;
}
return KERN_INVALID_ARGUMENT;
}
kern_return_t DNBArchMachPPC::SetRegisterState(int set) {
// Make sure we have a valid context to set.
kern_return_t err = GetRegisterState(set, false);
if (err != KERN_SUCCESS)
return err;
switch (set) {
case e_regSetALL:
return SetGPRState() | SetFPRState() | SetEXCState() | SetVECState();
case e_regSetGPR:
return SetGPRState();
case e_regSetFPR:
return SetFPRState();
case e_regSetEXC:
return SetEXCState();
case e_regSetVEC:
return SetVECState();
default:
break;
}
return KERN_INVALID_ARGUMENT;
}
bool DNBArchMachPPC::RegisterSetStateIsValid(int set) const {
return m_state.RegsAreValid(set);
}
#endif // #if defined (__powerpc__) || defined (__ppc__) || defined (__ppc64__)