Files
clang-p2996/lldb/tools/debugserver/source/PThreadEvent.cpp
Chandler Carruth 2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

200 lines
7.5 KiB
C++

//===-- PThreadEvent.cpp ----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/16/07.
//
//===----------------------------------------------------------------------===//
#include "PThreadEvent.h"
#include "DNBLog.h"
#include "errno.h"
PThreadEvent::PThreadEvent(uint32_t bits, uint32_t validBits)
: m_mutex(), m_set_condition(), m_reset_condition(), m_bits(bits),
m_validBits(validBits), m_reset_ack_mask(0) {
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x, 0x%8.8x)",
// this, __FUNCTION__, bits, validBits);
}
PThreadEvent::~PThreadEvent() {
// DNBLogThreadedIf(LOG_EVENTS, "%p %s", this, LLVM_PRETTY_FUNCTION);
}
uint32_t PThreadEvent::NewEventBit() {
// DNBLogThreadedIf(LOG_EVENTS, "%p %s", this, LLVM_PRETTY_FUNCTION);
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
uint32_t mask = 1;
while (mask & m_validBits)
mask <<= 1;
m_validBits |= mask;
return mask;
}
void PThreadEvent::FreeEventBits(const uint32_t mask) {
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x)", this,
// __FUNCTION__, mask);
if (mask) {
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
m_bits &= ~mask;
m_validBits &= ~mask;
}
}
uint32_t PThreadEvent::GetEventBits() const {
// DNBLogThreadedIf(LOG_EVENTS, "%p %s", this, LLVM_PRETTY_FUNCTION);
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
uint32_t bits = m_bits;
return bits;
}
// Replace the event bits with a new bitmask value
void PThreadEvent::ReplaceEventBits(const uint32_t bits) {
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x)", this,
// __FUNCTION__, bits);
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
// Make sure we have some bits and that they aren't already set...
if (m_bits != bits) {
// Figure out which bits are changing
uint32_t changed_bits = m_bits ^ bits;
// Set the new bit values
m_bits = bits;
// If any new bits are set, then broadcast
if (changed_bits & m_bits)
m_set_condition.Broadcast();
}
}
// Set one or more event bits and broadcast if any new event bits get set
// that weren't already set.
void PThreadEvent::SetEvents(const uint32_t mask) {
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x)", this,
// __FUNCTION__, mask);
// Make sure we have some bits to set
if (mask) {
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
// Save the old event bit state so we can tell if things change
uint32_t old = m_bits;
// Set the all event bits that are set in 'mask'
m_bits |= mask;
// Broadcast only if any extra bits got set.
if (old != m_bits)
m_set_condition.Broadcast();
}
}
// Reset one or more event bits
void PThreadEvent::ResetEvents(const uint32_t mask) {
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x)", this,
// __FUNCTION__, mask);
if (mask) {
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
// Save the old event bit state so we can tell if things change
uint32_t old = m_bits;
// Clear the all event bits that are set in 'mask'
m_bits &= ~mask;
// Broadcast only if any extra bits got reset.
if (old != m_bits)
m_reset_condition.Broadcast();
}
}
//----------------------------------------------------------------------
// Wait until 'timeout_abstime' for any events that are set in
// 'mask'. If 'timeout_abstime' is NULL, then wait forever.
//----------------------------------------------------------------------
uint32_t
PThreadEvent::WaitForSetEvents(const uint32_t mask,
const struct timespec *timeout_abstime) const {
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x, %p)", this,
// __FUNCTION__, mask, timeout_abstime);
int err = 0;
// pthread_cond_timedwait() or pthread_cond_wait() will atomically
// unlock the mutex and wait for the condition to be set. When either
// function returns, they will re-lock the mutex. We use an auto lock/unlock
// class (PThreadMutex::Locker) to allow us to return at any point in this
// function and not have to worry about unlocking the mutex.
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
do {
// Check our predicate (event bits) in case any are already set
if (mask & m_bits) {
uint32_t bits_set = mask & m_bits;
// Our PThreadMutex::Locker will automatically unlock our mutex
return bits_set;
}
if (timeout_abstime) {
// Wait for condition to get broadcast, or for a timeout. If we get
// a timeout we will drop out of the do loop and return false which
// is what we want.
err = ::pthread_cond_timedwait(m_set_condition.Condition(),
m_mutex.Mutex(), timeout_abstime);
// Retest our predicate in case of a race condition right at the end
// of the timeout.
if (err == ETIMEDOUT) {
uint32_t bits_set = mask & m_bits;
return bits_set;
}
} else {
// Wait for condition to get broadcast. The only error this function
// should return is if
err = ::pthread_cond_wait(m_set_condition.Condition(), m_mutex.Mutex());
}
} while (err == 0);
return 0;
}
//----------------------------------------------------------------------
// Wait until 'timeout_abstime' for any events in 'mask' to reset.
// If 'timeout_abstime' is NULL, then wait forever.
//----------------------------------------------------------------------
uint32_t PThreadEvent::WaitForEventsToReset(
const uint32_t mask, const struct timespec *timeout_abstime) const {
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x, %p)", this,
// __FUNCTION__, mask, timeout_abstime);
int err = 0;
// pthread_cond_timedwait() or pthread_cond_wait() will atomically
// unlock the mutex and wait for the condition to be set. When either
// function returns, they will re-lock the mutex. We use an auto lock/unlock
// class (PThreadMutex::Locker) to allow us to return at any point in this
// function and not have to worry about unlocking the mutex.
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
do {
// Check our predicate (event bits) each time through this do loop
if ((mask & m_bits) == 0) {
// All the bits requested have been reset, return zero indicating
// which bits from the mask were still set (none of them)
return 0;
}
if (timeout_abstime) {
// Wait for condition to get broadcast, or for a timeout. If we get
// a timeout we will drop out of the do loop and return false which
// is what we want.
err = ::pthread_cond_timedwait(m_reset_condition.Condition(),
m_mutex.Mutex(), timeout_abstime);
} else {
// Wait for condition to get broadcast. The only error this function
// should return is if
err = ::pthread_cond_wait(m_reset_condition.Condition(), m_mutex.Mutex());
}
} while (err == 0);
// Return a mask indicating which bits (if any) were still set
return mask & m_bits;
}
uint32_t
PThreadEvent::WaitForResetAck(const uint32_t mask,
const struct timespec *timeout_abstime) const {
if (mask & m_reset_ack_mask) {
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x, %p)", this,
// __FUNCTION__, mask, timeout_abstime);
return WaitForEventsToReset(mask & m_reset_ack_mask, timeout_abstime);
}
return 0;
}