Files
clang-p2996/llvm
David Sherwood f575b18fdc [LV] Add support for partial reductions without a binary op (#133922)
Consider IR such as this:

for.body:
  %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
  %accum = phi i32 [ 0, %entry ], [ %add, %for.body ]
  %gep.a = getelementptr i8, ptr %a, i64 %iv
  %load.a = load i8, ptr %gep.a, align 1
  %ext.a = zext i8 %load.a to i32
  %add = add i32 %ext.a, %accum
  %iv.next = add i64 %iv, 1
  %exitcond.not = icmp eq i64 %iv.next, 1025
  br i1 %exitcond.not, label %for.exit, label %for.body

Conceptually we can vectorise this using partial reductions too,
although the current loop vectoriser implementation requires the
accumulation of a multiply. For AArch64 this is easily done with
a udot or sdot with an identity operand, i.e. a vector of (i16 1).

In order to do this I had to teach getScaledReductions that the
accumulated value may come from a unary op, hence there is only
one extension to consider. Similarly, I updated the vplan and
AArch64 TTI cost model to understand the possible unary op.

---------

Co-authored-by: Matt Devereau <matthew.devereau@arm.com>
2025-07-02 13:05:51 +01:00
..

The LLVM Compiler Infrastructure
================================

This directory and its subdirectories contain source code for LLVM,
a toolkit for the construction of highly optimized compilers,
optimizers, and runtime environments.

LLVM is open source software. You may freely distribute it under the terms of
the license agreement found in LICENSE.txt.

Please see the documentation provided in docs/ for further
assistance with LLVM, and in particular docs/GettingStarted.rst for getting
started with LLVM and docs/README.txt for an overview of LLVM's
documentation setup.

If you are writing a package for LLVM, see docs/Packaging.rst for our
suggestions.