Files
clang-p2996/clang/lib/Analysis/FlowSensitive/DataflowAnalysisContext.cpp
Martin Braenne 9ecdbe3855 [clang][dataflow] Rename AggregateStorageLocation to RecordStorageLocation and StructValue to RecordValue.
- Both of these constructs are used to represent structs, classes, and unions;
  Clang uses the collective term "record" for these.

- The term "aggregate" in `AggregateStorageLocation` implies that, at some
  point, the intention may have been to use it also for arrays, but it don't
  think it's possible to use it for arrays. Records and arrays are very
  different and therefore need to be modeled differently. Records have a fixed
  set of named fields, which can have different type; arrays have a variable
  number of elements, but they all have the same type.

- Futhermore, "aggregate" has a very specific meaning in C++
  (https://en.cppreference.com/w/cpp/language/aggregate_initialization).
  Aggregates of class type may not have any user-declared or inherited
  constructors, no private or protected non-static data members, no virtual
  member functions, and so on, but we use `AggregateStorageLocations` to model all objects of class type.

In addition, for consistency, we also rename the following:

- `getAggregateLoc()` (in `RecordValue`, formerly known as `StructValue`) to
  simply `getLoc()`.

- `refreshStructValue()` to `refreshRecordValue()`

We keep the old names around as deprecated synonyms to enable clients to be migrated to the new names.

Reviewed By: ymandel, xazax.hun

Differential Revision: https://reviews.llvm.org/D156788
2023-08-01 20:29:40 +00:00

328 lines
12 KiB
C++

//===-- DataflowAnalysisContext.cpp -----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a DataflowAnalysisContext class that owns objects that
// encompass the state of a program and stores context that is used during
// dataflow analysis.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Analysis/FlowSensitive/DebugSupport.h"
#include "clang/Analysis/FlowSensitive/Formula.h"
#include "clang/Analysis/FlowSensitive/Logger.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <memory>
#include <string>
#include <utility>
#include <vector>
static llvm::cl::opt<std::string> DataflowLog(
"dataflow-log", llvm::cl::Hidden, llvm::cl::ValueOptional,
llvm::cl::desc("Emit log of dataflow analysis. With no arg, writes textual "
"log to stderr. With an arg, writes HTML logs under the "
"specified directory (one per analyzed function)."));
namespace clang {
namespace dataflow {
FieldSet DataflowAnalysisContext::getModeledFields(QualType Type) {
// During context-sensitive analysis, a struct may be allocated in one
// function, but its field accessed in a function lower in the stack than
// the allocation. Since we only collect fields used in the function where
// the allocation occurs, we can't apply that filter when performing
// context-sensitive analysis. But, this only applies to storage locations,
// since field access it not allowed to fail. In contrast, field *values*
// don't need this allowance, since the API allows for uninitialized fields.
if (Opts.ContextSensitiveOpts)
return getObjectFields(Type);
return llvm::set_intersection(getObjectFields(Type), ModeledFields);
}
void DataflowAnalysisContext::addModeledFields(const FieldSet &Fields) {
ModeledFields.set_union(Fields);
}
StorageLocation &DataflowAnalysisContext::createStorageLocation(QualType Type) {
if (!Type.isNull() && Type->isRecordType()) {
llvm::DenseMap<const ValueDecl *, StorageLocation *> FieldLocs;
for (const FieldDecl *Field : getModeledFields(Type))
if (Field->getType()->isReferenceType())
FieldLocs.insert({Field, nullptr});
else
FieldLocs.insert({Field, &createStorageLocation(
Field->getType().getNonReferenceType())});
return arena().create<RecordStorageLocation>(Type, std::move(FieldLocs));
}
return arena().create<ScalarStorageLocation>(Type);
}
StorageLocation &
DataflowAnalysisContext::getStableStorageLocation(const VarDecl &D) {
if (auto *Loc = getStorageLocation(D))
return *Loc;
auto &Loc = createStorageLocation(D.getType().getNonReferenceType());
setStorageLocation(D, Loc);
return Loc;
}
StorageLocation &
DataflowAnalysisContext::getStableStorageLocation(const Expr &E) {
if (auto *Loc = getStorageLocation(E))
return *Loc;
auto &Loc = createStorageLocation(E.getType());
setStorageLocation(E, Loc);
return Loc;
}
PointerValue &
DataflowAnalysisContext::getOrCreateNullPointerValue(QualType PointeeType) {
auto CanonicalPointeeType =
PointeeType.isNull() ? PointeeType : PointeeType.getCanonicalType();
auto Res = NullPointerVals.try_emplace(CanonicalPointeeType, nullptr);
if (Res.second) {
auto &PointeeLoc = createStorageLocation(CanonicalPointeeType);
Res.first->second = &arena().create<PointerValue>(PointeeLoc);
}
return *Res.first->second;
}
void DataflowAnalysisContext::addFlowConditionConstraint(
Atom Token, const Formula &Constraint) {
auto Res = FlowConditionConstraints.try_emplace(Token, &Constraint);
if (!Res.second) {
Res.first->second =
&arena().makeAnd(*Res.first->second, Constraint);
}
}
Atom DataflowAnalysisContext::forkFlowCondition(Atom Token) {
Atom ForkToken = arena().makeFlowConditionToken();
FlowConditionDeps[ForkToken].insert(Token);
addFlowConditionConstraint(ForkToken, arena().makeAtomRef(Token));
return ForkToken;
}
Atom
DataflowAnalysisContext::joinFlowConditions(Atom FirstToken,
Atom SecondToken) {
Atom Token = arena().makeFlowConditionToken();
FlowConditionDeps[Token].insert(FirstToken);
FlowConditionDeps[Token].insert(SecondToken);
addFlowConditionConstraint(Token,
arena().makeOr(arena().makeAtomRef(FirstToken),
arena().makeAtomRef(SecondToken)));
return Token;
}
Solver::Result DataflowAnalysisContext::querySolver(
llvm::SetVector<const Formula *> Constraints) {
Constraints.insert(&arena().makeLiteral(true));
Constraints.insert(&arena().makeNot(arena().makeLiteral(false)));
return S->solve(Constraints.getArrayRef());
}
bool DataflowAnalysisContext::flowConditionImplies(Atom Token,
const Formula &Val) {
// Returns true if and only if truth assignment of the flow condition implies
// that `Val` is also true. We prove whether or not this property holds by
// reducing the problem to satisfiability checking. In other words, we attempt
// to show that assuming `Val` is false makes the constraints induced by the
// flow condition unsatisfiable.
llvm::SetVector<const Formula *> Constraints;
Constraints.insert(&arena().makeAtomRef(Token));
Constraints.insert(&arena().makeNot(Val));
llvm::DenseSet<Atom> VisitedTokens;
addTransitiveFlowConditionConstraints(Token, Constraints, VisitedTokens);
return isUnsatisfiable(std::move(Constraints));
}
bool DataflowAnalysisContext::flowConditionIsTautology(Atom Token) {
// Returns true if and only if we cannot prove that the flow condition can
// ever be false.
llvm::SetVector<const Formula *> Constraints;
Constraints.insert(&arena().makeNot(arena().makeAtomRef(Token)));
llvm::DenseSet<Atom> VisitedTokens;
addTransitiveFlowConditionConstraints(Token, Constraints, VisitedTokens);
return isUnsatisfiable(std::move(Constraints));
}
bool DataflowAnalysisContext::equivalentFormulas(const Formula &Val1,
const Formula &Val2) {
llvm::SetVector<const Formula *> Constraints;
Constraints.insert(&arena().makeNot(arena().makeEquals(Val1, Val2)));
return isUnsatisfiable(std::move(Constraints));
}
void DataflowAnalysisContext::addTransitiveFlowConditionConstraints(
Atom Token, llvm::SetVector<const Formula *> &Constraints,
llvm::DenseSet<Atom> &VisitedTokens) {
auto Res = VisitedTokens.insert(Token);
if (!Res.second)
return;
auto ConstraintsIt = FlowConditionConstraints.find(Token);
if (ConstraintsIt == FlowConditionConstraints.end()) {
Constraints.insert(&arena().makeAtomRef(Token));
} else {
// Bind flow condition token via `iff` to its set of constraints:
// FC <=> (C1 ^ C2 ^ ...), where Ci are constraints
Constraints.insert(&arena().makeEquals(arena().makeAtomRef(Token),
*ConstraintsIt->second));
}
auto DepsIt = FlowConditionDeps.find(Token);
if (DepsIt != FlowConditionDeps.end()) {
for (Atom DepToken : DepsIt->second) {
addTransitiveFlowConditionConstraints(DepToken, Constraints,
VisitedTokens);
}
}
}
void DataflowAnalysisContext::dumpFlowCondition(Atom Token,
llvm::raw_ostream &OS) {
llvm::SetVector<const Formula *> Constraints;
Constraints.insert(&arena().makeAtomRef(Token));
llvm::DenseSet<Atom> VisitedTokens;
addTransitiveFlowConditionConstraints(Token, Constraints, VisitedTokens);
// TODO: have formulas know about true/false directly instead
Atom True = arena().makeLiteral(true).getAtom();
Atom False = arena().makeLiteral(false).getAtom();
Formula::AtomNames Names = {{False, "false"}, {True, "true"}};
for (const auto *Constraint : Constraints) {
Constraint->print(OS, &Names);
OS << "\n";
}
}
const ControlFlowContext *
DataflowAnalysisContext::getControlFlowContext(const FunctionDecl *F) {
// Canonicalize the key:
F = F->getDefinition();
if (F == nullptr)
return nullptr;
auto It = FunctionContexts.find(F);
if (It != FunctionContexts.end())
return &It->second;
if (F->hasBody()) {
auto CFCtx = ControlFlowContext::build(*F);
// FIXME: Handle errors.
assert(CFCtx);
auto Result = FunctionContexts.insert({F, std::move(*CFCtx)});
return &Result.first->second;
}
return nullptr;
}
static std::unique_ptr<Logger> makeLoggerFromCommandLine() {
if (DataflowLog.empty())
return Logger::textual(llvm::errs());
llvm::StringRef Dir = DataflowLog;
if (auto EC = llvm::sys::fs::create_directories(Dir))
llvm::errs() << "Failed to create log dir: " << EC.message() << "\n";
// All analysis runs within a process will log to the same directory.
// Share a counter so they don't all overwrite each other's 0.html.
// (Don't share a logger, it's not threadsafe).
static std::atomic<unsigned> Counter = {0};
auto StreamFactory =
[Dir(Dir.str())]() mutable -> std::unique_ptr<llvm::raw_ostream> {
llvm::SmallString<256> File(Dir);
llvm::sys::path::append(File,
std::to_string(Counter.fetch_add(1)) + ".html");
std::error_code EC;
auto OS = std::make_unique<llvm::raw_fd_ostream>(File, EC);
if (EC) {
llvm::errs() << "Failed to create log " << File << ": " << EC.message()
<< "\n";
return std::make_unique<llvm::raw_null_ostream>();
}
return OS;
};
return Logger::html(std::move(StreamFactory));
}
DataflowAnalysisContext::DataflowAnalysisContext(std::unique_ptr<Solver> S,
Options Opts)
: S(std::move(S)), A(std::make_unique<Arena>()), Opts(Opts) {
assert(this->S != nullptr);
// If the -dataflow-log command-line flag was set, synthesize a logger.
// This is ugly but provides a uniform method for ad-hoc debugging dataflow-
// based tools.
if (Opts.Log == nullptr) {
if (DataflowLog.getNumOccurrences() > 0) {
LogOwner = makeLoggerFromCommandLine();
this->Opts.Log = LogOwner.get();
// FIXME: if the flag is given a value, write an HTML log to a file.
} else {
this->Opts.Log = &Logger::null();
}
}
}
DataflowAnalysisContext::~DataflowAnalysisContext() = default;
} // namespace dataflow
} // namespace clang
using namespace clang;
const Expr &clang::dataflow::ignoreCFGOmittedNodes(const Expr &E) {
const Expr *Current = &E;
if (auto *EWC = dyn_cast<ExprWithCleanups>(Current)) {
Current = EWC->getSubExpr();
assert(Current != nullptr);
}
Current = Current->IgnoreParens();
assert(Current != nullptr);
return *Current;
}
const Stmt &clang::dataflow::ignoreCFGOmittedNodes(const Stmt &S) {
if (auto *E = dyn_cast<Expr>(&S))
return ignoreCFGOmittedNodes(*E);
return S;
}
// FIXME: Does not precisely handle non-virtual diamond inheritance. A single
// field decl will be modeled for all instances of the inherited field.
static void getFieldsFromClassHierarchy(QualType Type,
clang::dataflow::FieldSet &Fields) {
if (Type->isIncompleteType() || Type->isDependentType() ||
!Type->isRecordType())
return;
for (const FieldDecl *Field : Type->getAsRecordDecl()->fields())
Fields.insert(Field);
if (auto *CXXRecord = Type->getAsCXXRecordDecl())
for (const CXXBaseSpecifier &Base : CXXRecord->bases())
getFieldsFromClassHierarchy(Base.getType(), Fields);
}
/// Gets the set of all fields in the type.
clang::dataflow::FieldSet clang::dataflow::getObjectFields(QualType Type) {
FieldSet Fields;
getFieldsFromClassHierarchy(Type, Fields);
return Fields;
}