Files
clang-p2996/mlir/lib/Quantizer/Support/Statistics.cpp
Stella Laurenzo 5065839da7 Upstream the Quantizer tool (part 4).
This adds the basic passes needed and ties them into mlir-opt. Also adds two specific unit tests that exercise them.

    Next step is a standalone quantizer tool and additional cleanup.
    Tested:
      ninja check-mlir

--

PiperOrigin-RevId: 249167690
2019-06-01 19:53:12 -07:00

112 lines
3.8 KiB
C++

//===- Statistics.cpp - Collects statistics over tensors ------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/Quantizer/Support/Statistics.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/StandardTypes.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
using namespace mlir::quantizer;
//===----------------------------------------------------------------------===//
// AttributeTensorStatistics implementation
//===----------------------------------------------------------------------===//
static void
collectElementsStatisticsDim(ElementsAttr attr, unsigned numElements,
ArrayRef<int64_t> shape,
llvm::SmallVector<uint64_t, 4> &indices,
uint64_t dim, TensorAxisStatistics &statistics) {
// Recursive terminating condition.
if (dim >= shape.size())
return;
if (dim < (shape.size() - 1)) {
// Recurse past dim.
for (uint64_t i = 0, s = shape[dim]; i < s; ++i) {
indices[dim] = i;
collectElementsStatisticsDim(attr, numElements, shape, indices, dim + 1,
statistics);
}
return;
}
// Collection dim.
for (uint64_t i = 0, s = shape[dim]; i < s; ++i) {
indices[dim] = i;
double value = attr.getValue(llvm::makeArrayRef(indices))
.cast<FloatAttr>()
.getValueAsDouble();
statistics.minValue = std::min(statistics.minValue, value);
statistics.maxValue = std::max(statistics.maxValue, value);
statistics.mean += value / numElements;
// TODO: Calculate a running variance.
}
}
static bool getElementsStatistics(ElementsAttr attr,
TensorAxisStatistics &statistics) {
statistics.clear();
statistics.minValue = std::numeric_limits<double>::infinity();
statistics.maxValue = -std::numeric_limits<double>::infinity();
ShapedType sType = attr.getType();
if (!sType.hasStaticShape())
return false;
Type elementTy = sType.getElementType();
if (!elementTy.isa<FloatType>())
return false;
llvm::SmallVector<uint64_t, 4> indices;
indices.resize(sType.getRank());
ArrayRef<int64_t> shape = sType.getShape();
auto numElements = sType.getNumElements();
collectElementsStatisticsDim(attr, numElements, shape, indices, 0,
statistics);
statistics.sampleSize = numElements;
return true;
}
bool AttributeTensorStatistics::get(TensorAxisStatistics &stats) const {
if (FloatAttr floatAttr = attr.dyn_cast<FloatAttr>()) {
double value = floatAttr.getValueAsDouble();
stats = TensorAxisStatistics(1, value, value, value, 0);
return true;
} else if (auto eltAttr = attr.dyn_cast<ElementsAttr>()) {
return getElementsStatistics(eltAttr, stats);
}
return false;
}
namespace mlir {
namespace quantizer {
llvm::raw_ostream &operator<<(llvm::raw_ostream &os,
const TensorAxisStatistics &stats) {
os << "STATS[sampleSize=" << stats.sampleSize << ", min=" << stats.minValue
<< ", maxValue=" << stats.maxValue << ", mean=" << stats.mean
<< ", variance=" << stats.variance << "]";
return os;
}
} // end namespace quantizer
} // end namespace mlir