Files
clang-p2996/flang/lib/Optimizer/CodeGen/CodeGen.cpp
Slava Zakharin 9f35657983 [flang] Lower Fortran math intrinsic operations into MLIR ops or libm calls.
Added new -lower-math-early option that defaults to 'true' that matches
the current math lowering scheme. If set to 'false', the intrinsic math
operations will be lowered to MLIR operations, which should potentially
enable more MLIR optimizations, or libm calls, if there is no corresponding
MLIR operation exists or if "precise" mode is requested.
The generated math MLIR operations are then converted to LLVM dialect
during codegen phase.

The -lower-math-early option is not exposed to users currently. I plan to
get rid of the "early" lowering completely, when "late" lowering
is robust enough to support all math intrinsics that are currently
supported via pgmath. So "late" mode will become default and -lower-math-early
option will not be needed. This will effectively eliminate the mandatory
dependency on pgmath in Fortran lowering, but this is WIP.

Differential Revision: https://reviews.llvm.org/D128385
2022-06-28 13:32:19 -07:00

3458 lines
146 KiB
C++

//===-- CodeGen.cpp -- bridge to lower to LLVM ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/CodeGen/CodeGen.h"
#include "CGOps.h"
#include "PassDetail.h"
#include "flang/ISO_Fortran_binding.h"
#include "flang/Optimizer/Dialect/FIRAttr.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Support/InternalNames.h"
#include "flang/Optimizer/Support/TypeCode.h"
#include "flang/Semantics/runtime-type-info.h"
#include "mlir/Conversion/ArithmeticToLLVM/ArithmeticToLLVM.h"
#include "mlir/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.h"
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVM.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/MathToLLVM/MathToLLVM.h"
#include "mlir/Conversion/MathToLibm/MathToLibm.h"
#include "mlir/Conversion/OpenMPToLLVM/ConvertOpenMPToLLVM.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
#include "llvm/ADT/ArrayRef.h"
#define DEBUG_TYPE "flang-codegen"
// fir::LLVMTypeConverter for converting to LLVM IR dialect types.
#include "TypeConverter.h"
// TODO: This should really be recovered from the specified target.
static constexpr unsigned defaultAlign = 8;
/// `fir.box` attribute values as defined for CFI_attribute_t in
/// flang/ISO_Fortran_binding.h.
static constexpr unsigned kAttrPointer = CFI_attribute_pointer;
static constexpr unsigned kAttrAllocatable = CFI_attribute_allocatable;
static inline mlir::Type getVoidPtrType(mlir::MLIRContext *context) {
return mlir::LLVM::LLVMPointerType::get(mlir::IntegerType::get(context, 8));
}
static mlir::LLVM::ConstantOp
genConstantIndex(mlir::Location loc, mlir::Type ity,
mlir::ConversionPatternRewriter &rewriter,
std::int64_t offset) {
auto cattr = rewriter.getI64IntegerAttr(offset);
return rewriter.create<mlir::LLVM::ConstantOp>(loc, ity, cattr);
}
static mlir::Block *createBlock(mlir::ConversionPatternRewriter &rewriter,
mlir::Block *insertBefore) {
assert(insertBefore && "expected valid insertion block");
return rewriter.createBlock(insertBefore->getParent(),
mlir::Region::iterator(insertBefore));
}
namespace {
/// FIR conversion pattern template
template <typename FromOp>
class FIROpConversion : public mlir::ConvertOpToLLVMPattern<FromOp> {
public:
explicit FIROpConversion(fir::LLVMTypeConverter &lowering,
const fir::FIRToLLVMPassOptions &options)
: mlir::ConvertOpToLLVMPattern<FromOp>(lowering), options(options) {}
protected:
mlir::Type convertType(mlir::Type ty) const {
return lowerTy().convertType(ty);
}
mlir::Type voidPtrTy() const { return getVoidPtrType(); }
mlir::Type getVoidPtrType() const {
return mlir::LLVM::LLVMPointerType::get(
mlir::IntegerType::get(&lowerTy().getContext(), 8));
}
mlir::LLVM::ConstantOp
genI32Constant(mlir::Location loc, mlir::ConversionPatternRewriter &rewriter,
int value) const {
mlir::Type i32Ty = rewriter.getI32Type();
mlir::IntegerAttr attr = rewriter.getI32IntegerAttr(value);
return rewriter.create<mlir::LLVM::ConstantOp>(loc, i32Ty, attr);
}
mlir::LLVM::ConstantOp
genConstantOffset(mlir::Location loc,
mlir::ConversionPatternRewriter &rewriter,
int offset) const {
mlir::Type ity = lowerTy().offsetType();
mlir::IntegerAttr cattr = rewriter.getI32IntegerAttr(offset);
return rewriter.create<mlir::LLVM::ConstantOp>(loc, ity, cattr);
}
/// Perform an extension or truncation as needed on an integer value. Lowering
/// to the specific target may involve some sign-extending or truncation of
/// values, particularly to fit them from abstract box types to the
/// appropriate reified structures.
mlir::Value integerCast(mlir::Location loc,
mlir::ConversionPatternRewriter &rewriter,
mlir::Type ty, mlir::Value val) const {
auto valTy = val.getType();
// If the value was not yet lowered, lower its type so that it can
// be used in getPrimitiveTypeSizeInBits.
if (!valTy.isa<mlir::IntegerType>())
valTy = convertType(valTy);
auto toSize = mlir::LLVM::getPrimitiveTypeSizeInBits(ty);
auto fromSize = mlir::LLVM::getPrimitiveTypeSizeInBits(valTy);
if (toSize < fromSize)
return rewriter.create<mlir::LLVM::TruncOp>(loc, ty, val);
if (toSize > fromSize)
return rewriter.create<mlir::LLVM::SExtOp>(loc, ty, val);
return val;
}
/// Construct code sequence to extract the specifc value from a `fir.box`.
mlir::Value getValueFromBox(mlir::Location loc, mlir::Value box,
mlir::Type resultTy,
mlir::ConversionPatternRewriter &rewriter,
unsigned boxValue) const {
mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
mlir::LLVM::ConstantOp cValuePos =
genConstantOffset(loc, rewriter, boxValue);
auto pty = mlir::LLVM::LLVMPointerType::get(resultTy);
auto p = rewriter.create<mlir::LLVM::GEPOp>(
loc, pty, box, mlir::ValueRange{c0, cValuePos});
return rewriter.create<mlir::LLVM::LoadOp>(loc, resultTy, p);
}
/// Method to construct code sequence to get the triple for dimension `dim`
/// from a box.
llvm::SmallVector<mlir::Value, 3>
getDimsFromBox(mlir::Location loc, llvm::ArrayRef<mlir::Type> retTys,
mlir::Value box, mlir::Value dim,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
mlir::LLVM::ConstantOp cDims =
genConstantOffset(loc, rewriter, kDimsPosInBox);
mlir::LLVM::LoadOp l0 =
loadFromOffset(loc, box, c0, cDims, dim, 0, retTys[0], rewriter);
mlir::LLVM::LoadOp l1 =
loadFromOffset(loc, box, c0, cDims, dim, 1, retTys[1], rewriter);
mlir::LLVM::LoadOp l2 =
loadFromOffset(loc, box, c0, cDims, dim, 2, retTys[2], rewriter);
return {l0.getResult(), l1.getResult(), l2.getResult()};
}
mlir::LLVM::LoadOp
loadFromOffset(mlir::Location loc, mlir::Value a, mlir::LLVM::ConstantOp c0,
mlir::LLVM::ConstantOp cDims, mlir::Value dim, int off,
mlir::Type ty,
mlir::ConversionPatternRewriter &rewriter) const {
auto pty = mlir::LLVM::LLVMPointerType::get(ty);
mlir::LLVM::ConstantOp c = genConstantOffset(loc, rewriter, off);
mlir::LLVM::GEPOp p = genGEP(loc, pty, rewriter, a, c0, cDims, dim, c);
return rewriter.create<mlir::LLVM::LoadOp>(loc, ty, p);
}
mlir::Value
loadStrideFromBox(mlir::Location loc, mlir::Value box, unsigned dim,
mlir::ConversionPatternRewriter &rewriter) const {
auto idxTy = lowerTy().indexType();
auto c0 = genConstantOffset(loc, rewriter, 0);
auto cDims = genConstantOffset(loc, rewriter, kDimsPosInBox);
auto dimValue = genConstantIndex(loc, idxTy, rewriter, dim);
return loadFromOffset(loc, box, c0, cDims, dimValue, kDimStridePos, idxTy,
rewriter);
}
/// Read base address from a fir.box. Returned address has type ty.
mlir::Value
loadBaseAddrFromBox(mlir::Location loc, mlir::Type ty, mlir::Value box,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
mlir::LLVM::ConstantOp cAddr =
genConstantOffset(loc, rewriter, kAddrPosInBox);
auto pty = mlir::LLVM::LLVMPointerType::get(ty);
mlir::LLVM::GEPOp p = genGEP(loc, pty, rewriter, box, c0, cAddr);
return rewriter.create<mlir::LLVM::LoadOp>(loc, ty, p);
}
mlir::Value
loadElementSizeFromBox(mlir::Location loc, mlir::Type ty, mlir::Value box,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
mlir::LLVM::ConstantOp cElemLen =
genConstantOffset(loc, rewriter, kElemLenPosInBox);
auto pty = mlir::LLVM::LLVMPointerType::get(ty);
mlir::LLVM::GEPOp p = genGEP(loc, pty, rewriter, box, c0, cElemLen);
return rewriter.create<mlir::LLVM::LoadOp>(loc, ty, p);
}
// Get the element type given an LLVM type that is of the form
// [llvm.ptr](array|struct|vector)+ and the provided indexes.
static mlir::Type getBoxEleTy(mlir::Type type,
llvm::ArrayRef<unsigned> indexes) {
if (auto t = type.dyn_cast<mlir::LLVM::LLVMPointerType>())
type = t.getElementType();
for (auto i : indexes) {
if (auto t = type.dyn_cast<mlir::LLVM::LLVMStructType>()) {
assert(!t.isOpaque() && i < t.getBody().size());
type = t.getBody()[i];
} else if (auto t = type.dyn_cast<mlir::LLVM::LLVMArrayType>()) {
type = t.getElementType();
} else if (auto t = type.dyn_cast<mlir::VectorType>()) {
type = t.getElementType();
} else {
fir::emitFatalError(mlir::UnknownLoc::get(type.getContext()),
"request for invalid box element type");
}
}
return type;
}
// Return LLVM type of the base address given the LLVM type
// of the related descriptor (lowered fir.box type).
static mlir::Type getBaseAddrTypeFromBox(mlir::Type type) {
return getBoxEleTy(type, {kAddrPosInBox});
}
// Load the attribute from the \p box and perform a check against \p maskValue
// The final comparison is implemented as `(attribute & maskValue) != 0`.
mlir::Value genBoxAttributeCheck(mlir::Location loc, mlir::Value box,
mlir::ConversionPatternRewriter &rewriter,
unsigned maskValue) const {
mlir::Type attrTy = rewriter.getI32Type();
mlir::Value attribute =
getValueFromBox(loc, box, attrTy, rewriter, kAttributePosInBox);
mlir::LLVM::ConstantOp attrMask =
genConstantOffset(loc, rewriter, maskValue);
auto maskRes =
rewriter.create<mlir::LLVM::AndOp>(loc, attrTy, attribute, attrMask);
mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0);
return rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::ne, maskRes, c0);
}
template <typename... ARGS>
mlir::LLVM::GEPOp genGEP(mlir::Location loc, mlir::Type ty,
mlir::ConversionPatternRewriter &rewriter,
mlir::Value base, ARGS... args) const {
llvm::SmallVector<mlir::Value> cv = {args...};
return rewriter.create<mlir::LLVM::GEPOp>(loc, ty, base, cv);
}
fir::LLVMTypeConverter &lowerTy() const {
return *static_cast<fir::LLVMTypeConverter *>(this->getTypeConverter());
}
const fir::FIRToLLVMPassOptions &options;
};
/// FIR conversion pattern template
template <typename FromOp>
class FIROpAndTypeConversion : public FIROpConversion<FromOp> {
public:
using FIROpConversion<FromOp>::FIROpConversion;
using OpAdaptor = typename FromOp::Adaptor;
mlir::LogicalResult
matchAndRewrite(FromOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const final {
mlir::Type ty = this->convertType(op.getType());
return doRewrite(op, ty, adaptor, rewriter);
}
virtual mlir::LogicalResult
doRewrite(FromOp addr, mlir::Type ty, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const = 0;
};
} // namespace
namespace {
/// Lower `fir.address_of` operation to `llvm.address_of` operation.
struct AddrOfOpConversion : public FIROpConversion<fir::AddrOfOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::AddrOfOp addr, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto ty = convertType(addr.getType());
rewriter.replaceOpWithNewOp<mlir::LLVM::AddressOfOp>(
addr, ty, addr.getSymbol().getRootReference().getValue());
return mlir::success();
}
};
} // namespace
/// Lookup the function to compute the memory size of this parametric derived
/// type. The size of the object may depend on the LEN type parameters of the
/// derived type.
static mlir::LLVM::LLVMFuncOp
getDependentTypeMemSizeFn(fir::RecordType recTy, fir::AllocaOp op,
mlir::ConversionPatternRewriter &rewriter) {
auto module = op->getParentOfType<mlir::ModuleOp>();
std::string name = recTy.getName().str() + "P.mem.size";
if (auto memSizeFunc = module.lookupSymbol<mlir::LLVM::LLVMFuncOp>(name))
return memSizeFunc;
TODO(op.getLoc(), "did not find allocation function");
}
// Compute the alloc scale size (constant factors encoded in the array type).
// We do this for arrays without a constant interior or arrays of character with
// dynamic length arrays, since those are the only ones that get decayed to a
// pointer to the element type.
template <typename OP>
static mlir::Value
genAllocationScaleSize(OP op, mlir::Type ity,
mlir::ConversionPatternRewriter &rewriter) {
mlir::Location loc = op.getLoc();
mlir::Type dataTy = op.getInType();
mlir::Type scalarType = fir::unwrapSequenceType(dataTy);
auto seqTy = dataTy.dyn_cast<fir::SequenceType>();
if ((op.hasShapeOperands() && seqTy && !seqTy.hasConstantInterior()) ||
(seqTy && fir::characterWithDynamicLen(scalarType))) {
fir::SequenceType::Extent constSize = 1;
for (auto extent : seqTy.getShape())
if (extent != fir::SequenceType::getUnknownExtent())
constSize *= extent;
if (constSize != 1) {
mlir::Value constVal{
genConstantIndex(loc, ity, rewriter, constSize).getResult()};
return constVal;
}
}
return nullptr;
}
namespace {
/// convert to LLVM IR dialect `alloca`
struct AllocaOpConversion : public FIROpConversion<fir::AllocaOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::AllocaOp alloc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::ValueRange operands = adaptor.getOperands();
auto loc = alloc.getLoc();
mlir::Type ity = lowerTy().indexType();
unsigned i = 0;
mlir::Value size = genConstantIndex(loc, ity, rewriter, 1).getResult();
mlir::Type ty = convertType(alloc.getType());
mlir::Type resultTy = ty;
if (alloc.hasLenParams()) {
unsigned end = alloc.numLenParams();
llvm::SmallVector<mlir::Value> lenParams;
for (; i < end; ++i)
lenParams.push_back(operands[i]);
mlir::Type scalarType = fir::unwrapSequenceType(alloc.getInType());
if (auto chrTy = scalarType.dyn_cast<fir::CharacterType>()) {
fir::CharacterType rawCharTy = fir::CharacterType::getUnknownLen(
chrTy.getContext(), chrTy.getFKind());
ty = mlir::LLVM::LLVMPointerType::get(convertType(rawCharTy));
assert(end == 1);
size = integerCast(loc, rewriter, ity, lenParams[0]);
} else if (auto recTy = scalarType.dyn_cast<fir::RecordType>()) {
mlir::LLVM::LLVMFuncOp memSizeFn =
getDependentTypeMemSizeFn(recTy, alloc, rewriter);
if (!memSizeFn)
emitError(loc, "did not find allocation function");
mlir::NamedAttribute attr = rewriter.getNamedAttr(
"callee", mlir::SymbolRefAttr::get(memSizeFn));
auto call = rewriter.create<mlir::LLVM::CallOp>(
loc, ity, lenParams, llvm::ArrayRef<mlir::NamedAttribute>{attr});
size = call.getResult(0);
ty = ::getVoidPtrType(alloc.getContext());
} else {
return emitError(loc, "unexpected type ")
<< scalarType << " with type parameters";
}
}
if (auto scaleSize = genAllocationScaleSize(alloc, ity, rewriter))
size = rewriter.create<mlir::LLVM::MulOp>(loc, ity, size, scaleSize);
if (alloc.hasShapeOperands()) {
unsigned end = operands.size();
for (; i < end; ++i)
size = rewriter.create<mlir::LLVM::MulOp>(
loc, ity, size, integerCast(loc, rewriter, ity, operands[i]));
}
if (ty == resultTy) {
// Do not emit the bitcast if ty and resultTy are the same.
rewriter.replaceOpWithNewOp<mlir::LLVM::AllocaOp>(alloc, ty, size,
alloc->getAttrs());
} else {
auto al = rewriter.create<mlir::LLVM::AllocaOp>(loc, ty, size,
alloc->getAttrs());
rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(alloc, resultTy, al);
}
return mlir::success();
}
};
} // namespace
/// Construct an `llvm.extractvalue` instruction. It will return value at
/// element \p x from \p tuple.
static mlir::LLVM::ExtractValueOp
genExtractValueWithIndex(mlir::Location loc, mlir::Value tuple, mlir::Type ty,
mlir::ConversionPatternRewriter &rewriter,
mlir::MLIRContext *ctx, int x) {
auto cx = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(x));
auto xty = ty.cast<mlir::LLVM::LLVMStructType>().getBody()[x];
return rewriter.create<mlir::LLVM::ExtractValueOp>(loc, xty, tuple, cx);
}
namespace {
/// Lower `fir.box_addr` to the sequence of operations to extract the first
/// element of the box.
struct BoxAddrOpConversion : public FIROpConversion<fir::BoxAddrOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxAddrOp boxaddr, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value a = adaptor.getOperands()[0];
auto loc = boxaddr.getLoc();
mlir::Type ty = convertType(boxaddr.getType());
if (auto argty = boxaddr.getVal().getType().dyn_cast<fir::BoxType>()) {
rewriter.replaceOp(boxaddr, loadBaseAddrFromBox(loc, ty, a, rewriter));
} else {
auto c0attr = rewriter.getI32IntegerAttr(0);
auto c0 = mlir::ArrayAttr::get(boxaddr.getContext(), c0attr);
rewriter.replaceOpWithNewOp<mlir::LLVM::ExtractValueOp>(boxaddr, ty, a,
c0);
}
return mlir::success();
}
};
/// Convert `!fir.boxchar_len` to `!llvm.extractvalue` for the 2nd part of the
/// boxchar.
struct BoxCharLenOpConversion : public FIROpConversion<fir::BoxCharLenOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxCharLenOp boxCharLen, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value boxChar = adaptor.getOperands()[0];
mlir::Location loc = boxChar.getLoc();
mlir::MLIRContext *ctx = boxChar.getContext();
mlir::Type returnValTy = boxCharLen.getResult().getType();
constexpr int boxcharLenIdx = 1;
mlir::LLVM::ExtractValueOp len = genExtractValueWithIndex(
loc, boxChar, boxChar.getType(), rewriter, ctx, boxcharLenIdx);
mlir::Value lenAfterCast = integerCast(loc, rewriter, returnValTy, len);
rewriter.replaceOp(boxCharLen, lenAfterCast);
return mlir::success();
}
};
/// Lower `fir.box_dims` to a sequence of operations to extract the requested
/// dimension infomartion from the boxed value.
/// Result in a triple set of GEPs and loads.
struct BoxDimsOpConversion : public FIROpConversion<fir::BoxDimsOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxDimsOp boxdims, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
llvm::SmallVector<mlir::Type, 3> resultTypes = {
convertType(boxdims.getResult(0).getType()),
convertType(boxdims.getResult(1).getType()),
convertType(boxdims.getResult(2).getType()),
};
auto results =
getDimsFromBox(boxdims.getLoc(), resultTypes, adaptor.getOperands()[0],
adaptor.getOperands()[1], rewriter);
rewriter.replaceOp(boxdims, results);
return mlir::success();
}
};
/// Lower `fir.box_elesize` to a sequence of operations ro extract the size of
/// an element in the boxed value.
struct BoxEleSizeOpConversion : public FIROpConversion<fir::BoxEleSizeOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxEleSizeOp boxelesz, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value a = adaptor.getOperands()[0];
auto loc = boxelesz.getLoc();
auto ty = convertType(boxelesz.getType());
auto elemSize = getValueFromBox(loc, a, ty, rewriter, kElemLenPosInBox);
rewriter.replaceOp(boxelesz, elemSize);
return mlir::success();
}
};
/// Lower `fir.box_isalloc` to a sequence of operations to determine if the
/// boxed value was from an ALLOCATABLE entity.
struct BoxIsAllocOpConversion : public FIROpConversion<fir::BoxIsAllocOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxIsAllocOp boxisalloc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value box = adaptor.getOperands()[0];
auto loc = boxisalloc.getLoc();
mlir::Value check =
genBoxAttributeCheck(loc, box, rewriter, kAttrAllocatable);
rewriter.replaceOp(boxisalloc, check);
return mlir::success();
}
};
/// Lower `fir.box_isarray` to a sequence of operations to determine if the
/// boxed is an array.
struct BoxIsArrayOpConversion : public FIROpConversion<fir::BoxIsArrayOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxIsArrayOp boxisarray, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value a = adaptor.getOperands()[0];
auto loc = boxisarray.getLoc();
auto rank =
getValueFromBox(loc, a, rewriter.getI32Type(), rewriter, kRankPosInBox);
auto c0 = genConstantOffset(loc, rewriter, 0);
rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>(
boxisarray, mlir::LLVM::ICmpPredicate::ne, rank, c0);
return mlir::success();
}
};
/// Lower `fir.box_isptr` to a sequence of operations to determined if the
/// boxed value was from a POINTER entity.
struct BoxIsPtrOpConversion : public FIROpConversion<fir::BoxIsPtrOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxIsPtrOp boxisptr, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value box = adaptor.getOperands()[0];
auto loc = boxisptr.getLoc();
mlir::Value check = genBoxAttributeCheck(loc, box, rewriter, kAttrPointer);
rewriter.replaceOp(boxisptr, check);
return mlir::success();
}
};
/// Lower `fir.box_rank` to the sequence of operation to extract the rank from
/// the box.
struct BoxRankOpConversion : public FIROpConversion<fir::BoxRankOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxRankOp boxrank, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value a = adaptor.getOperands()[0];
auto loc = boxrank.getLoc();
mlir::Type ty = convertType(boxrank.getType());
auto result = getValueFromBox(loc, a, ty, rewriter, kRankPosInBox);
rewriter.replaceOp(boxrank, result);
return mlir::success();
}
};
/// Lower `fir.boxproc_host` operation. Extracts the host pointer from the
/// boxproc.
/// TODO: Part of supporting Fortran 2003 procedure pointers.
struct BoxProcHostOpConversion : public FIROpConversion<fir::BoxProcHostOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxProcHostOp boxprochost, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(boxprochost.getLoc(), "fir.boxproc_host codegen");
return mlir::failure();
}
};
/// Lower `fir.box_tdesc` to the sequence of operations to extract the type
/// descriptor from the box.
struct BoxTypeDescOpConversion : public FIROpConversion<fir::BoxTypeDescOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::BoxTypeDescOp boxtypedesc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value box = adaptor.getOperands()[0];
auto loc = boxtypedesc.getLoc();
mlir::Type typeTy =
fir::getDescFieldTypeModel<kTypePosInBox>()(boxtypedesc.getContext());
auto result = getValueFromBox(loc, box, typeTy, rewriter, kTypePosInBox);
auto typePtrTy = mlir::LLVM::LLVMPointerType::get(typeTy);
rewriter.replaceOpWithNewOp<mlir::LLVM::IntToPtrOp>(boxtypedesc, typePtrTy,
result);
return mlir::success();
}
};
/// Lower `fir.string_lit` to LLVM IR dialect operation.
struct StringLitOpConversion : public FIROpConversion<fir::StringLitOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::StringLitOp constop, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto ty = convertType(constop.getType());
auto attr = constop.getValue();
if (attr.isa<mlir::StringAttr>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>(constop, ty, attr);
return mlir::success();
}
auto charTy = constop.getType().cast<fir::CharacterType>();
unsigned bits = lowerTy().characterBitsize(charTy);
mlir::Type intTy = rewriter.getIntegerType(bits);
mlir::Location loc = constop.getLoc();
mlir::Value cst = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
if (auto arr = attr.dyn_cast<mlir::DenseElementsAttr>()) {
cst = rewriter.create<mlir::LLVM::ConstantOp>(loc, ty, arr);
} else if (auto arr = attr.dyn_cast<mlir::ArrayAttr>()) {
for (auto a : llvm::enumerate(arr.getValue())) {
// convert each character to a precise bitsize
auto elemAttr = mlir::IntegerAttr::get(
intTy,
a.value().cast<mlir::IntegerAttr>().getValue().zextOrTrunc(bits));
auto elemCst =
rewriter.create<mlir::LLVM::ConstantOp>(loc, intTy, elemAttr);
auto index = mlir::ArrayAttr::get(
constop.getContext(), rewriter.getI32IntegerAttr(a.index()));
cst = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, cst, elemCst,
index);
}
} else {
return mlir::failure();
}
rewriter.replaceOp(constop, cst);
return mlir::success();
}
};
/// `fir.call` -> `llvm.call`
struct CallOpConversion : public FIROpConversion<fir::CallOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::CallOp call, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
llvm::SmallVector<mlir::Type> resultTys;
for (auto r : call.getResults())
resultTys.push_back(convertType(r.getType()));
rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>(
call, resultTys, adaptor.getOperands(), call->getAttrs());
return mlir::success();
}
};
} // namespace
static mlir::Type getComplexEleTy(mlir::Type complex) {
if (auto cc = complex.dyn_cast<mlir::ComplexType>())
return cc.getElementType();
return complex.cast<fir::ComplexType>().getElementType();
}
namespace {
/// Compare complex values
///
/// Per 10.1, the only comparisons available are .EQ. (oeq) and .NE. (une).
///
/// For completeness, all other comparison are done on the real component only.
struct CmpcOpConversion : public FIROpConversion<fir::CmpcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::CmpcOp cmp, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::ValueRange operands = adaptor.getOperands();
mlir::MLIRContext *ctxt = cmp.getContext();
mlir::Type eleTy = convertType(getComplexEleTy(cmp.getLhs().getType()));
mlir::Type resTy = convertType(cmp.getType());
mlir::Location loc = cmp.getLoc();
auto pos0 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(0));
llvm::SmallVector<mlir::Value, 2> rp = {
rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, operands[0],
pos0),
rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, operands[1],
pos0)};
auto rcp =
rewriter.create<mlir::LLVM::FCmpOp>(loc, resTy, rp, cmp->getAttrs());
auto pos1 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(1));
llvm::SmallVector<mlir::Value, 2> ip = {
rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, operands[0],
pos1),
rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, operands[1],
pos1)};
auto icp =
rewriter.create<mlir::LLVM::FCmpOp>(loc, resTy, ip, cmp->getAttrs());
llvm::SmallVector<mlir::Value, 2> cp = {rcp, icp};
switch (cmp.getPredicate()) {
case mlir::arith::CmpFPredicate::OEQ: // .EQ.
rewriter.replaceOpWithNewOp<mlir::LLVM::AndOp>(cmp, resTy, cp);
break;
case mlir::arith::CmpFPredicate::UNE: // .NE.
rewriter.replaceOpWithNewOp<mlir::LLVM::OrOp>(cmp, resTy, cp);
break;
default:
rewriter.replaceOp(cmp, rcp.getResult());
break;
}
return mlir::success();
}
};
/// Lower complex constants
struct ConstcOpConversion : public FIROpConversion<fir::ConstcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::ConstcOp conc, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = conc.getLoc();
mlir::MLIRContext *ctx = conc.getContext();
mlir::Type ty = convertType(conc.getType());
mlir::Type ety = convertType(getComplexEleTy(conc.getType()));
auto realFloatAttr = mlir::FloatAttr::get(ety, getValue(conc.getReal()));
auto realPart =
rewriter.create<mlir::LLVM::ConstantOp>(loc, ety, realFloatAttr);
auto imFloatAttr = mlir::FloatAttr::get(ety, getValue(conc.getImaginary()));
auto imPart =
rewriter.create<mlir::LLVM::ConstantOp>(loc, ety, imFloatAttr);
auto realIndex = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
auto imIndex = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
auto undef = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto setReal = rewriter.create<mlir::LLVM::InsertValueOp>(
loc, ty, undef, realPart, realIndex);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(conc, ty, setReal,
imPart, imIndex);
return mlir::success();
}
inline llvm::APFloat getValue(mlir::Attribute attr) const {
return attr.cast<fir::RealAttr>().getValue();
}
};
/// convert value of from-type to value of to-type
struct ConvertOpConversion : public FIROpConversion<fir::ConvertOp> {
using FIROpConversion::FIROpConversion;
static bool isFloatingPointTy(mlir::Type ty) {
return ty.isa<mlir::FloatType>();
}
mlir::LogicalResult
matchAndRewrite(fir::ConvertOp convert, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto fromFirTy = convert.getValue().getType();
auto toFirTy = convert.getRes().getType();
auto fromTy = convertType(fromFirTy);
auto toTy = convertType(toFirTy);
mlir::Value op0 = adaptor.getOperands()[0];
if (fromTy == toTy) {
rewriter.replaceOp(convert, op0);
return mlir::success();
}
auto loc = convert.getLoc();
auto convertFpToFp = [&](mlir::Value val, unsigned fromBits,
unsigned toBits, mlir::Type toTy) -> mlir::Value {
if (fromBits == toBits) {
// TODO: Converting between two floating-point representations with the
// same bitwidth is not allowed for now.
mlir::emitError(loc,
"cannot implicitly convert between two floating-point "
"representations of the same bitwidth");
return {};
}
if (fromBits > toBits)
return rewriter.create<mlir::LLVM::FPTruncOp>(loc, toTy, val);
return rewriter.create<mlir::LLVM::FPExtOp>(loc, toTy, val);
};
// Complex to complex conversion.
if (fir::isa_complex(fromFirTy) && fir::isa_complex(toFirTy)) {
// Special case: handle the conversion of a complex such that both the
// real and imaginary parts are converted together.
auto zero = mlir::ArrayAttr::get(convert.getContext(),
rewriter.getI32IntegerAttr(0));
auto one = mlir::ArrayAttr::get(convert.getContext(),
rewriter.getI32IntegerAttr(1));
auto ty = convertType(getComplexEleTy(convert.getValue().getType()));
auto rp = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, ty, op0, zero);
auto ip = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, ty, op0, one);
auto nt = convertType(getComplexEleTy(convert.getRes().getType()));
auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(ty);
auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(nt);
auto rc = convertFpToFp(rp, fromBits, toBits, nt);
auto ic = convertFpToFp(ip, fromBits, toBits, nt);
auto un = rewriter.create<mlir::LLVM::UndefOp>(loc, toTy);
auto i1 =
rewriter.create<mlir::LLVM::InsertValueOp>(loc, toTy, un, rc, zero);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(convert, toTy, i1,
ic, one);
return mlir::success();
}
// Follow UNIX F77 convention for logicals:
// 1. underlying integer is not zero => logical is .TRUE.
// 2. logical is .TRUE. => set underlying integer to 1.
auto i1Type = mlir::IntegerType::get(convert.getContext(), 1);
if (fromFirTy.isa<fir::LogicalType>() && toFirTy == i1Type) {
mlir::Value zero = genConstantIndex(loc, fromTy, rewriter, 0);
rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>(
convert, mlir::LLVM::ICmpPredicate::ne, op0, zero);
return mlir::success();
}
if (fromFirTy == i1Type && toFirTy.isa<fir::LogicalType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::ZExtOp>(convert, toTy, op0);
return mlir::success();
}
// Floating point to floating point conversion.
if (isFloatingPointTy(fromTy)) {
if (isFloatingPointTy(toTy)) {
auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(fromTy);
auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(toTy);
auto v = convertFpToFp(op0, fromBits, toBits, toTy);
rewriter.replaceOp(convert, v);
return mlir::success();
}
if (toTy.isa<mlir::IntegerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::FPToSIOp>(convert, toTy, op0);
return mlir::success();
}
} else if (fromTy.isa<mlir::IntegerType>()) {
// Integer to integer conversion.
if (toTy.isa<mlir::IntegerType>()) {
auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(fromTy);
auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(toTy);
assert(fromBits != toBits);
if (fromBits > toBits) {
rewriter.replaceOpWithNewOp<mlir::LLVM::TruncOp>(convert, toTy, op0);
return mlir::success();
}
rewriter.replaceOpWithNewOp<mlir::LLVM::SExtOp>(convert, toTy, op0);
return mlir::success();
}
// Integer to floating point conversion.
if (isFloatingPointTy(toTy)) {
rewriter.replaceOpWithNewOp<mlir::LLVM::SIToFPOp>(convert, toTy, op0);
return mlir::success();
}
// Integer to pointer conversion.
if (toTy.isa<mlir::LLVM::LLVMPointerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::IntToPtrOp>(convert, toTy, op0);
return mlir::success();
}
} else if (fromTy.isa<mlir::LLVM::LLVMPointerType>()) {
// Pointer to integer conversion.
if (toTy.isa<mlir::IntegerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::PtrToIntOp>(convert, toTy, op0);
return mlir::success();
}
// Pointer to pointer conversion.
if (toTy.isa<mlir::LLVM::LLVMPointerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(convert, toTy, op0);
return mlir::success();
}
}
return emitError(loc) << "cannot convert " << fromTy << " to " << toTy;
}
};
/// Lower `fir.dispatch` operation. A virtual call to a method in a dispatch
/// table.
struct DispatchOpConversion : public FIROpConversion<fir::DispatchOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::DispatchOp dispatch, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(dispatch.getLoc(), "fir.dispatch codegen");
return mlir::failure();
}
};
/// Lower `fir.dispatch_table` operation. The dispatch table for a Fortran
/// derived type.
struct DispatchTableOpConversion
: public FIROpConversion<fir::DispatchTableOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::DispatchTableOp dispTab, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(dispTab.getLoc(), "fir.dispatch_table codegen");
return mlir::failure();
}
};
/// Lower `fir.dt_entry` operation. An entry in a dispatch table; binds a
/// method-name to a function.
struct DTEntryOpConversion : public FIROpConversion<fir::DTEntryOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::DTEntryOp dtEnt, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(dtEnt.getLoc(), "fir.dt_entry codegen");
return mlir::failure();
}
};
/// Lower `fir.global_len` operation.
struct GlobalLenOpConversion : public FIROpConversion<fir::GlobalLenOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::GlobalLenOp globalLen, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(globalLen.getLoc(), "fir.global_len codegen");
return mlir::failure();
}
};
/// Lower fir.len_param_index
struct LenParamIndexOpConversion
: public FIROpConversion<fir::LenParamIndexOp> {
using FIROpConversion::FIROpConversion;
// FIXME: this should be specialized by the runtime target
mlir::LogicalResult
matchAndRewrite(fir::LenParamIndexOp lenp, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(lenp.getLoc(), "fir.len_param_index codegen");
}
};
/// Convert `!fir.emboxchar<!fir.char<KIND, ?>, #n>` into a sequence of
/// instructions that generate `!llvm.struct<(ptr<ik>, i64)>`. The 1st element
/// in this struct is a pointer. Its type is determined from `KIND`. The 2nd
/// element is the length of the character buffer (`#n`).
struct EmboxCharOpConversion : public FIROpConversion<fir::EmboxCharOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::EmboxCharOp emboxChar, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::ValueRange operands = adaptor.getOperands();
auto *ctx = emboxChar.getContext();
mlir::Value charBuffer = operands[0];
mlir::Value charBufferLen = operands[1];
mlir::Location loc = emboxChar.getLoc();
mlir::Type llvmStructTy = convertType(emboxChar.getType());
auto llvmStruct = rewriter.create<mlir::LLVM::UndefOp>(loc, llvmStructTy);
mlir::Type lenTy =
llvmStructTy.cast<mlir::LLVM::LLVMStructType>().getBody()[1];
mlir::Value lenAfterCast = integerCast(loc, rewriter, lenTy, charBufferLen);
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
auto insertBufferOp = rewriter.create<mlir::LLVM::InsertValueOp>(
loc, llvmStructTy, llvmStruct, charBuffer, c0);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
emboxChar, llvmStructTy, insertBufferOp, lenAfterCast, c1);
return mlir::success();
}
};
} // namespace
/// Return the LLVMFuncOp corresponding to the standard malloc call.
static mlir::LLVM::LLVMFuncOp
getMalloc(fir::AllocMemOp op, mlir::ConversionPatternRewriter &rewriter) {
auto module = op->getParentOfType<mlir::ModuleOp>();
if (mlir::LLVM::LLVMFuncOp mallocFunc =
module.lookupSymbol<mlir::LLVM::LLVMFuncOp>("malloc"))
return mallocFunc;
mlir::OpBuilder moduleBuilder(
op->getParentOfType<mlir::ModuleOp>().getBodyRegion());
auto indexType = mlir::IntegerType::get(op.getContext(), 64);
return moduleBuilder.create<mlir::LLVM::LLVMFuncOp>(
rewriter.getUnknownLoc(), "malloc",
mlir::LLVM::LLVMFunctionType::get(getVoidPtrType(op.getContext()),
indexType,
/*isVarArg=*/false));
}
/// Helper function for generating the LLVM IR that computes the size
/// in bytes for a derived type.
static mlir::Value
computeDerivedTypeSize(mlir::Location loc, mlir::Type ptrTy, mlir::Type idxTy,
mlir::ConversionPatternRewriter &rewriter) {
auto nullPtr = rewriter.create<mlir::LLVM::NullOp>(loc, ptrTy);
mlir::Value one = genConstantIndex(loc, idxTy, rewriter, 1);
llvm::SmallVector<mlir::Value> args = {one};
auto gep = rewriter.create<mlir::LLVM::GEPOp>(loc, ptrTy, nullPtr, args);
return rewriter.create<mlir::LLVM::PtrToIntOp>(loc, idxTy, gep);
}
namespace {
/// Lower a `fir.allocmem` instruction into `llvm.call @malloc`
struct AllocMemOpConversion : public FIROpConversion<fir::AllocMemOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::AllocMemOp heap, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Type heapTy = heap.getType();
mlir::Type ty = convertType(heapTy);
mlir::LLVM::LLVMFuncOp mallocFunc = getMalloc(heap, rewriter);
mlir::Location loc = heap.getLoc();
auto ity = lowerTy().indexType();
mlir::Type dataTy = fir::unwrapRefType(heapTy);
if (fir::isRecordWithTypeParameters(fir::unwrapSequenceType(dataTy)))
TODO(loc, "fir.allocmem codegen of derived type with length parameters");
mlir::Value size = genTypeSizeInBytes(loc, ity, rewriter, ty);
if (auto scaleSize = genAllocationScaleSize(heap, ity, rewriter))
size = rewriter.create<mlir::LLVM::MulOp>(loc, ity, size, scaleSize);
for (mlir::Value opnd : adaptor.getOperands())
size = rewriter.create<mlir::LLVM::MulOp>(
loc, ity, size, integerCast(loc, rewriter, ity, opnd));
heap->setAttr("callee", mlir::SymbolRefAttr::get(mallocFunc));
auto malloc = rewriter.create<mlir::LLVM::CallOp>(
loc, ::getVoidPtrType(heap.getContext()), size, heap->getAttrs());
rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(heap, ty,
malloc.getResult(0));
return mlir::success();
}
// Compute the (allocation) size of the allocmem type in bytes.
mlir::Value genTypeSizeInBytes(mlir::Location loc, mlir::Type idxTy,
mlir::ConversionPatternRewriter &rewriter,
mlir::Type llTy) const {
// Use the primitive size, if available.
auto ptrTy = llTy.dyn_cast<mlir::LLVM::LLVMPointerType>();
if (auto size =
mlir::LLVM::getPrimitiveTypeSizeInBits(ptrTy.getElementType()))
return genConstantIndex(loc, idxTy, rewriter, size / 8);
// Otherwise, generate the GEP trick in LLVM IR to compute the size.
return computeDerivedTypeSize(loc, ptrTy, idxTy, rewriter);
}
};
} // namespace
/// Return the LLVMFuncOp corresponding to the standard free call.
static mlir::LLVM::LLVMFuncOp
getFree(fir::FreeMemOp op, mlir::ConversionPatternRewriter &rewriter) {
auto module = op->getParentOfType<mlir::ModuleOp>();
if (mlir::LLVM::LLVMFuncOp freeFunc =
module.lookupSymbol<mlir::LLVM::LLVMFuncOp>("free"))
return freeFunc;
mlir::OpBuilder moduleBuilder(module.getBodyRegion());
auto voidType = mlir::LLVM::LLVMVoidType::get(op.getContext());
return moduleBuilder.create<mlir::LLVM::LLVMFuncOp>(
rewriter.getUnknownLoc(), "free",
mlir::LLVM::LLVMFunctionType::get(voidType,
getVoidPtrType(op.getContext()),
/*isVarArg=*/false));
}
namespace {
/// Lower a `fir.freemem` instruction into `llvm.call @free`
struct FreeMemOpConversion : public FIROpConversion<fir::FreeMemOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::FreeMemOp freemem, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::LLVM::LLVMFuncOp freeFunc = getFree(freemem, rewriter);
mlir::Location loc = freemem.getLoc();
auto bitcast = rewriter.create<mlir::LLVM::BitcastOp>(
freemem.getLoc(), voidPtrTy(), adaptor.getOperands()[0]);
freemem->setAttr("callee", mlir::SymbolRefAttr::get(freeFunc));
rewriter.create<mlir::LLVM::CallOp>(
loc, mlir::TypeRange{}, mlir::ValueRange{bitcast}, freemem->getAttrs());
rewriter.eraseOp(freemem);
return mlir::success();
}
};
} // namespace
/// Common base class for embox to descriptor conversion.
template <typename OP>
struct EmboxCommonConversion : public FIROpConversion<OP> {
using FIROpConversion<OP>::FIROpConversion;
// Find the LLVMFuncOp in whose entry block the alloca should be inserted.
// The order to find the LLVMFuncOp is as follows:
// 1. The parent operation of the current block if it is a LLVMFuncOp.
// 2. The first ancestor that is a LLVMFuncOp.
mlir::LLVM::LLVMFuncOp
getFuncForAllocaInsert(mlir::ConversionPatternRewriter &rewriter) const {
mlir::Operation *parentOp = rewriter.getInsertionBlock()->getParentOp();
return mlir::isa<mlir::LLVM::LLVMFuncOp>(parentOp)
? mlir::cast<mlir::LLVM::LLVMFuncOp>(parentOp)
: parentOp->getParentOfType<mlir::LLVM::LLVMFuncOp>();
}
// Generate an alloca of size 1 and type \p toTy.
mlir::LLVM::AllocaOp
genAllocaWithType(mlir::Location loc, mlir::Type toTy, unsigned alignment,
mlir::ConversionPatternRewriter &rewriter) const {
auto thisPt = rewriter.saveInsertionPoint();
mlir::LLVM::LLVMFuncOp func = getFuncForAllocaInsert(rewriter);
rewriter.setInsertionPointToStart(&func.front());
auto size = this->genI32Constant(loc, rewriter, 1);
auto al = rewriter.create<mlir::LLVM::AllocaOp>(loc, toTy, size, alignment);
rewriter.restoreInsertionPoint(thisPt);
return al;
}
static int getCFIAttr(fir::BoxType boxTy) {
auto eleTy = boxTy.getEleTy();
if (eleTy.isa<fir::PointerType>())
return CFI_attribute_pointer;
if (eleTy.isa<fir::HeapType>())
return CFI_attribute_allocatable;
return CFI_attribute_other;
}
static fir::RecordType unwrapIfDerived(fir::BoxType boxTy) {
return fir::unwrapSequenceType(fir::dyn_cast_ptrOrBoxEleTy(boxTy))
.template dyn_cast<fir::RecordType>();
}
static bool isDerivedTypeWithLenParams(fir::BoxType boxTy) {
auto recTy = unwrapIfDerived(boxTy);
return recTy && recTy.getNumLenParams() > 0;
}
static bool isDerivedType(fir::BoxType boxTy) {
return static_cast<bool>(unwrapIfDerived(boxTy));
}
// Get the element size and CFI type code of the boxed value.
std::tuple<mlir::Value, mlir::Value> getSizeAndTypeCode(
mlir::Location loc, mlir::ConversionPatternRewriter &rewriter,
mlir::Type boxEleTy, mlir::ValueRange lenParams = {}) const {
auto doInteger =
[&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> {
int typeCode = fir::integerBitsToTypeCode(width);
return {this->genConstantOffset(loc, rewriter, width / 8),
this->genConstantOffset(loc, rewriter, typeCode)};
};
auto doLogical =
[&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> {
int typeCode = fir::logicalBitsToTypeCode(width);
return {this->genConstantOffset(loc, rewriter, width / 8),
this->genConstantOffset(loc, rewriter, typeCode)};
};
auto doFloat = [&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> {
int typeCode = fir::realBitsToTypeCode(width);
return {this->genConstantOffset(loc, rewriter, width / 8),
this->genConstantOffset(loc, rewriter, typeCode)};
};
auto doComplex =
[&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> {
auto typeCode = fir::complexBitsToTypeCode(width);
return {this->genConstantOffset(loc, rewriter, width / 8 * 2),
this->genConstantOffset(loc, rewriter, typeCode)};
};
auto doCharacter =
[&](unsigned width,
mlir::Value len) -> std::tuple<mlir::Value, mlir::Value> {
auto typeCode = fir::characterBitsToTypeCode(width);
auto typeCodeVal = this->genConstantOffset(loc, rewriter, typeCode);
if (width == 8)
return {len, typeCodeVal};
auto i64Ty = mlir::IntegerType::get(&this->lowerTy().getContext(), 64);
auto byteWidth = genConstantIndex(loc, i64Ty, rewriter, width / 8);
auto len64 = FIROpConversion<OP>::integerCast(loc, rewriter, i64Ty, len);
auto size =
rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, byteWidth, len64);
return {size, typeCodeVal};
};
auto getKindMap = [&]() -> fir::KindMapping & {
return this->lowerTy().getKindMap();
};
// Pointer-like types.
if (auto eleTy = fir::dyn_cast_ptrEleTy(boxEleTy))
boxEleTy = eleTy;
// Integer types.
if (fir::isa_integer(boxEleTy)) {
if (auto ty = boxEleTy.dyn_cast<mlir::IntegerType>())
return doInteger(ty.getWidth());
auto ty = boxEleTy.cast<fir::IntegerType>();
return doInteger(getKindMap().getIntegerBitsize(ty.getFKind()));
}
// Floating point types.
if (fir::isa_real(boxEleTy)) {
if (auto ty = boxEleTy.dyn_cast<mlir::FloatType>())
return doFloat(ty.getWidth());
auto ty = boxEleTy.cast<fir::RealType>();
return doFloat(getKindMap().getRealBitsize(ty.getFKind()));
}
// Complex types.
if (fir::isa_complex(boxEleTy)) {
if (auto ty = boxEleTy.dyn_cast<mlir::ComplexType>())
return doComplex(
ty.getElementType().cast<mlir::FloatType>().getWidth());
auto ty = boxEleTy.cast<fir::ComplexType>();
return doComplex(getKindMap().getRealBitsize(ty.getFKind()));
}
// Character types.
if (auto ty = boxEleTy.dyn_cast<fir::CharacterType>()) {
auto charWidth = getKindMap().getCharacterBitsize(ty.getFKind());
if (ty.getLen() != fir::CharacterType::unknownLen()) {
auto len = this->genConstantOffset(loc, rewriter, ty.getLen());
return doCharacter(charWidth, len);
}
assert(!lenParams.empty());
return doCharacter(charWidth, lenParams.back());
}
// Logical type.
if (auto ty = boxEleTy.dyn_cast<fir::LogicalType>())
return doLogical(getKindMap().getLogicalBitsize(ty.getFKind()));
// Array types.
if (auto seqTy = boxEleTy.dyn_cast<fir::SequenceType>())
return getSizeAndTypeCode(loc, rewriter, seqTy.getEleTy(), lenParams);
// Derived-type types.
if (boxEleTy.isa<fir::RecordType>()) {
auto ptrTy = mlir::LLVM::LLVMPointerType::get(
this->lowerTy().convertType(boxEleTy));
auto nullPtr = rewriter.create<mlir::LLVM::NullOp>(loc, ptrTy);
auto one =
genConstantIndex(loc, this->lowerTy().offsetType(), rewriter, 1);
auto gep = rewriter.create<mlir::LLVM::GEPOp>(loc, ptrTy, nullPtr,
mlir::ValueRange{one});
auto eleSize = rewriter.create<mlir::LLVM::PtrToIntOp>(
loc, this->lowerTy().indexType(), gep);
return {eleSize,
this->genConstantOffset(loc, rewriter, fir::derivedToTypeCode())};
}
// Reference type.
if (fir::isa_ref_type(boxEleTy)) {
// FIXME: use the target pointer size rather than sizeof(void*)
return {this->genConstantOffset(loc, rewriter, sizeof(void *)),
this->genConstantOffset(loc, rewriter, CFI_type_cptr)};
}
fir::emitFatalError(loc, "unhandled type in fir.box code generation");
}
/// Basic pattern to write a field in the descriptor
mlir::Value insertField(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value dest,
llvm::ArrayRef<unsigned> fldIndexes,
mlir::Value value, bool bitcast = false) const {
auto boxTy = dest.getType();
auto fldTy = this->getBoxEleTy(boxTy, fldIndexes);
if (bitcast)
value = rewriter.create<mlir::LLVM::BitcastOp>(loc, fldTy, value);
else
value = this->integerCast(loc, rewriter, fldTy, value);
llvm::SmallVector<mlir::Attribute, 2> attrs;
for (auto i : fldIndexes)
attrs.push_back(rewriter.getI32IntegerAttr(i));
auto indexesAttr = mlir::ArrayAttr::get(rewriter.getContext(), attrs);
return rewriter.create<mlir::LLVM::InsertValueOp>(loc, boxTy, dest, value,
indexesAttr);
}
inline mlir::Value
insertBaseAddress(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value dest,
mlir::Value base) const {
return insertField(rewriter, loc, dest, {kAddrPosInBox}, base,
/*bitCast=*/true);
}
inline mlir::Value insertLowerBound(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value dest,
unsigned dim, mlir::Value lb) const {
return insertField(rewriter, loc, dest,
{kDimsPosInBox, dim, kDimLowerBoundPos}, lb);
}
inline mlir::Value insertExtent(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value dest,
unsigned dim, mlir::Value extent) const {
return insertField(rewriter, loc, dest, {kDimsPosInBox, dim, kDimExtentPos},
extent);
}
inline mlir::Value insertStride(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value dest,
unsigned dim, mlir::Value stride) const {
return insertField(rewriter, loc, dest, {kDimsPosInBox, dim, kDimStridePos},
stride);
}
/// Get the address of the type descriptor global variable that was created by
/// lowering for derived type \p recType.
template <typename BOX>
mlir::Value
getTypeDescriptor(BOX box, mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, fir::RecordType recType) const {
std::string name =
fir::NameUniquer::getTypeDescriptorName(recType.getName());
auto module = box->template getParentOfType<mlir::ModuleOp>();
if (auto global = module.template lookupSymbol<fir::GlobalOp>(name)) {
auto ty = mlir::LLVM::LLVMPointerType::get(
this->lowerTy().convertType(global.getType()));
return rewriter.create<mlir::LLVM::AddressOfOp>(loc, ty,
global.getSymName());
}
if (auto global =
module.template lookupSymbol<mlir::LLVM::GlobalOp>(name)) {
// The global may have already been translated to LLVM.
auto ty = mlir::LLVM::LLVMPointerType::get(global.getType());
return rewriter.create<mlir::LLVM::AddressOfOp>(loc, ty,
global.getSymName());
}
// Type info derived types do not have type descriptors since they are the
// types defining type descriptors.
if (!this->options.ignoreMissingTypeDescriptors &&
!fir::NameUniquer::belongsToModule(
name, Fortran::semantics::typeInfoBuiltinModule))
fir::emitFatalError(
loc, "runtime derived type info descriptor was not generated");
return rewriter.create<mlir::LLVM::NullOp>(
loc, ::getVoidPtrType(box.getContext()));
}
template <typename BOX>
std::tuple<fir::BoxType, mlir::Value, mlir::Value>
consDescriptorPrefix(BOX box, mlir::ConversionPatternRewriter &rewriter,
unsigned rank, mlir::ValueRange lenParams) const {
auto loc = box.getLoc();
auto boxTy = box.getType().template dyn_cast<fir::BoxType>();
auto convTy = this->lowerTy().convertBoxType(boxTy, rank);
auto llvmBoxPtrTy = convTy.template cast<mlir::LLVM::LLVMPointerType>();
auto llvmBoxTy = llvmBoxPtrTy.getElementType();
mlir::Value descriptor =
rewriter.create<mlir::LLVM::UndefOp>(loc, llvmBoxTy);
llvm::SmallVector<mlir::Value> typeparams = lenParams;
if constexpr (!std::is_same_v<BOX, fir::EmboxOp>) {
if (!box.substr().empty() && fir::hasDynamicSize(boxTy.getEleTy()))
typeparams.push_back(box.substr()[1]);
}
// Write each of the fields with the appropriate values
auto [eleSize, cfiTy] =
getSizeAndTypeCode(loc, rewriter, boxTy.getEleTy(), typeparams);
descriptor =
insertField(rewriter, loc, descriptor, {kElemLenPosInBox}, eleSize);
descriptor = insertField(rewriter, loc, descriptor, {kVersionPosInBox},
this->genI32Constant(loc, rewriter, CFI_VERSION));
descriptor = insertField(rewriter, loc, descriptor, {kRankPosInBox},
this->genI32Constant(loc, rewriter, rank));
descriptor = insertField(rewriter, loc, descriptor, {kTypePosInBox}, cfiTy);
descriptor =
insertField(rewriter, loc, descriptor, {kAttributePosInBox},
this->genI32Constant(loc, rewriter, getCFIAttr(boxTy)));
const bool hasAddendum = isDerivedType(boxTy);
descriptor =
insertField(rewriter, loc, descriptor, {kF18AddendumPosInBox},
this->genI32Constant(loc, rewriter, hasAddendum ? 1 : 0));
if (hasAddendum) {
auto isArray =
fir::dyn_cast_ptrOrBoxEleTy(boxTy).template isa<fir::SequenceType>();
unsigned typeDescFieldId = isArray ? kOptTypePtrPosInBox : kDimsPosInBox;
auto typeDesc =
getTypeDescriptor(box, rewriter, loc, unwrapIfDerived(boxTy));
descriptor =
insertField(rewriter, loc, descriptor, {typeDescFieldId}, typeDesc,
/*bitCast=*/true);
}
return {boxTy, descriptor, eleSize};
}
/// Compute the base address of a substring given the base address of a scalar
/// string and the zero based string lower bound.
mlir::Value shiftSubstringBase(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value base,
mlir::Value lowerBound) const {
llvm::SmallVector<mlir::Value> gepOperands;
auto baseType =
base.getType().cast<mlir::LLVM::LLVMPointerType>().getElementType();
if (baseType.isa<mlir::LLVM::LLVMArrayType>()) {
auto idxTy = this->lowerTy().indexType();
gepOperands.push_back(genConstantIndex(loc, idxTy, rewriter, 0));
gepOperands.push_back(lowerBound);
} else {
gepOperands.push_back(lowerBound);
}
return this->genGEP(loc, base.getType(), rewriter, base, gepOperands);
}
/// If the embox is not in a globalOp body, allocate storage for the box;
/// store the value inside and return the generated alloca. Return the input
/// value otherwise.
mlir::Value
placeInMemoryIfNotGlobalInit(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value boxValue) const {
auto *thisBlock = rewriter.getInsertionBlock();
if (thisBlock && mlir::isa<mlir::LLVM::GlobalOp>(thisBlock->getParentOp()))
return boxValue;
auto boxPtrTy = mlir::LLVM::LLVMPointerType::get(boxValue.getType());
auto alloca = genAllocaWithType(loc, boxPtrTy, defaultAlign, rewriter);
rewriter.create<mlir::LLVM::StoreOp>(loc, boxValue, alloca);
return alloca;
}
};
/// Compute the extent of a triplet slice (lb:ub:step).
static mlir::Value
computeTripletExtent(mlir::ConversionPatternRewriter &rewriter,
mlir::Location loc, mlir::Value lb, mlir::Value ub,
mlir::Value step, mlir::Value zero, mlir::Type type) {
mlir::Value extent = rewriter.create<mlir::LLVM::SubOp>(loc, type, ub, lb);
extent = rewriter.create<mlir::LLVM::AddOp>(loc, type, extent, step);
extent = rewriter.create<mlir::LLVM::SDivOp>(loc, type, extent, step);
// If the resulting extent is negative (`ub-lb` and `step` have different
// signs), zero must be returned instead.
auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::sgt, extent, zero);
return rewriter.create<mlir::LLVM::SelectOp>(loc, cmp, extent, zero);
}
/// Create a generic box on a memory reference. This conversions lowers the
/// abstract box to the appropriate, initialized descriptor.
struct EmboxOpConversion : public EmboxCommonConversion<fir::EmboxOp> {
using EmboxCommonConversion::EmboxCommonConversion;
mlir::LogicalResult
matchAndRewrite(fir::EmboxOp embox, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
assert(!embox.getShape() && "There should be no dims on this embox op");
auto [boxTy, dest, eleSize] =
consDescriptorPrefix(embox, rewriter, /*rank=*/0,
/*lenParams=*/adaptor.getOperands().drop_front(1));
dest = insertBaseAddress(rewriter, embox.getLoc(), dest,
adaptor.getOperands()[0]);
if (isDerivedTypeWithLenParams(boxTy)) {
TODO(embox.getLoc(),
"fir.embox codegen of derived with length parameters");
return mlir::failure();
}
auto result = placeInMemoryIfNotGlobalInit(rewriter, embox.getLoc(), dest);
rewriter.replaceOp(embox, result);
return mlir::success();
}
};
/// Create a generic box on a memory reference.
struct XEmboxOpConversion : public EmboxCommonConversion<fir::cg::XEmboxOp> {
using EmboxCommonConversion::EmboxCommonConversion;
mlir::LogicalResult
matchAndRewrite(fir::cg::XEmboxOp xbox, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto [boxTy, dest, eleSize] = consDescriptorPrefix(
xbox, rewriter, xbox.getOutRank(),
adaptor.getOperands().drop_front(xbox.lenParamOffset()));
// Generate the triples in the dims field of the descriptor
mlir::ValueRange operands = adaptor.getOperands();
auto i64Ty = mlir::IntegerType::get(xbox.getContext(), 64);
mlir::Value base = operands[0];
assert(!xbox.shape().empty() && "must have a shape");
unsigned shapeOffset = xbox.shapeOffset();
bool hasShift = !xbox.shift().empty();
unsigned shiftOffset = xbox.shiftOffset();
bool hasSlice = !xbox.slice().empty();
unsigned sliceOffset = xbox.sliceOffset();
mlir::Location loc = xbox.getLoc();
mlir::Value zero = genConstantIndex(loc, i64Ty, rewriter, 0);
mlir::Value one = genConstantIndex(loc, i64Ty, rewriter, 1);
mlir::Value prevPtrOff = one;
mlir::Type eleTy = boxTy.getEleTy();
const unsigned rank = xbox.getRank();
llvm::SmallVector<mlir::Value> gepArgs;
unsigned constRows = 0;
mlir::Value ptrOffset = zero;
mlir::Type memEleTy = fir::dyn_cast_ptrEleTy(xbox.memref().getType());
assert(memEleTy.isa<fir::SequenceType>());
auto seqTy = memEleTy.cast<fir::SequenceType>();
mlir::Type seqEleTy = seqTy.getEleTy();
// Adjust the element scaling factor if the element is a dependent type.
if (fir::hasDynamicSize(seqEleTy)) {
if (auto charTy = seqEleTy.dyn_cast<fir::CharacterType>()) {
assert(xbox.lenParams().size() == 1);
mlir::LLVM::ConstantOp charSize = genConstantIndex(
loc, i64Ty, rewriter, lowerTy().characterBitsize(charTy) / 8);
mlir::Value castedLen =
integerCast(loc, rewriter, i64Ty, operands[xbox.lenParamOffset()]);
auto byteOffset =
rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, charSize, castedLen);
prevPtrOff = integerCast(loc, rewriter, i64Ty, byteOffset);
} else if (seqEleTy.isa<fir::RecordType>()) {
// prevPtrOff = ;
TODO(loc, "generate call to calculate size of PDT");
} else {
fir::emitFatalError(loc, "unexpected dynamic type");
}
} else {
constRows = seqTy.getConstantRows();
}
const auto hasSubcomp = !xbox.subcomponent().empty();
const bool hasSubstr = !xbox.substr().empty();
/// Compute initial element stride that will be use to compute the step in
/// each dimension.
mlir::Value prevDimByteStride = integerCast(loc, rewriter, i64Ty, eleSize);
if (hasSubcomp) {
// We have a subcomponent. The step value needs to be the number of
// bytes per element (which is a derived type).
auto eleTy = mlir::LLVM::LLVMPointerType::get(convertType(seqEleTy));
prevDimByteStride = computeDerivedTypeSize(loc, eleTy, i64Ty, rewriter);
} else if (hasSubstr) {
// We have a substring. The step value needs to be the number of bytes
// per CHARACTER element.
auto charTy = seqEleTy.cast<fir::CharacterType>();
if (fir::hasDynamicSize(charTy)) {
prevDimByteStride = prevPtrOff;
} else {
prevDimByteStride = genConstantIndex(
loc, i64Ty, rewriter,
charTy.getLen() * lowerTy().characterBitsize(charTy) / 8);
}
}
// Process the array subspace arguments (shape, shift, etc.), if any,
// translating everything to values in the descriptor wherever the entity
// has a dynamic array dimension.
for (unsigned di = 0, descIdx = 0; di < rank; ++di) {
mlir::Value extent = operands[shapeOffset];
mlir::Value outerExtent = extent;
bool skipNext = false;
if (hasSlice) {
mlir::Value off = operands[sliceOffset];
mlir::Value adj = one;
if (hasShift)
adj = operands[shiftOffset];
auto ao = rewriter.create<mlir::LLVM::SubOp>(loc, i64Ty, off, adj);
if (constRows > 0) {
gepArgs.push_back(ao);
} else {
auto dimOff =
rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, ao, prevPtrOff);
ptrOffset =
rewriter.create<mlir::LLVM::AddOp>(loc, i64Ty, dimOff, ptrOffset);
}
if (mlir::isa_and_nonnull<fir::UndefOp>(
xbox.slice()[3 * di + 1].getDefiningOp())) {
// This dimension contains a scalar expression in the array slice op.
// The dimension is loop invariant, will be dropped, and will not
// appear in the descriptor.
skipNext = true;
}
}
if (!skipNext) {
// store extent
if (hasSlice)
extent = computeTripletExtent(rewriter, loc, operands[sliceOffset],
operands[sliceOffset + 1],
operands[sliceOffset + 2], zero, i64Ty);
// Lower bound is normalized to 0 for BIND(C) interoperability.
mlir::Value lb = zero;
const bool isaPointerOrAllocatable =
eleTy.isa<fir::PointerType>() || eleTy.isa<fir::HeapType>();
// Lower bound is defaults to 1 for POINTER, ALLOCATABLE, and
// denormalized descriptors.
if (isaPointerOrAllocatable || !normalizedLowerBound(xbox))
lb = one;
// If there is a shifted origin, and no fir.slice, and this is not
// a normalized descriptor then use the value from the shift op as
// the lower bound.
if (hasShift && !(hasSlice || hasSubcomp || hasSubstr) &&
(isaPointerOrAllocatable || !normalizedLowerBound(xbox))) {
lb = operands[shiftOffset];
auto extentIsEmpty = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::eq, extent, zero);
lb = rewriter.create<mlir::LLVM::SelectOp>(loc, extentIsEmpty, one,
lb);
}
dest = insertLowerBound(rewriter, loc, dest, descIdx, lb);
dest = insertExtent(rewriter, loc, dest, descIdx, extent);
// store step (scaled by shaped extent)
mlir::Value step = prevDimByteStride;
if (hasSlice)
step = rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, step,
operands[sliceOffset + 2]);
dest = insertStride(rewriter, loc, dest, descIdx, step);
++descIdx;
}
// compute the stride and offset for the next natural dimension
prevDimByteStride = rewriter.create<mlir::LLVM::MulOp>(
loc, i64Ty, prevDimByteStride, outerExtent);
if (constRows == 0)
prevPtrOff = rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, prevPtrOff,
outerExtent);
else
--constRows;
// increment iterators
++shapeOffset;
if (hasShift)
++shiftOffset;
if (hasSlice)
sliceOffset += 3;
}
if (hasSlice || hasSubcomp || hasSubstr) {
llvm::SmallVector<mlir::Value> args = {ptrOffset};
args.append(gepArgs.rbegin(), gepArgs.rend());
if (hasSubcomp) {
// For each field in the path add the offset to base via the args list.
// In the most general case, some offsets must be computed since
// they are not be known until runtime.
if (fir::hasDynamicSize(fir::unwrapSequenceType(
fir::unwrapPassByRefType(xbox.memref().getType()))))
TODO(loc, "fir.embox codegen dynamic size component in derived type");
args.append(operands.begin() + xbox.subcomponentOffset(),
operands.begin() + xbox.subcomponentOffset() +
xbox.subcomponent().size());
}
base =
rewriter.create<mlir::LLVM::GEPOp>(loc, base.getType(), base, args);
if (hasSubstr)
base = shiftSubstringBase(rewriter, loc, base,
operands[xbox.substrOffset()]);
}
dest = insertBaseAddress(rewriter, loc, dest, base);
if (isDerivedTypeWithLenParams(boxTy))
TODO(loc, "fir.embox codegen of derived with length parameters");
mlir::Value result = placeInMemoryIfNotGlobalInit(rewriter, loc, dest);
rewriter.replaceOp(xbox, result);
return mlir::success();
}
/// Return true if `xbox` has a normalized lower bounds attribute. A box value
/// that is neither a POINTER nor an ALLOCATABLE should be normalized to a
/// zero origin lower bound for interoperability with BIND(C).
inline static bool normalizedLowerBound(fir::cg::XEmboxOp xbox) {
return xbox->hasAttr(fir::getNormalizedLowerBoundAttrName());
}
};
/// Create a new box given a box reference.
struct XReboxOpConversion : public EmboxCommonConversion<fir::cg::XReboxOp> {
using EmboxCommonConversion::EmboxCommonConversion;
mlir::LogicalResult
matchAndRewrite(fir::cg::XReboxOp rebox, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Location loc = rebox.getLoc();
mlir::Type idxTy = lowerTy().indexType();
mlir::Value loweredBox = adaptor.getOperands()[0];
mlir::ValueRange operands = adaptor.getOperands();
// Create new descriptor and fill its non-shape related data.
llvm::SmallVector<mlir::Value, 2> lenParams;
mlir::Type inputEleTy = getInputEleTy(rebox);
if (auto charTy = inputEleTy.dyn_cast<fir::CharacterType>()) {
mlir::Value len =
loadElementSizeFromBox(loc, idxTy, loweredBox, rewriter);
if (charTy.getFKind() != 1) {
mlir::Value width =
genConstantIndex(loc, idxTy, rewriter, charTy.getFKind());
len = rewriter.create<mlir::LLVM::SDivOp>(loc, idxTy, len, width);
}
lenParams.emplace_back(len);
} else if (auto recTy = inputEleTy.dyn_cast<fir::RecordType>()) {
if (recTy.getNumLenParams() != 0)
TODO(loc, "reboxing descriptor of derived type with length parameters");
}
auto [boxTy, dest, eleSize] =
consDescriptorPrefix(rebox, rewriter, rebox.getOutRank(), lenParams);
// Read input extents, strides, and base address
llvm::SmallVector<mlir::Value> inputExtents;
llvm::SmallVector<mlir::Value> inputStrides;
const unsigned inputRank = rebox.getRank();
for (unsigned i = 0; i < inputRank; ++i) {
mlir::Value dim = genConstantIndex(loc, idxTy, rewriter, i);
llvm::SmallVector<mlir::Value, 3> dimInfo =
getDimsFromBox(loc, {idxTy, idxTy, idxTy}, loweredBox, dim, rewriter);
inputExtents.emplace_back(dimInfo[1]);
inputStrides.emplace_back(dimInfo[2]);
}
mlir::Type baseTy = getBaseAddrTypeFromBox(loweredBox.getType());
mlir::Value baseAddr =
loadBaseAddrFromBox(loc, baseTy, loweredBox, rewriter);
if (!rebox.slice().empty() || !rebox.subcomponent().empty())
return sliceBox(rebox, dest, baseAddr, inputExtents, inputStrides,
operands, rewriter);
return reshapeBox(rebox, dest, baseAddr, inputExtents, inputStrides,
operands, rewriter);
}
private:
/// Write resulting shape and base address in descriptor, and replace rebox
/// op.
mlir::LogicalResult
finalizeRebox(fir::cg::XReboxOp rebox, mlir::Value dest, mlir::Value base,
mlir::ValueRange lbounds, mlir::ValueRange extents,
mlir::ValueRange strides,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::Location loc = rebox.getLoc();
mlir::Value zero =
genConstantIndex(loc, lowerTy().indexType(), rewriter, 0);
mlir::Value one = genConstantIndex(loc, lowerTy().indexType(), rewriter, 1);
for (auto iter : llvm::enumerate(llvm::zip(extents, strides))) {
mlir::Value extent = std::get<0>(iter.value());
unsigned dim = iter.index();
mlir::Value lb = one;
if (!lbounds.empty()) {
lb = lbounds[dim];
auto extentIsEmpty = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::eq, extent, zero);
lb = rewriter.create<mlir::LLVM::SelectOp>(loc, extentIsEmpty, one, lb);
};
dest = insertLowerBound(rewriter, loc, dest, dim, lb);
dest = insertExtent(rewriter, loc, dest, dim, extent);
dest = insertStride(rewriter, loc, dest, dim, std::get<1>(iter.value()));
}
dest = insertBaseAddress(rewriter, loc, dest, base);
mlir::Value result =
placeInMemoryIfNotGlobalInit(rewriter, rebox.getLoc(), dest);
rewriter.replaceOp(rebox, result);
return mlir::success();
}
// Apply slice given the base address, extents and strides of the input box.
mlir::LogicalResult
sliceBox(fir::cg::XReboxOp rebox, mlir::Value dest, mlir::Value base,
mlir::ValueRange inputExtents, mlir::ValueRange inputStrides,
mlir::ValueRange operands,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::Location loc = rebox.getLoc();
mlir::Type voidPtrTy = ::getVoidPtrType(rebox.getContext());
mlir::Type idxTy = lowerTy().indexType();
mlir::Value zero = genConstantIndex(loc, idxTy, rewriter, 0);
// Apply subcomponent and substring shift on base address.
if (!rebox.subcomponent().empty() || !rebox.substr().empty()) {
// Cast to inputEleTy* so that a GEP can be used.
mlir::Type inputEleTy = getInputEleTy(rebox);
auto llvmElePtrTy =
mlir::LLVM::LLVMPointerType::get(convertType(inputEleTy));
base = rewriter.create<mlir::LLVM::BitcastOp>(loc, llvmElePtrTy, base);
if (!rebox.subcomponent().empty()) {
llvm::SmallVector<mlir::Value> gepOperands = {zero};
for (unsigned i = 0; i < rebox.subcomponent().size(); ++i)
gepOperands.push_back(operands[rebox.subcomponentOffset() + i]);
base = genGEP(loc, llvmElePtrTy, rewriter, base, gepOperands);
}
if (!rebox.substr().empty())
base = shiftSubstringBase(rewriter, loc, base,
operands[rebox.substrOffset()]);
}
if (rebox.slice().empty())
// The array section is of the form array[%component][substring], keep
// the input array extents and strides.
return finalizeRebox(rebox, dest, base, /*lbounds*/ llvm::None,
inputExtents, inputStrides, rewriter);
// Strides from the fir.box are in bytes.
base = rewriter.create<mlir::LLVM::BitcastOp>(loc, voidPtrTy, base);
// The slice is of the form array(i:j:k)[%component]. Compute new extents
// and strides.
llvm::SmallVector<mlir::Value> slicedExtents;
llvm::SmallVector<mlir::Value> slicedStrides;
mlir::Value one = genConstantIndex(loc, idxTy, rewriter, 1);
const bool sliceHasOrigins = !rebox.shift().empty();
unsigned sliceOps = rebox.sliceOffset();
unsigned shiftOps = rebox.shiftOffset();
auto strideOps = inputStrides.begin();
const unsigned inputRank = inputStrides.size();
for (unsigned i = 0; i < inputRank;
++i, ++strideOps, ++shiftOps, sliceOps += 3) {
mlir::Value sliceLb =
integerCast(loc, rewriter, idxTy, operands[sliceOps]);
mlir::Value inputStride = *strideOps; // already idxTy
// Apply origin shift: base += (lb-shift)*input_stride
mlir::Value sliceOrigin =
sliceHasOrigins
? integerCast(loc, rewriter, idxTy, operands[shiftOps])
: one;
mlir::Value diff =
rewriter.create<mlir::LLVM::SubOp>(loc, idxTy, sliceLb, sliceOrigin);
mlir::Value offset =
rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, diff, inputStride);
base = genGEP(loc, voidPtrTy, rewriter, base, offset);
// Apply upper bound and step if this is a triplet. Otherwise, the
// dimension is dropped and no extents/strides are computed.
mlir::Value upper = operands[sliceOps + 1];
const bool isTripletSlice =
!mlir::isa_and_nonnull<mlir::LLVM::UndefOp>(upper.getDefiningOp());
if (isTripletSlice) {
mlir::Value step =
integerCast(loc, rewriter, idxTy, operands[sliceOps + 2]);
// extent = ub-lb+step/step
mlir::Value sliceUb = integerCast(loc, rewriter, idxTy, upper);
mlir::Value extent = computeTripletExtent(rewriter, loc, sliceLb,
sliceUb, step, zero, idxTy);
slicedExtents.emplace_back(extent);
// stride = step*input_stride
mlir::Value stride =
rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, step, inputStride);
slicedStrides.emplace_back(stride);
}
}
return finalizeRebox(rebox, dest, base, /*lbounds*/ llvm::None,
slicedExtents, slicedStrides, rewriter);
}
/// Apply a new shape to the data described by a box given the base address,
/// extents and strides of the box.
mlir::LogicalResult
reshapeBox(fir::cg::XReboxOp rebox, mlir::Value dest, mlir::Value base,
mlir::ValueRange inputExtents, mlir::ValueRange inputStrides,
mlir::ValueRange operands,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::ValueRange reboxShifts{operands.begin() + rebox.shiftOffset(),
operands.begin() + rebox.shiftOffset() +
rebox.shift().size()};
if (rebox.shape().empty()) {
// Only setting new lower bounds.
return finalizeRebox(rebox, dest, base, reboxShifts, inputExtents,
inputStrides, rewriter);
}
mlir::Location loc = rebox.getLoc();
// Strides from the fir.box are in bytes.
mlir::Type voidPtrTy = ::getVoidPtrType(rebox.getContext());
base = rewriter.create<mlir::LLVM::BitcastOp>(loc, voidPtrTy, base);
llvm::SmallVector<mlir::Value> newStrides;
llvm::SmallVector<mlir::Value> newExtents;
mlir::Type idxTy = lowerTy().indexType();
// First stride from input box is kept. The rest is assumed contiguous
// (it is not possible to reshape otherwise). If the input is scalar,
// which may be OK if all new extents are ones, the stride does not
// matter, use one.
mlir::Value stride = inputStrides.empty()
? genConstantIndex(loc, idxTy, rewriter, 1)
: inputStrides[0];
for (unsigned i = 0; i < rebox.shape().size(); ++i) {
mlir::Value rawExtent = operands[rebox.shapeOffset() + i];
mlir::Value extent = integerCast(loc, rewriter, idxTy, rawExtent);
newExtents.emplace_back(extent);
newStrides.emplace_back(stride);
// nextStride = extent * stride;
stride = rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, extent, stride);
}
return finalizeRebox(rebox, dest, base, reboxShifts, newExtents, newStrides,
rewriter);
}
/// Return scalar element type of the input box.
static mlir::Type getInputEleTy(fir::cg::XReboxOp rebox) {
auto ty = fir::dyn_cast_ptrOrBoxEleTy(rebox.box().getType());
if (auto seqTy = ty.dyn_cast<fir::SequenceType>())
return seqTy.getEleTy();
return ty;
}
};
/// Lower `fir.emboxproc` operation. Creates a procedure box.
/// TODO: Part of supporting Fortran 2003 procedure pointers.
struct EmboxProcOpConversion : public FIROpConversion<fir::EmboxProcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::EmboxProcOp emboxproc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(emboxproc.getLoc(), "fir.emboxproc codegen");
return mlir::failure();
}
};
// Code shared between insert_value and extract_value Ops.
struct ValueOpCommon {
// Translate the arguments pertaining to any multidimensional array to
// row-major order for LLVM-IR.
static void toRowMajor(llvm::SmallVectorImpl<mlir::Attribute> &attrs,
mlir::Type ty) {
assert(ty && "type is null");
const auto end = attrs.size();
for (std::remove_const_t<decltype(end)> i = 0; i < end; ++i) {
if (auto seq = ty.dyn_cast<mlir::LLVM::LLVMArrayType>()) {
const auto dim = getDimension(seq);
if (dim > 1) {
auto ub = std::min(i + dim, end);
std::reverse(attrs.begin() + i, attrs.begin() + ub);
i += dim - 1;
}
ty = getArrayElementType(seq);
} else if (auto st = ty.dyn_cast<mlir::LLVM::LLVMStructType>()) {
ty = st.getBody()[attrs[i].cast<mlir::IntegerAttr>().getInt()];
} else {
llvm_unreachable("index into invalid type");
}
}
}
static llvm::SmallVector<mlir::Attribute>
collectIndices(mlir::ConversionPatternRewriter &rewriter,
mlir::ArrayAttr arrAttr) {
llvm::SmallVector<mlir::Attribute> attrs;
for (auto i = arrAttr.begin(), e = arrAttr.end(); i != e; ++i) {
if (i->isa<mlir::IntegerAttr>()) {
attrs.push_back(*i);
} else {
auto fieldName = i->cast<mlir::StringAttr>().getValue();
++i;
auto ty = i->cast<mlir::TypeAttr>().getValue();
auto index = ty.cast<fir::RecordType>().getFieldIndex(fieldName);
attrs.push_back(mlir::IntegerAttr::get(rewriter.getI32Type(), index));
}
}
return attrs;
}
private:
static unsigned getDimension(mlir::LLVM::LLVMArrayType ty) {
unsigned result = 1;
for (auto eleTy = ty.getElementType().dyn_cast<mlir::LLVM::LLVMArrayType>();
eleTy;
eleTy = eleTy.getElementType().dyn_cast<mlir::LLVM::LLVMArrayType>())
++result;
return result;
}
static mlir::Type getArrayElementType(mlir::LLVM::LLVMArrayType ty) {
auto eleTy = ty.getElementType();
while (auto arrTy = eleTy.dyn_cast<mlir::LLVM::LLVMArrayType>())
eleTy = arrTy.getElementType();
return eleTy;
}
};
namespace {
/// Extract a subobject value from an ssa-value of aggregate type
struct ExtractValueOpConversion
: public FIROpAndTypeConversion<fir::ExtractValueOp>,
public ValueOpCommon {
using FIROpAndTypeConversion::FIROpAndTypeConversion;
mlir::LogicalResult
doRewrite(fir::ExtractValueOp extractVal, mlir::Type ty, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto attrs = collectIndices(rewriter, extractVal.getCoor());
toRowMajor(attrs, adaptor.getOperands()[0].getType());
auto position = mlir::ArrayAttr::get(extractVal.getContext(), attrs);
rewriter.replaceOpWithNewOp<mlir::LLVM::ExtractValueOp>(
extractVal, ty, adaptor.getOperands()[0], position);
return mlir::success();
}
};
/// InsertValue is the generalized instruction for the composition of new
/// aggregate type values.
struct InsertValueOpConversion
: public FIROpAndTypeConversion<fir::InsertValueOp>,
public ValueOpCommon {
using FIROpAndTypeConversion::FIROpAndTypeConversion;
mlir::LogicalResult
doRewrite(fir::InsertValueOp insertVal, mlir::Type ty, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto attrs = collectIndices(rewriter, insertVal.getCoor());
toRowMajor(attrs, adaptor.getOperands()[0].getType());
auto position = mlir::ArrayAttr::get(insertVal.getContext(), attrs);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
insertVal, ty, adaptor.getOperands()[0], adaptor.getOperands()[1],
position);
return mlir::success();
}
};
/// InsertOnRange inserts a value into a sequence over a range of offsets.
struct InsertOnRangeOpConversion
: public FIROpAndTypeConversion<fir::InsertOnRangeOp> {
using FIROpAndTypeConversion::FIROpAndTypeConversion;
// Increments an array of subscripts in a row major fasion.
void incrementSubscripts(const llvm::SmallVector<uint64_t> &dims,
llvm::SmallVector<uint64_t> &subscripts) const {
for (size_t i = dims.size(); i > 0; --i) {
if (++subscripts[i - 1] < dims[i - 1]) {
return;
}
subscripts[i - 1] = 0;
}
}
mlir::LogicalResult
doRewrite(fir::InsertOnRangeOp range, mlir::Type ty, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
llvm::SmallVector<uint64_t> dims;
auto type = adaptor.getOperands()[0].getType();
// Iteratively extract the array dimensions from the type.
while (auto t = type.dyn_cast<mlir::LLVM::LLVMArrayType>()) {
dims.push_back(t.getNumElements());
type = t.getElementType();
}
llvm::SmallVector<std::uint64_t> lBounds;
llvm::SmallVector<std::uint64_t> uBounds;
// Unzip the upper and lower bound and convert to a row major format.
mlir::DenseIntElementsAttr coor = range.getCoor();
auto reversedCoor = llvm::reverse(coor.getValues<int64_t>());
for (auto i = reversedCoor.begin(), e = reversedCoor.end(); i != e; ++i) {
uBounds.push_back(*i++);
lBounds.push_back(*i);
}
auto &subscripts = lBounds;
auto loc = range.getLoc();
mlir::Value lastOp = adaptor.getOperands()[0];
mlir::Value insertVal = adaptor.getOperands()[1];
auto i64Ty = rewriter.getI64Type();
while (subscripts != uBounds) {
// Convert uint64_t's to Attribute's.
llvm::SmallVector<mlir::Attribute> subscriptAttrs;
for (const auto &subscript : subscripts)
subscriptAttrs.push_back(mlir::IntegerAttr::get(i64Ty, subscript));
lastOp = rewriter.create<mlir::LLVM::InsertValueOp>(
loc, ty, lastOp, insertVal,
mlir::ArrayAttr::get(range.getContext(), subscriptAttrs));
incrementSubscripts(dims, subscripts);
}
// Convert uint64_t's to Attribute's.
llvm::SmallVector<mlir::Attribute> subscriptAttrs;
for (const auto &subscript : subscripts)
subscriptAttrs.push_back(
mlir::IntegerAttr::get(rewriter.getI64Type(), subscript));
mlir::ArrayRef<mlir::Attribute> arrayRef(subscriptAttrs);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
range, ty, lastOp, insertVal,
mlir::ArrayAttr::get(range.getContext(), arrayRef));
return mlir::success();
}
};
} // namespace
namespace {
/// XArrayCoor is the address arithmetic on a dynamically shaped, sliced,
/// shifted etc. array.
/// (See the static restriction on coordinate_of.) array_coor determines the
/// coordinate (location) of a specific element.
struct XArrayCoorOpConversion
: public FIROpAndTypeConversion<fir::cg::XArrayCoorOp> {
using FIROpAndTypeConversion::FIROpAndTypeConversion;
mlir::LogicalResult
doRewrite(fir::cg::XArrayCoorOp coor, mlir::Type ty, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto loc = coor.getLoc();
mlir::ValueRange operands = adaptor.getOperands();
unsigned rank = coor.getRank();
assert(coor.indices().size() == rank);
assert(coor.shape().empty() || coor.shape().size() == rank);
assert(coor.shift().empty() || coor.shift().size() == rank);
assert(coor.slice().empty() || coor.slice().size() == 3 * rank);
mlir::Type idxTy = lowerTy().indexType();
unsigned indexOffset = coor.indicesOffset();
unsigned shapeOffset = coor.shapeOffset();
unsigned shiftOffset = coor.shiftOffset();
unsigned sliceOffset = coor.sliceOffset();
auto sliceOps = coor.slice().begin();
mlir::Value one = genConstantIndex(loc, idxTy, rewriter, 1);
mlir::Value prevExt = one;
mlir::Value zero = genConstantIndex(loc, idxTy, rewriter, 0);
mlir::Value offset = zero;
const bool isShifted = !coor.shift().empty();
const bool isSliced = !coor.slice().empty();
const bool baseIsBoxed = coor.memref().getType().isa<fir::BoxType>();
// For each dimension of the array, generate the offset calculation.
for (unsigned i = 0; i < rank; ++i, ++indexOffset, ++shapeOffset,
++shiftOffset, sliceOffset += 3, sliceOps += 3) {
mlir::Value index =
integerCast(loc, rewriter, idxTy, operands[indexOffset]);
mlir::Value lb =
isShifted ? integerCast(loc, rewriter, idxTy, operands[shiftOffset])
: one;
mlir::Value step = one;
bool normalSlice = isSliced;
// Compute zero based index in dimension i of the element, applying
// potential triplets and lower bounds.
if (isSliced) {
mlir::Value originalUb = *(sliceOps + 1);
normalSlice =
!mlir::isa_and_nonnull<fir::UndefOp>(originalUb.getDefiningOp());
if (normalSlice)
step = integerCast(loc, rewriter, idxTy, operands[sliceOffset + 2]);
}
auto idx = rewriter.create<mlir::LLVM::SubOp>(loc, idxTy, index, lb);
mlir::Value diff =
rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, idx, step);
if (normalSlice) {
mlir::Value sliceLb =
integerCast(loc, rewriter, idxTy, operands[sliceOffset]);
auto adj = rewriter.create<mlir::LLVM::SubOp>(loc, idxTy, sliceLb, lb);
diff = rewriter.create<mlir::LLVM::AddOp>(loc, idxTy, diff, adj);
}
// Update the offset given the stride and the zero based index `diff`
// that was just computed.
if (baseIsBoxed) {
// Use stride in bytes from the descriptor.
mlir::Value stride =
loadStrideFromBox(loc, adaptor.getOperands()[0], i, rewriter);
auto sc = rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, diff, stride);
offset = rewriter.create<mlir::LLVM::AddOp>(loc, idxTy, sc, offset);
} else {
// Use stride computed at last iteration.
auto sc = rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, diff, prevExt);
offset = rewriter.create<mlir::LLVM::AddOp>(loc, idxTy, sc, offset);
// Compute next stride assuming contiguity of the base array
// (in element number).
auto nextExt = integerCast(loc, rewriter, idxTy, operands[shapeOffset]);
prevExt =
rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, prevExt, nextExt);
}
}
// Add computed offset to the base address.
if (baseIsBoxed) {
// Working with byte offsets. The base address is read from the fir.box.
// and need to be casted to i8* to do the pointer arithmetic.
mlir::Type baseTy =
getBaseAddrTypeFromBox(adaptor.getOperands()[0].getType());
mlir::Value base =
loadBaseAddrFromBox(loc, baseTy, adaptor.getOperands()[0], rewriter);
mlir::Type voidPtrTy = getVoidPtrType();
base = rewriter.create<mlir::LLVM::BitcastOp>(loc, voidPtrTy, base);
llvm::SmallVector<mlir::Value> args{offset};
auto addr =
rewriter.create<mlir::LLVM::GEPOp>(loc, voidPtrTy, base, args);
if (coor.subcomponent().empty()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(coor, baseTy, addr);
return mlir::success();
}
auto casted = rewriter.create<mlir::LLVM::BitcastOp>(loc, baseTy, addr);
args.clear();
args.push_back(zero);
if (!coor.lenParams().empty()) {
// If type parameters are present, then we don't want to use a GEPOp
// as below, as the LLVM struct type cannot be statically defined.
TODO(loc, "derived type with type parameters");
}
// TODO: array offset subcomponents must be converted to LLVM's
// row-major layout here.
for (auto i = coor.subcomponentOffset(); i != coor.indicesOffset(); ++i)
args.push_back(operands[i]);
rewriter.replaceOpWithNewOp<mlir::LLVM::GEPOp>(coor, baseTy, casted,
args);
return mlir::success();
}
// The array was not boxed, so it must be contiguous. offset is therefore an
// element offset and the base type is kept in the GEP unless the element
// type size is itself dynamic.
mlir::Value base;
if (coor.subcomponent().empty()) {
// No subcomponent.
if (!coor.lenParams().empty()) {
// Type parameters. Adjust element size explicitly.
auto eleTy = fir::dyn_cast_ptrEleTy(coor.getType());
assert(eleTy && "result must be a reference-like type");
if (fir::characterWithDynamicLen(eleTy)) {
assert(coor.lenParams().size() == 1);
auto bitsInChar = lowerTy().getKindMap().getCharacterBitsize(
eleTy.cast<fir::CharacterType>().getFKind());
auto scaling = genConstantIndex(loc, idxTy, rewriter, bitsInChar / 8);
auto scaledBySize =
rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, offset, scaling);
auto length =
integerCast(loc, rewriter, idxTy,
adaptor.getOperands()[coor.lenParamsOffset()]);
offset = rewriter.create<mlir::LLVM::MulOp>(loc, idxTy, scaledBySize,
length);
} else {
TODO(loc, "compute size of derived type with type parameters");
}
}
// Cast the base address to a pointer to T.
base = rewriter.create<mlir::LLVM::BitcastOp>(loc, ty,
adaptor.getOperands()[0]);
} else {
// Operand #0 must have a pointer type. For subcomponent slicing, we
// want to cast away the array type and have a plain struct type.
mlir::Type ty0 = adaptor.getOperands()[0].getType();
auto ptrTy = ty0.dyn_cast<mlir::LLVM::LLVMPointerType>();
assert(ptrTy && "expected pointer type");
mlir::Type eleTy = ptrTy.getElementType();
while (auto arrTy = eleTy.dyn_cast<mlir::LLVM::LLVMArrayType>())
eleTy = arrTy.getElementType();
auto newTy = mlir::LLVM::LLVMPointerType::get(eleTy);
base = rewriter.create<mlir::LLVM::BitcastOp>(loc, newTy,
adaptor.getOperands()[0]);
}
llvm::SmallVector<mlir::Value> args = {offset};
for (auto i = coor.subcomponentOffset(); i != coor.indicesOffset(); ++i)
args.push_back(operands[i]);
rewriter.replaceOpWithNewOp<mlir::LLVM::GEPOp>(coor, ty, base, args);
return mlir::success();
}
};
} // namespace
/// Convert to (memory) reference to a reference to a subobject.
/// The coordinate_of op is a Swiss army knife operation that can be used on
/// (memory) references to records, arrays, complex, etc. as well as boxes.
/// With unboxed arrays, there is the restriction that the array have a static
/// shape in all but the last column.
struct CoordinateOpConversion
: public FIROpAndTypeConversion<fir::CoordinateOp> {
using FIROpAndTypeConversion::FIROpAndTypeConversion;
mlir::LogicalResult
doRewrite(fir::CoordinateOp coor, mlir::Type ty, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::ValueRange operands = adaptor.getOperands();
mlir::Location loc = coor.getLoc();
mlir::Value base = operands[0];
mlir::Type baseObjectTy = coor.getBaseType();
mlir::Type objectTy = fir::dyn_cast_ptrOrBoxEleTy(baseObjectTy);
assert(objectTy && "fir.coordinate_of expects a reference type");
// Complex type - basically, extract the real or imaginary part
if (fir::isa_complex(objectTy)) {
mlir::LLVM::ConstantOp c0 =
genConstantIndex(loc, lowerTy().indexType(), rewriter, 0);
llvm::SmallVector<mlir::Value> offs = {c0, operands[1]};
mlir::Value gep = genGEP(loc, ty, rewriter, base, offs);
rewriter.replaceOp(coor, gep);
return mlir::success();
}
// Boxed type - get the base pointer from the box
if (baseObjectTy.dyn_cast<fir::BoxType>())
return doRewriteBox(coor, ty, operands, loc, rewriter);
// Reference, pointer or a heap type
if (baseObjectTy.isa<fir::ReferenceType, fir::PointerType, fir::HeapType>())
return doRewriteRefOrPtr(coor, ty, operands, loc, rewriter);
return rewriter.notifyMatchFailure(
coor, "fir.coordinate_of base operand has unsupported type");
}
static unsigned getFieldNumber(fir::RecordType ty, mlir::Value op) {
return fir::hasDynamicSize(ty)
? op.getDefiningOp()
->getAttrOfType<mlir::IntegerAttr>("field")
.getInt()
: getIntValue(op);
}
static int64_t getIntValue(mlir::Value val) {
assert(val && val.dyn_cast<mlir::OpResult>() && "must not be null value");
mlir::Operation *defop = val.getDefiningOp();
if (auto constOp = mlir::dyn_cast<mlir::arith::ConstantIntOp>(defop))
return constOp.value();
if (auto llConstOp = mlir::dyn_cast<mlir::LLVM::ConstantOp>(defop))
if (auto attr = llConstOp.getValue().dyn_cast<mlir::IntegerAttr>())
return attr.getValue().getSExtValue();
fir::emitFatalError(val.getLoc(), "must be a constant");
}
static bool hasSubDimensions(mlir::Type type) {
return type.isa<fir::SequenceType, fir::RecordType, mlir::TupleType>();
}
/// Check whether this form of `!fir.coordinate_of` is supported. These
/// additional checks are required, because we are not yet able to convert
/// all valid forms of `!fir.coordinate_of`.
/// TODO: Either implement the unsupported cases or extend the verifier
/// in FIROps.cpp instead.
static bool supportedCoordinate(mlir::Type type, mlir::ValueRange coors) {
const std::size_t numOfCoors = coors.size();
std::size_t i = 0;
bool subEle = false;
bool ptrEle = false;
for (; i < numOfCoors; ++i) {
mlir::Value nxtOpnd = coors[i];
if (auto arrTy = type.dyn_cast<fir::SequenceType>()) {
subEle = true;
i += arrTy.getDimension() - 1;
type = arrTy.getEleTy();
} else if (auto recTy = type.dyn_cast<fir::RecordType>()) {
subEle = true;
type = recTy.getType(getFieldNumber(recTy, nxtOpnd));
} else if (auto tupTy = type.dyn_cast<mlir::TupleType>()) {
subEle = true;
type = tupTy.getType(getIntValue(nxtOpnd));
} else {
ptrEle = true;
}
}
if (ptrEle)
return (!subEle) && (numOfCoors == 1);
return subEle && (i >= numOfCoors);
}
/// Walk the abstract memory layout and determine if the path traverses any
/// array types with unknown shape. Return true iff all the array types have a
/// constant shape along the path.
static bool arraysHaveKnownShape(mlir::Type type, mlir::ValueRange coors) {
for (std::size_t i = 0, sz = coors.size(); i < sz; ++i) {
mlir::Value nxtOpnd = coors[i];
if (auto arrTy = type.dyn_cast<fir::SequenceType>()) {
if (fir::sequenceWithNonConstantShape(arrTy))
return false;
i += arrTy.getDimension() - 1;
type = arrTy.getEleTy();
} else if (auto strTy = type.dyn_cast<fir::RecordType>()) {
type = strTy.getType(getFieldNumber(strTy, nxtOpnd));
} else if (auto strTy = type.dyn_cast<mlir::TupleType>()) {
type = strTy.getType(getIntValue(nxtOpnd));
} else {
return true;
}
}
return true;
}
private:
mlir::LogicalResult
doRewriteBox(fir::CoordinateOp coor, mlir::Type ty, mlir::ValueRange operands,
mlir::Location loc,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::Type boxObjTy = coor.getBaseType();
assert(boxObjTy.dyn_cast<fir::BoxType>() && "This is not a `fir.box`");
mlir::Value boxBaseAddr = operands[0];
// 1. SPECIAL CASE (uses `fir.len_param_index`):
// %box = ... : !fir.box<!fir.type<derived{len1:i32}>>
// %lenp = fir.len_param_index len1, !fir.type<derived{len1:i32}>
// %addr = coordinate_of %box, %lenp
if (coor.getNumOperands() == 2) {
mlir::Operation *coordinateDef =
(*coor.getCoor().begin()).getDefiningOp();
if (mlir::isa_and_nonnull<fir::LenParamIndexOp>(coordinateDef))
TODO(loc,
"fir.coordinate_of - fir.len_param_index is not supported yet");
}
// 2. GENERAL CASE:
// 2.1. (`fir.array`)
// %box = ... : !fix.box<!fir.array<?xU>>
// %idx = ... : index
// %resultAddr = coordinate_of %box, %idx : !fir.ref<U>
// 2.2 (`fir.derived`)
// %box = ... : !fix.box<!fir.type<derived_type{field_1:i32}>>
// %idx = ... : i32
// %resultAddr = coordinate_of %box, %idx : !fir.ref<i32>
// 2.3 (`fir.derived` inside `fir.array`)
// %box = ... : !fir.box<!fir.array<10 x !fir.type<derived_1{field_1:f32,
// field_2:f32}>>> %idx1 = ... : index %idx2 = ... : i32 %resultAddr =
// coordinate_of %box, %idx1, %idx2 : !fir.ref<f32>
// 2.4. TODO: Either document or disable any other case that the following
// implementation might convert.
mlir::LLVM::ConstantOp c0 =
genConstantIndex(loc, lowerTy().indexType(), rewriter, 0);
mlir::Value resultAddr =
loadBaseAddrFromBox(loc, getBaseAddrTypeFromBox(boxBaseAddr.getType()),
boxBaseAddr, rewriter);
// Component Type
auto cpnTy = fir::dyn_cast_ptrOrBoxEleTy(boxObjTy);
mlir::Type voidPtrTy = ::getVoidPtrType(coor.getContext());
for (unsigned i = 1, last = operands.size(); i < last; ++i) {
if (auto arrTy = cpnTy.dyn_cast<fir::SequenceType>()) {
if (i != 1)
TODO(loc, "fir.array nested inside other array and/or derived type");
// Applies byte strides from the box. Ignore lower bound from box
// since fir.coordinate_of indexes are zero based. Lowering takes care
// of lower bound aspects. This both accounts for dynamically sized
// types and non contiguous arrays.
auto idxTy = lowerTy().indexType();
mlir::Value off = genConstantIndex(loc, idxTy, rewriter, 0);
for (unsigned index = i, lastIndex = i + arrTy.getDimension();
index < lastIndex; ++index) {
mlir::Value stride =
loadStrideFromBox(loc, operands[0], index - i, rewriter);
auto sc = rewriter.create<mlir::LLVM::MulOp>(loc, idxTy,
operands[index], stride);
off = rewriter.create<mlir::LLVM::AddOp>(loc, idxTy, sc, off);
}
auto voidPtrBase =
rewriter.create<mlir::LLVM::BitcastOp>(loc, voidPtrTy, resultAddr);
llvm::SmallVector<mlir::Value> args = {off};
resultAddr = rewriter.create<mlir::LLVM::GEPOp>(loc, voidPtrTy,
voidPtrBase, args);
i += arrTy.getDimension() - 1;
cpnTy = arrTy.getEleTy();
} else if (auto recTy = cpnTy.dyn_cast<fir::RecordType>()) {
auto recRefTy =
mlir::LLVM::LLVMPointerType::get(lowerTy().convertType(recTy));
mlir::Value nxtOpnd = operands[i];
auto memObj =
rewriter.create<mlir::LLVM::BitcastOp>(loc, recRefTy, resultAddr);
llvm::SmallVector<mlir::Value> args = {c0, nxtOpnd};
cpnTy = recTy.getType(getFieldNumber(recTy, nxtOpnd));
auto llvmCurrentObjTy = lowerTy().convertType(cpnTy);
auto gep = rewriter.create<mlir::LLVM::GEPOp>(
loc, mlir::LLVM::LLVMPointerType::get(llvmCurrentObjTy), memObj,
args);
resultAddr =
rewriter.create<mlir::LLVM::BitcastOp>(loc, voidPtrTy, gep);
} else {
fir::emitFatalError(loc, "unexpected type in coordinate_of");
}
}
rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(coor, ty, resultAddr);
return mlir::success();
}
mlir::LogicalResult
doRewriteRefOrPtr(fir::CoordinateOp coor, mlir::Type ty,
mlir::ValueRange operands, mlir::Location loc,
mlir::ConversionPatternRewriter &rewriter) const {
mlir::Type baseObjectTy = coor.getBaseType();
// Component Type
mlir::Type cpnTy = fir::dyn_cast_ptrOrBoxEleTy(baseObjectTy);
bool hasSubdimension = hasSubDimensions(cpnTy);
bool columnIsDeferred = !hasSubdimension;
if (!supportedCoordinate(cpnTy, operands.drop_front(1)))
TODO(loc, "unsupported combination of coordinate operands");
const bool hasKnownShape =
arraysHaveKnownShape(cpnTy, operands.drop_front(1));
// If only the column is `?`, then we can simply place the column value in
// the 0-th GEP position.
if (auto arrTy = cpnTy.dyn_cast<fir::SequenceType>()) {
if (!hasKnownShape) {
const unsigned sz = arrTy.getDimension();
if (arraysHaveKnownShape(arrTy.getEleTy(),
operands.drop_front(1 + sz))) {
fir::SequenceType::ShapeRef shape = arrTy.getShape();
bool allConst = true;
for (unsigned i = 0; i < sz - 1; ++i) {
if (shape[i] < 0) {
allConst = false;
break;
}
}
if (allConst)
columnIsDeferred = true;
}
}
}
if (fir::hasDynamicSize(fir::unwrapSequenceType(cpnTy)))
return mlir::emitError(
loc, "fir.coordinate_of with a dynamic element size is unsupported");
if (hasKnownShape || columnIsDeferred) {
llvm::SmallVector<mlir::Value> offs;
if (hasKnownShape && hasSubdimension) {
mlir::LLVM::ConstantOp c0 =
genConstantIndex(loc, lowerTy().indexType(), rewriter, 0);
offs.push_back(c0);
}
llvm::Optional<int> dims;
llvm::SmallVector<mlir::Value> arrIdx;
for (std::size_t i = 1, sz = operands.size(); i < sz; ++i) {
mlir::Value nxtOpnd = operands[i];
if (!cpnTy)
return mlir::emitError(loc, "invalid coordinate/check failed");
// check if the i-th coordinate relates to an array
if (dims) {
arrIdx.push_back(nxtOpnd);
int dimsLeft = *dims;
if (dimsLeft > 1) {
dims = dimsLeft - 1;
continue;
}
cpnTy = cpnTy.cast<fir::SequenceType>().getEleTy();
// append array range in reverse (FIR arrays are column-major)
offs.append(arrIdx.rbegin(), arrIdx.rend());
arrIdx.clear();
dims.reset();
continue;
}
if (auto arrTy = cpnTy.dyn_cast<fir::SequenceType>()) {
int d = arrTy.getDimension() - 1;
if (d > 0) {
dims = d;
arrIdx.push_back(nxtOpnd);
continue;
}
cpnTy = cpnTy.cast<fir::SequenceType>().getEleTy();
offs.push_back(nxtOpnd);
continue;
}
// check if the i-th coordinate relates to a field
if (auto recTy = cpnTy.dyn_cast<fir::RecordType>())
cpnTy = recTy.getType(getFieldNumber(recTy, nxtOpnd));
else if (auto tupTy = cpnTy.dyn_cast<mlir::TupleType>())
cpnTy = tupTy.getType(getIntValue(nxtOpnd));
else
cpnTy = nullptr;
offs.push_back(nxtOpnd);
}
if (dims)
offs.append(arrIdx.rbegin(), arrIdx.rend());
mlir::Value base = operands[0];
mlir::Value retval = genGEP(loc, ty, rewriter, base, offs);
rewriter.replaceOp(coor, retval);
return mlir::success();
}
return mlir::emitError(
loc, "fir.coordinate_of base operand has unsupported type");
}
};
/// Convert `fir.field_index`. The conversion depends on whether the size of
/// the record is static or dynamic.
struct FieldIndexOpConversion : public FIROpConversion<fir::FieldIndexOp> {
using FIROpConversion::FIROpConversion;
// NB: most field references should be resolved by this point
mlir::LogicalResult
matchAndRewrite(fir::FieldIndexOp field, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto recTy = field.getOnType().cast<fir::RecordType>();
unsigned index = recTy.getFieldIndex(field.getFieldId());
if (!fir::hasDynamicSize(recTy)) {
// Derived type has compile-time constant layout. Return index of the
// component type in the parent type (to be used in GEP).
rewriter.replaceOp(field, mlir::ValueRange{genConstantOffset(
field.getLoc(), rewriter, index)});
return mlir::success();
}
// Derived type has compile-time constant layout. Call the compiler
// generated function to determine the byte offset of the field at runtime.
// This returns a non-constant.
mlir::FlatSymbolRefAttr symAttr = mlir::SymbolRefAttr::get(
field.getContext(), getOffsetMethodName(recTy, field.getFieldId()));
mlir::NamedAttribute callAttr = rewriter.getNamedAttr("callee", symAttr);
mlir::NamedAttribute fieldAttr = rewriter.getNamedAttr(
"field", mlir::IntegerAttr::get(lowerTy().indexType(), index));
rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>(
field, lowerTy().offsetType(), adaptor.getOperands(),
llvm::ArrayRef<mlir::NamedAttribute>{callAttr, fieldAttr});
return mlir::success();
}
// Re-Construct the name of the compiler generated method that calculates the
// offset
inline static std::string getOffsetMethodName(fir::RecordType recTy,
llvm::StringRef field) {
return recTy.getName().str() + "P." + field.str() + ".offset";
}
};
/// Convert `fir.end`
struct FirEndOpConversion : public FIROpConversion<fir::FirEndOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::FirEndOp firEnd, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(firEnd.getLoc(), "fir.end codegen");
return mlir::failure();
}
};
/// Lower `fir.gentypedesc` to a global constant.
struct GenTypeDescOpConversion : public FIROpConversion<fir::GenTypeDescOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::GenTypeDescOp gentypedesc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(gentypedesc.getLoc(), "fir.gentypedesc codegen");
return mlir::failure();
}
};
/// Lower `fir.has_value` operation to `llvm.return` operation.
struct HasValueOpConversion : public FIROpConversion<fir::HasValueOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::HasValueOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<mlir::LLVM::ReturnOp>(op,
adaptor.getOperands());
return mlir::success();
}
};
/// Lower `fir.global` operation to `llvm.global` operation.
/// `fir.insert_on_range` operations are replaced with constant dense attribute
/// if they are applied on the full range.
struct GlobalOpConversion : public FIROpConversion<fir::GlobalOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::GlobalOp global, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto tyAttr = convertType(global.getType());
if (global.getType().isa<fir::BoxType>())
tyAttr = tyAttr.cast<mlir::LLVM::LLVMPointerType>().getElementType();
auto loc = global.getLoc();
mlir::Attribute initAttr;
if (global.getInitVal())
initAttr = global.getInitVal().getValue();
auto linkage = convertLinkage(global.getLinkName());
auto isConst = global.getConstant().hasValue();
auto g = rewriter.create<mlir::LLVM::GlobalOp>(
loc, tyAttr, isConst, linkage, global.getSymName(), initAttr);
auto &gr = g.getInitializerRegion();
rewriter.inlineRegionBefore(global.getRegion(), gr, gr.end());
if (!gr.empty()) {
// Replace insert_on_range with a constant dense attribute if the
// initialization is on the full range.
auto insertOnRangeOps = gr.front().getOps<fir::InsertOnRangeOp>();
for (auto insertOp : insertOnRangeOps) {
if (isFullRange(insertOp.getCoor(), insertOp.getType())) {
auto seqTyAttr = convertType(insertOp.getType());
auto *op = insertOp.getVal().getDefiningOp();
auto constant = mlir::dyn_cast<mlir::arith::ConstantOp>(op);
if (!constant) {
auto convertOp = mlir::dyn_cast<fir::ConvertOp>(op);
if (!convertOp)
continue;
constant = mlir::cast<mlir::arith::ConstantOp>(
convertOp.getValue().getDefiningOp());
}
mlir::Type vecType = mlir::VectorType::get(
insertOp.getType().getShape(), constant.getType());
auto denseAttr = mlir::DenseElementsAttr::get(
vecType.cast<mlir::ShapedType>(), constant.getValue());
rewriter.setInsertionPointAfter(insertOp);
rewriter.replaceOpWithNewOp<mlir::arith::ConstantOp>(
insertOp, seqTyAttr, denseAttr);
}
}
}
rewriter.eraseOp(global);
return mlir::success();
}
bool isFullRange(mlir::DenseIntElementsAttr indexes,
fir::SequenceType seqTy) const {
auto extents = seqTy.getShape();
if (indexes.size() / 2 != static_cast<int64_t>(extents.size()))
return false;
auto cur_index = indexes.value_begin<int64_t>();
for (unsigned i = 0; i < indexes.size(); i += 2) {
if (*(cur_index++) != 0)
return false;
if (*(cur_index++) != extents[i / 2] - 1)
return false;
}
return true;
}
// TODO: String comparaison should be avoided. Replace linkName with an
// enumeration.
mlir::LLVM::Linkage
convertLinkage(llvm::Optional<llvm::StringRef> optLinkage) const {
if (optLinkage.hasValue()) {
auto name = optLinkage.getValue();
if (name == "internal")
return mlir::LLVM::Linkage::Internal;
if (name == "linkonce")
return mlir::LLVM::Linkage::Linkonce;
if (name == "linkonce_odr")
return mlir::LLVM::Linkage::LinkonceODR;
if (name == "common")
return mlir::LLVM::Linkage::Common;
if (name == "weak")
return mlir::LLVM::Linkage::Weak;
}
return mlir::LLVM::Linkage::External;
}
};
/// `fir.load` --> `llvm.load`
struct LoadOpConversion : public FIROpConversion<fir::LoadOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::LoadOp load, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// fir.box is a special case because it is considered as an ssa values in
// fir, but it is lowered as a pointer to a descriptor. So fir.ref<fir.box>
// and fir.box end up being the same llvm types and loading a
// fir.ref<fir.box> is actually a no op in LLVM.
if (load.getType().isa<fir::BoxType>()) {
rewriter.replaceOp(load, adaptor.getOperands()[0]);
} else {
rewriter.replaceOpWithNewOp<mlir::LLVM::LoadOp>(
load, convertType(load.getType()), adaptor.getOperands(),
load->getAttrs());
}
return mlir::success();
}
};
/// Lower `fir.no_reassoc` to LLVM IR dialect.
/// TODO: how do we want to enforce this in LLVM-IR? Can we manipulate the fast
/// math flags?
struct NoReassocOpConversion : public FIROpConversion<fir::NoReassocOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::NoReassocOp noreassoc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOp(noreassoc, adaptor.getOperands()[0]);
return mlir::success();
}
};
static void genCondBrOp(mlir::Location loc, mlir::Value cmp, mlir::Block *dest,
llvm::Optional<mlir::ValueRange> destOps,
mlir::ConversionPatternRewriter &rewriter,
mlir::Block *newBlock) {
if (destOps.hasValue())
rewriter.create<mlir::LLVM::CondBrOp>(loc, cmp, dest, destOps.getValue(),
newBlock, mlir::ValueRange());
else
rewriter.create<mlir::LLVM::CondBrOp>(loc, cmp, dest, newBlock);
}
template <typename A, typename B>
static void genBrOp(A caseOp, mlir::Block *dest, llvm::Optional<B> destOps,
mlir::ConversionPatternRewriter &rewriter) {
if (destOps.hasValue())
rewriter.replaceOpWithNewOp<mlir::LLVM::BrOp>(caseOp, destOps.getValue(),
dest);
else
rewriter.replaceOpWithNewOp<mlir::LLVM::BrOp>(caseOp, llvm::None, dest);
}
static void genCaseLadderStep(mlir::Location loc, mlir::Value cmp,
mlir::Block *dest,
llvm::Optional<mlir::ValueRange> destOps,
mlir::ConversionPatternRewriter &rewriter) {
auto *thisBlock = rewriter.getInsertionBlock();
auto *newBlock = createBlock(rewriter, dest);
rewriter.setInsertionPointToEnd(thisBlock);
genCondBrOp(loc, cmp, dest, destOps, rewriter, newBlock);
rewriter.setInsertionPointToEnd(newBlock);
}
/// Conversion of `fir.select_case`
///
/// The `fir.select_case` operation is converted to a if-then-else ladder.
/// Depending on the case condition type, one or several comparison and
/// conditional branching can be generated.
///
/// A a point value case such as `case(4)`, a lower bound case such as
/// `case(5:)` or an upper bound case such as `case(:3)` are converted to a
/// simple comparison between the selector value and the constant value in the
/// case. The block associated with the case condition is then executed if
/// the comparison succeed otherwise it branch to the next block with the
/// comparison for the the next case conditon.
///
/// A closed interval case condition such as `case(7:10)` is converted with a
/// first comparison and conditional branching for the lower bound. If
/// successful, it branch to a second block with the comparison for the
/// upper bound in the same case condition.
///
/// TODO: lowering of CHARACTER type cases is not handled yet.
struct SelectCaseOpConversion : public FIROpConversion<fir::SelectCaseOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::SelectCaseOp caseOp, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
unsigned conds = caseOp.getNumConditions();
llvm::ArrayRef<mlir::Attribute> cases = caseOp.getCases().getValue();
// Type can be CHARACTER, INTEGER, or LOGICAL (C1145)
auto ty = caseOp.getSelector().getType();
if (ty.isa<fir::CharacterType>()) {
TODO(caseOp.getLoc(), "fir.select_case codegen with character type");
return mlir::failure();
}
mlir::Value selector = caseOp.getSelector(adaptor.getOperands());
auto loc = caseOp.getLoc();
for (unsigned t = 0; t != conds; ++t) {
mlir::Block *dest = caseOp.getSuccessor(t);
llvm::Optional<mlir::ValueRange> destOps =
caseOp.getSuccessorOperands(adaptor.getOperands(), t);
llvm::Optional<mlir::ValueRange> cmpOps =
*caseOp.getCompareOperands(adaptor.getOperands(), t);
mlir::Value caseArg = *(cmpOps.value().begin());
mlir::Attribute attr = cases[t];
if (attr.isa<fir::PointIntervalAttr>()) {
auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::eq, selector, caseArg);
genCaseLadderStep(loc, cmp, dest, destOps, rewriter);
continue;
}
if (attr.isa<fir::LowerBoundAttr>()) {
auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::sle, caseArg, selector);
genCaseLadderStep(loc, cmp, dest, destOps, rewriter);
continue;
}
if (attr.isa<fir::UpperBoundAttr>()) {
auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::sle, selector, caseArg);
genCaseLadderStep(loc, cmp, dest, destOps, rewriter);
continue;
}
if (attr.isa<fir::ClosedIntervalAttr>()) {
auto cmp = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::sle, caseArg, selector);
auto *thisBlock = rewriter.getInsertionBlock();
auto *newBlock1 = createBlock(rewriter, dest);
auto *newBlock2 = createBlock(rewriter, dest);
rewriter.setInsertionPointToEnd(thisBlock);
rewriter.create<mlir::LLVM::CondBrOp>(loc, cmp, newBlock1, newBlock2);
rewriter.setInsertionPointToEnd(newBlock1);
mlir::Value caseArg0 = *(cmpOps.value().begin() + 1);
auto cmp0 = rewriter.create<mlir::LLVM::ICmpOp>(
loc, mlir::LLVM::ICmpPredicate::sle, selector, caseArg0);
genCondBrOp(loc, cmp0, dest, destOps, rewriter, newBlock2);
rewriter.setInsertionPointToEnd(newBlock2);
continue;
}
assert(attr.isa<mlir::UnitAttr>());
assert((t + 1 == conds) && "unit must be last");
genBrOp(caseOp, dest, destOps, rewriter);
}
return mlir::success();
}
};
template <typename OP>
static void selectMatchAndRewrite(fir::LLVMTypeConverter &lowering, OP select,
typename OP::Adaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) {
unsigned conds = select.getNumConditions();
auto cases = select.getCases().getValue();
mlir::Value selector = adaptor.getSelector();
auto loc = select.getLoc();
assert(conds > 0 && "select must have cases");
llvm::SmallVector<mlir::Block *> destinations;
llvm::SmallVector<mlir::ValueRange> destinationsOperands;
mlir::Block *defaultDestination;
mlir::ValueRange defaultOperands;
llvm::SmallVector<int32_t> caseValues;
for (unsigned t = 0; t != conds; ++t) {
mlir::Block *dest = select.getSuccessor(t);
auto destOps = select.getSuccessorOperands(adaptor.getOperands(), t);
const mlir::Attribute &attr = cases[t];
if (auto intAttr = attr.template dyn_cast<mlir::IntegerAttr>()) {
destinations.push_back(dest);
destinationsOperands.push_back(destOps.hasValue() ? *destOps
: mlir::ValueRange{});
caseValues.push_back(intAttr.getInt());
continue;
}
assert(attr.template dyn_cast_or_null<mlir::UnitAttr>());
assert((t + 1 == conds) && "unit must be last");
defaultDestination = dest;
defaultOperands = destOps.hasValue() ? *destOps : mlir::ValueRange{};
}
// LLVM::SwitchOp takes a i32 type for the selector.
if (select.getSelector().getType() != rewriter.getI32Type())
selector = rewriter.create<mlir::LLVM::TruncOp>(loc, rewriter.getI32Type(),
selector);
rewriter.replaceOpWithNewOp<mlir::LLVM::SwitchOp>(
select, selector,
/*defaultDestination=*/defaultDestination,
/*defaultOperands=*/defaultOperands,
/*caseValues=*/caseValues,
/*caseDestinations=*/destinations,
/*caseOperands=*/destinationsOperands,
/*branchWeights=*/llvm::ArrayRef<std::int32_t>());
}
/// conversion of fir::SelectOp to an if-then-else ladder
struct SelectOpConversion : public FIROpConversion<fir::SelectOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::SelectOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
selectMatchAndRewrite<fir::SelectOp>(lowerTy(), op, adaptor, rewriter);
return mlir::success();
}
};
/// conversion of fir::SelectRankOp to an if-then-else ladder
struct SelectRankOpConversion : public FIROpConversion<fir::SelectRankOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::SelectRankOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
selectMatchAndRewrite<fir::SelectRankOp>(lowerTy(), op, adaptor, rewriter);
return mlir::success();
}
};
/// Lower `fir.select_type` to LLVM IR dialect.
struct SelectTypeOpConversion : public FIROpConversion<fir::SelectTypeOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::SelectTypeOp select, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::emitError(select.getLoc(),
"fir.select_type should have already been converted");
return mlir::failure();
}
};
/// `fir.store` --> `llvm.store`
struct StoreOpConversion : public FIROpConversion<fir::StoreOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::StoreOp store, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
if (store.getValue().getType().isa<fir::BoxType>()) {
// fir.box value is actually in memory, load it first before storing it.
mlir::Location loc = store.getLoc();
mlir::Type boxPtrTy = adaptor.getOperands()[0].getType();
auto val = rewriter.create<mlir::LLVM::LoadOp>(
loc, boxPtrTy.cast<mlir::LLVM::LLVMPointerType>().getElementType(),
adaptor.getOperands()[0]);
rewriter.replaceOpWithNewOp<mlir::LLVM::StoreOp>(
store, val, adaptor.getOperands()[1]);
} else {
rewriter.replaceOpWithNewOp<mlir::LLVM::StoreOp>(
store, adaptor.getOperands()[0], adaptor.getOperands()[1]);
}
return mlir::success();
}
};
namespace {
/// Convert `fir.unboxchar` into two `llvm.extractvalue` instructions. One for
/// the character buffer and one for the buffer length.
struct UnboxCharOpConversion : public FIROpConversion<fir::UnboxCharOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::UnboxCharOp unboxchar, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto *ctx = unboxchar.getContext();
mlir::Type lenTy = convertType(unboxchar.getType(1));
mlir::Value tuple = adaptor.getOperands()[0];
mlir::Type tupleTy = tuple.getType();
mlir::Location loc = unboxchar.getLoc();
mlir::Value ptrToBuffer =
genExtractValueWithIndex(loc, tuple, tupleTy, rewriter, ctx, 0);
mlir::LLVM::ExtractValueOp len =
genExtractValueWithIndex(loc, tuple, tupleTy, rewriter, ctx, 1);
mlir::Value lenAfterCast = integerCast(loc, rewriter, lenTy, len);
rewriter.replaceOp(unboxchar,
llvm::ArrayRef<mlir::Value>{ptrToBuffer, lenAfterCast});
return mlir::success();
}
};
/// Lower `fir.unboxproc` operation. Unbox a procedure box value, yielding its
/// components.
/// TODO: Part of supporting Fortran 2003 procedure pointers.
struct UnboxProcOpConversion : public FIROpConversion<fir::UnboxProcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::UnboxProcOp unboxproc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TODO(unboxproc.getLoc(), "fir.unboxproc codegen");
return mlir::failure();
}
};
/// convert to LLVM IR dialect `undef`
struct UndefOpConversion : public FIROpConversion<fir::UndefOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::UndefOp undef, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<mlir::LLVM::UndefOp>(
undef, convertType(undef.getType()));
return mlir::success();
}
};
struct ZeroOpConversion : public FIROpConversion<fir::ZeroOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::ZeroOp zero, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Type ty = convertType(zero.getType());
if (ty.isa<mlir::LLVM::LLVMPointerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::NullOp>(zero, ty);
} else if (ty.isa<mlir::IntegerType>()) {
rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>(
zero, ty, mlir::IntegerAttr::get(zero.getType(), 0));
} else if (mlir::LLVM::isCompatibleFloatingPointType(ty)) {
rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>(
zero, ty, mlir::FloatAttr::get(zero.getType(), 0.0));
} else {
// TODO: create ConstantAggregateZero for FIR aggregate/array types.
return rewriter.notifyMatchFailure(
zero,
"conversion of fir.zero with aggregate type not implemented yet");
}
return mlir::success();
}
};
/// `fir.unreachable` --> `llvm.unreachable`
struct UnreachableOpConversion : public FIROpConversion<fir::UnreachableOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::UnreachableOp unreach, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<mlir::LLVM::UnreachableOp>(unreach);
return mlir::success();
}
};
/// `fir.is_present` -->
/// ```
/// %0 = llvm.mlir.constant(0 : i64)
/// %1 = llvm.ptrtoint %0
/// %2 = llvm.icmp "ne" %1, %0 : i64
/// ```
struct IsPresentOpConversion : public FIROpConversion<fir::IsPresentOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::IsPresentOp isPresent, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Type idxTy = lowerTy().indexType();
mlir::Location loc = isPresent.getLoc();
auto ptr = adaptor.getOperands()[0];
if (isPresent.getVal().getType().isa<fir::BoxCharType>()) {
auto structTy = ptr.getType().cast<mlir::LLVM::LLVMStructType>();
assert(!structTy.isOpaque() && !structTy.getBody().empty());
mlir::Type ty = structTy.getBody()[0];
mlir::MLIRContext *ctx = isPresent.getContext();
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
ptr = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, ty, ptr, c0);
}
mlir::LLVM::ConstantOp c0 =
genConstantIndex(isPresent.getLoc(), idxTy, rewriter, 0);
auto addr = rewriter.create<mlir::LLVM::PtrToIntOp>(loc, idxTy, ptr);
rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>(
isPresent, mlir::LLVM::ICmpPredicate::ne, addr, c0);
return mlir::success();
}
};
/// Create value signaling an absent optional argument in a call, e.g.
/// `fir.absent !fir.ref<i64>` --> `llvm.mlir.null : !llvm.ptr<i64>`
struct AbsentOpConversion : public FIROpConversion<fir::AbsentOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::AbsentOp absent, OpAdaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Type ty = convertType(absent.getType());
mlir::Location loc = absent.getLoc();
if (absent.getType().isa<fir::BoxCharType>()) {
auto structTy = ty.cast<mlir::LLVM::LLVMStructType>();
assert(!structTy.isOpaque() && !structTy.getBody().empty());
auto undefStruct = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto nullField =
rewriter.create<mlir::LLVM::NullOp>(loc, structTy.getBody()[0]);
mlir::MLIRContext *ctx = absent.getContext();
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(
absent, ty, undefStruct, nullField, c0);
} else {
rewriter.replaceOpWithNewOp<mlir::LLVM::NullOp>(absent, ty);
}
return mlir::success();
}
};
//
// Primitive operations on Complex types
//
/// Generate inline code for complex addition/subtraction
template <typename LLVMOP, typename OPTY>
static mlir::LLVM::InsertValueOp
complexSum(OPTY sumop, mlir::ValueRange opnds,
mlir::ConversionPatternRewriter &rewriter,
fir::LLVMTypeConverter &lowering) {
mlir::Value a = opnds[0];
mlir::Value b = opnds[1];
auto loc = sumop.getLoc();
auto ctx = sumop.getContext();
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
mlir::Type eleTy = lowering.convertType(getComplexEleTy(sumop.getType()));
mlir::Type ty = lowering.convertType(sumop.getType());
auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0);
auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1);
auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0);
auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1);
auto rx = rewriter.create<LLVMOP>(loc, eleTy, x0, x1);
auto ry = rewriter.create<LLVMOP>(loc, eleTy, y0, y1);
auto r0 = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r0, rx, c0);
return rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ry, c1);
}
} // namespace
namespace {
struct AddcOpConversion : public FIROpConversion<fir::AddcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::AddcOp addc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// given: (x + iy) + (x' + iy')
// result: (x + x') + i(y + y')
auto r = complexSum<mlir::LLVM::FAddOp>(addc, adaptor.getOperands(),
rewriter, lowerTy());
rewriter.replaceOp(addc, r.getResult());
return mlir::success();
}
};
struct SubcOpConversion : public FIROpConversion<fir::SubcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::SubcOp subc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// given: (x + iy) - (x' + iy')
// result: (x - x') + i(y - y')
auto r = complexSum<mlir::LLVM::FSubOp>(subc, adaptor.getOperands(),
rewriter, lowerTy());
rewriter.replaceOp(subc, r.getResult());
return mlir::success();
}
};
/// Inlined complex multiply
struct MulcOpConversion : public FIROpConversion<fir::MulcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::MulcOp mulc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// TODO: Can we use a call to __muldc3 ?
// given: (x + iy) * (x' + iy')
// result: (xx'-yy')+i(xy'+yx')
mlir::Value a = adaptor.getOperands()[0];
mlir::Value b = adaptor.getOperands()[1];
auto loc = mulc.getLoc();
auto *ctx = mulc.getContext();
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
mlir::Type eleTy = convertType(getComplexEleTy(mulc.getType()));
mlir::Type ty = convertType(mulc.getType());
auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0);
auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1);
auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0);
auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1);
auto xx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, x1);
auto yx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, x1);
auto xy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, y1);
auto ri = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, xy, yx);
auto yy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, y1);
auto rr = rewriter.create<mlir::LLVM::FSubOp>(loc, eleTy, xx, yy);
auto ra = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, ra, rr, c0);
auto r0 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ri, c1);
rewriter.replaceOp(mulc, r0.getResult());
return mlir::success();
}
};
/// Inlined complex division
struct DivcOpConversion : public FIROpConversion<fir::DivcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::DivcOp divc, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// TODO: Can we use a call to __divdc3 instead?
// Just generate inline code for now.
// given: (x + iy) / (x' + iy')
// result: ((xx'+yy')/d) + i((yx'-xy')/d) where d = x'x' + y'y'
mlir::Value a = adaptor.getOperands()[0];
mlir::Value b = adaptor.getOperands()[1];
auto loc = divc.getLoc();
auto *ctx = divc.getContext();
auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0));
auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1));
mlir::Type eleTy = convertType(getComplexEleTy(divc.getType()));
mlir::Type ty = convertType(divc.getType());
auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0);
auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1);
auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0);
auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1);
auto xx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, x1);
auto x1x1 = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x1, x1);
auto yx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, x1);
auto xy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, y1);
auto yy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, y1);
auto y1y1 = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y1, y1);
auto d = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, x1x1, y1y1);
auto rrn = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, xx, yy);
auto rin = rewriter.create<mlir::LLVM::FSubOp>(loc, eleTy, yx, xy);
auto rr = rewriter.create<mlir::LLVM::FDivOp>(loc, eleTy, rrn, d);
auto ri = rewriter.create<mlir::LLVM::FDivOp>(loc, eleTy, rin, d);
auto ra = rewriter.create<mlir::LLVM::UndefOp>(loc, ty);
auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, ra, rr, c0);
auto r0 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ri, c1);
rewriter.replaceOp(divc, r0.getResult());
return mlir::success();
}
};
/// Inlined complex negation
struct NegcOpConversion : public FIROpConversion<fir::NegcOp> {
using FIROpConversion::FIROpConversion;
mlir::LogicalResult
matchAndRewrite(fir::NegcOp neg, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
// given: -(x + iy)
// result: -x - iy
auto *ctxt = neg.getContext();
auto eleTy = convertType(getComplexEleTy(neg.getType()));
auto ty = convertType(neg.getType());
auto loc = neg.getLoc();
mlir::Value o0 = adaptor.getOperands()[0];
auto c0 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(0));
auto c1 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(1));
auto rp = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, o0, c0);
auto ip = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, o0, c1);
auto nrp = rewriter.create<mlir::LLVM::FNegOp>(loc, eleTy, rp);
auto nip = rewriter.create<mlir::LLVM::FNegOp>(loc, eleTy, ip);
auto r = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, o0, nrp, c0);
rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(neg, ty, r, nip, c1);
return mlir::success();
}
};
/// Conversion pattern for operation that must be dead. The information in these
/// operations is used by other operation. At this point they should not have
/// anymore uses.
/// These operations are normally dead after the pre-codegen pass.
template <typename FromOp>
struct MustBeDeadConversion : public FIROpConversion<FromOp> {
explicit MustBeDeadConversion(fir::LLVMTypeConverter &lowering,
const fir::FIRToLLVMPassOptions &options)
: FIROpConversion<FromOp>(lowering, options) {}
using OpAdaptor = typename FromOp::Adaptor;
mlir::LogicalResult
matchAndRewrite(FromOp op, OpAdaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const final {
if (!op->getUses().empty())
return rewriter.notifyMatchFailure(op, "op must be dead");
rewriter.eraseOp(op);
return mlir::success();
}
};
struct ShapeOpConversion : public MustBeDeadConversion<fir::ShapeOp> {
using MustBeDeadConversion::MustBeDeadConversion;
};
struct ShapeShiftOpConversion : public MustBeDeadConversion<fir::ShapeShiftOp> {
using MustBeDeadConversion::MustBeDeadConversion;
};
struct ShiftOpConversion : public MustBeDeadConversion<fir::ShiftOp> {
using MustBeDeadConversion::MustBeDeadConversion;
};
struct SliceOpConversion : public MustBeDeadConversion<fir::SliceOp> {
using MustBeDeadConversion::MustBeDeadConversion;
};
} // namespace
namespace {
/// Convert FIR dialect to LLVM dialect
///
/// This pass lowers all FIR dialect operations to LLVM IR dialect. An
/// MLIR pass is used to lower residual Std dialect to LLVM IR dialect.
class FIRToLLVMLowering : public fir::FIRToLLVMLoweringBase<FIRToLLVMLowering> {
public:
FIRToLLVMLowering() = default;
FIRToLLVMLowering(fir::FIRToLLVMPassOptions options) : options{options} {}
mlir::ModuleOp getModule() { return getOperation(); }
void runOnOperation() override final {
auto mod = getModule();
if (!forcedTargetTriple.empty())
fir::setTargetTriple(mod, forcedTargetTriple);
auto *context = getModule().getContext();
fir::LLVMTypeConverter typeConverter{getModule()};
mlir::RewritePatternSet pattern(context);
pattern.insert<
AbsentOpConversion, AddcOpConversion, AddrOfOpConversion,
AllocaOpConversion, AllocMemOpConversion, BoxAddrOpConversion,
BoxCharLenOpConversion, BoxDimsOpConversion, BoxEleSizeOpConversion,
BoxIsAllocOpConversion, BoxIsArrayOpConversion, BoxIsPtrOpConversion,
BoxProcHostOpConversion, BoxRankOpConversion, BoxTypeDescOpConversion,
CallOpConversion, CmpcOpConversion, ConstcOpConversion,
ConvertOpConversion, CoordinateOpConversion, DispatchOpConversion,
DispatchTableOpConversion, DTEntryOpConversion, DivcOpConversion,
EmboxOpConversion, EmboxCharOpConversion, EmboxProcOpConversion,
ExtractValueOpConversion, FieldIndexOpConversion, FirEndOpConversion,
FreeMemOpConversion, GenTypeDescOpConversion, GlobalLenOpConversion,
GlobalOpConversion, HasValueOpConversion, InsertOnRangeOpConversion,
InsertValueOpConversion, IsPresentOpConversion,
LenParamIndexOpConversion, LoadOpConversion, MulcOpConversion,
NegcOpConversion, NoReassocOpConversion, SelectCaseOpConversion,
SelectOpConversion, SelectRankOpConversion, SelectTypeOpConversion,
ShapeOpConversion, ShapeShiftOpConversion, ShiftOpConversion,
SliceOpConversion, StoreOpConversion, StringLitOpConversion,
SubcOpConversion, UnboxCharOpConversion, UnboxProcOpConversion,
UndefOpConversion, UnreachableOpConversion, XArrayCoorOpConversion,
XEmboxOpConversion, XReboxOpConversion, ZeroOpConversion>(typeConverter,
options);
mlir::populateFuncToLLVMConversionPatterns(typeConverter, pattern);
mlir::populateOpenMPToLLVMConversionPatterns(typeConverter, pattern);
mlir::arith::populateArithmeticToLLVMConversionPatterns(typeConverter,
pattern);
mlir::cf::populateControlFlowToLLVMConversionPatterns(typeConverter,
pattern);
// Convert math-like dialect operations, which can be produced
// when late math lowering mode is used, into llvm dialect.
mlir::populateMathToLLVMConversionPatterns(typeConverter, pattern);
mlir::populateMathToLibmConversionPatterns(pattern, /*benefit=*/0);
mlir::ConversionTarget target{*context};
target.addLegalDialect<mlir::LLVM::LLVMDialect>();
// The OpenMP dialect is legal for Operations without regions, for those
// which contains regions it is legal if the region contains only the
// LLVM dialect. Add OpenMP dialect as a legal dialect for conversion and
// legalize conversion of OpenMP operations without regions.
mlir::configureOpenMPToLLVMConversionLegality(target, typeConverter);
target.addLegalDialect<mlir::omp::OpenMPDialect>();
// required NOPs for applying a full conversion
target.addLegalOp<mlir::ModuleOp>();
// apply the patterns
if (mlir::failed(mlir::applyFullConversion(getModule(), target,
std::move(pattern)))) {
signalPassFailure();
}
}
private:
fir::FIRToLLVMPassOptions options;
};
/// Lower from LLVM IR dialect to proper LLVM-IR and dump the module
struct LLVMIRLoweringPass
: public mlir::PassWrapper<LLVMIRLoweringPass,
mlir::OperationPass<mlir::ModuleOp>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(LLVMIRLoweringPass)
LLVMIRLoweringPass(llvm::raw_ostream &output, fir::LLVMIRLoweringPrinter p)
: output{output}, printer{p} {}
mlir::ModuleOp getModule() { return getOperation(); }
void runOnOperation() override final {
auto *ctx = getModule().getContext();
auto optName = getModule().getName();
llvm::LLVMContext llvmCtx;
if (auto llvmModule = mlir::translateModuleToLLVMIR(
getModule(), llvmCtx, optName ? *optName : "FIRModule")) {
printer(*llvmModule, output);
return;
}
mlir::emitError(mlir::UnknownLoc::get(ctx), "could not emit LLVM-IR\n");
signalPassFailure();
}
private:
llvm::raw_ostream &output;
fir::LLVMIRLoweringPrinter printer;
};
} // namespace
std::unique_ptr<mlir::Pass> fir::createFIRToLLVMPass() {
return std::make_unique<FIRToLLVMLowering>();
}
std::unique_ptr<mlir::Pass>
fir::createFIRToLLVMPass(fir::FIRToLLVMPassOptions options) {
return std::make_unique<FIRToLLVMLowering>(options);
}
std::unique_ptr<mlir::Pass>
fir::createLLVMDialectToLLVMPass(llvm::raw_ostream &output,
fir::LLVMIRLoweringPrinter printer) {
return std::make_unique<LLVMIRLoweringPass>(output, printer);
}