Files
clang-p2996/libc/utils/gpu/loader/nvptx/Loader.cpp
Joseph Huber aea866c12c [libc] Support concurrent RPC port access on the GPU
Previously we used a single port to implement the RPC. This was
sufficient for single threaded tests but can potentially cause deadlocks
when using multiple threads. The reason for this is that GPUs make no
forward progress guarantees. Therefore one group of threads waiting on
another group of threads can spin forever because there is no guarantee
that the other threads will continue executing. The typical workaround
for this is to allocate enough memory that a sufficiently large number
of work groups can make progress. As long as this number is somewhat
close to the amount of total concurrency we can obtain reliable
execution around a shared resource.

This patch enables using multiple ports by widening the arrays to a
predetermined size and indexes into them. Empty ports are currently
obtained via a trivial linker scan. This should be imporoved in the
future for performance reasons. Portions of D148191 were applied to
achieve parallel support.

Depends on D149581

Reviewed By: JonChesterfield

Differential Revision: https://reviews.llvm.org/D149598
2023-05-05 10:12:19 -05:00

313 lines
12 KiB
C++

//===-- Loader Implementation for NVPTX devices --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file impelements a simple loader to run images supporting the NVPTX
// architecture. The file launches the '_start' kernel which should be provided
// by the device application start code and call ultimately call the 'main'
// function.
//
//===----------------------------------------------------------------------===//
#include "Loader.h"
#include "Server.h"
#include "cuda.h"
#include "llvm/Object/ELF.h"
#include "llvm/Object/ELFObjectFile.h"
#include <cstddef>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <vector>
using namespace llvm;
using namespace object;
static void handle_error(CUresult err) {
if (err == CUDA_SUCCESS)
return;
const char *err_str = nullptr;
CUresult result = cuGetErrorString(err, &err_str);
if (result != CUDA_SUCCESS)
fprintf(stderr, "Unknown Error\n");
else
fprintf(stderr, "%s\n", err_str);
exit(1);
}
static void handle_error(const char *msg) {
fprintf(stderr, "%s\n", msg);
exit(EXIT_FAILURE);
}
// Gets the names of all the globals that contain functions to initialize or
// deinitialize. We need to do this manually because the NVPTX toolchain does
// not contain the necessary binary manipulation tools.
template <typename Alloc>
Expected<void *> get_ctor_dtor_array(const void *image, const size_t size,
Alloc allocator, CUmodule binary) {
auto mem_buffer = MemoryBuffer::getMemBuffer(
StringRef(reinterpret_cast<const char *>(image), size), "image",
/*RequiresNullTerminator=*/false);
Expected<ELF64LEObjectFile> elf_or_err =
ELF64LEObjectFile::create(*mem_buffer);
if (!elf_or_err)
handle_error(toString(elf_or_err.takeError()).c_str());
std::vector<std::pair<const char *, uint16_t>> ctors;
std::vector<std::pair<const char *, uint16_t>> dtors;
// CUDA has no way to iterate over all the symbols so we need to inspect the
// ELF directly using the LLVM libraries.
for (const auto &symbol : elf_or_err->symbols()) {
auto name_or_err = symbol.getName();
if (!name_or_err)
handle_error(toString(name_or_err.takeError()).c_str());
// Search for all symbols that contain a constructor or destructor.
if (!name_or_err->starts_with("__init_array_object_") &&
!name_or_err->starts_with("__fini_array_object_"))
continue;
uint16_t priority;
if (name_or_err->rsplit('_').second.getAsInteger(10, priority))
handle_error("Invalid priority for constructor or destructor");
if (name_or_err->starts_with("__init"))
ctors.emplace_back(std::make_pair(name_or_err->data(), priority));
else
dtors.emplace_back(std::make_pair(name_or_err->data(), priority));
}
// Lower priority constructors are run before higher ones. The reverse is true
// for destructors.
llvm::sort(ctors, [](auto x, auto y) { return x.second < y.second; });
llvm::sort(dtors, [](auto x, auto y) { return x.second < y.second; });
llvm::reverse(dtors);
// Allocate host pinned memory to make these arrays visible to the GPU.
CUdeviceptr *dev_memory = reinterpret_cast<CUdeviceptr *>(allocator(
ctors.size() * sizeof(CUdeviceptr) + dtors.size() * sizeof(CUdeviceptr)));
uint64_t global_size = 0;
// Get the address of the global and then store the address of the constructor
// function to call in the constructor array.
CUdeviceptr *dev_ctors_start = dev_memory;
CUdeviceptr *dev_ctors_end = dev_ctors_start + ctors.size();
for (uint64_t i = 0; i < ctors.size(); ++i) {
CUdeviceptr dev_ptr;
if (CUresult err =
cuModuleGetGlobal(&dev_ptr, &global_size, binary, ctors[i].first))
handle_error(err);
if (CUresult err =
cuMemcpyDtoH(&dev_ctors_start[i], dev_ptr, sizeof(uintptr_t)))
handle_error(err);
}
// Get the address of the global and then store the address of the destructor
// function to call in the destructor array.
CUdeviceptr *dev_dtors_start = dev_ctors_end;
CUdeviceptr *dev_dtors_end = dev_dtors_start + dtors.size();
for (uint64_t i = 0; i < dtors.size(); ++i) {
CUdeviceptr dev_ptr;
if (CUresult err =
cuModuleGetGlobal(&dev_ptr, &global_size, binary, dtors[i].first))
handle_error(err);
if (CUresult err =
cuMemcpyDtoH(&dev_dtors_start[i], dev_ptr, sizeof(uintptr_t)))
handle_error(err);
}
// Obtain the address of the pointers the startup implementation uses to
// iterate the constructors and destructors.
CUdeviceptr init_start;
if (CUresult err = cuModuleGetGlobal(&init_start, &global_size, binary,
"__init_array_start"))
handle_error(err);
CUdeviceptr init_end;
if (CUresult err = cuModuleGetGlobal(&init_end, &global_size, binary,
"__init_array_end"))
handle_error(err);
CUdeviceptr fini_start;
if (CUresult err = cuModuleGetGlobal(&fini_start, &global_size, binary,
"__fini_array_start"))
handle_error(err);
CUdeviceptr fini_end;
if (CUresult err = cuModuleGetGlobal(&fini_end, &global_size, binary,
"__fini_array_end"))
handle_error(err);
// Copy the pointers to the newly written array to the symbols so the startup
// implementation can iterate them.
if (CUresult err =
cuMemcpyHtoD(init_start, &dev_ctors_start, sizeof(uintptr_t)))
handle_error(err);
if (CUresult err = cuMemcpyHtoD(init_end, &dev_ctors_end, sizeof(uintptr_t)))
handle_error(err);
if (CUresult err =
cuMemcpyHtoD(fini_start, &dev_dtors_start, sizeof(uintptr_t)))
handle_error(err);
if (CUresult err = cuMemcpyHtoD(fini_end, &dev_dtors_end, sizeof(uintptr_t)))
handle_error(err);
return dev_memory;
}
template <typename args_t>
CUresult launch_kernel(CUmodule binary, CUstream stream,
const LaunchParameters &params, const char *kernel_name,
args_t kernel_args) {
// look up the '_start' kernel in the loaded module.
CUfunction function;
if (CUresult err = cuModuleGetFunction(&function, binary, kernel_name))
handle_error(err);
// Set up the arguments to the '_start' kernel on the GPU.
uint64_t args_size = sizeof(args_t);
void *args_config[] = {CU_LAUNCH_PARAM_BUFFER_POINTER, &kernel_args,
CU_LAUNCH_PARAM_BUFFER_SIZE, &args_size,
CU_LAUNCH_PARAM_END};
// Call the kernel with the given arguments.
if (CUresult err = cuLaunchKernel(
function, params.num_blocks_x, params.num_blocks_y,
params.num_blocks_z, params.num_threads_x, params.num_threads_y,
params.num_threads_z, 0, stream, nullptr, args_config))
handle_error(err);
// Wait until the kernel has completed execution on the device. Periodically
// check the RPC client for work to be performed on the server.
while (cuStreamQuery(stream) == CUDA_ERROR_NOT_READY)
handle_server();
return CUDA_SUCCESS;
}
int load(int argc, char **argv, char **envp, void *image, size_t size,
const LaunchParameters &params) {
if (CUresult err = cuInit(0))
handle_error(err);
// Obtain the first device found on the system.
CUdevice device;
if (CUresult err = cuDeviceGet(&device, 0))
handle_error(err);
// Initialize the CUDA context and claim it for this execution.
CUcontext context;
if (CUresult err = cuDevicePrimaryCtxRetain(&context, device))
handle_error(err);
if (CUresult err = cuCtxSetCurrent(context))
handle_error(err);
// Initialize a non-blocking CUDA stream to execute the kernel.
CUstream stream;
if (CUresult err = cuStreamCreate(&stream, CU_STREAM_NON_BLOCKING))
handle_error(err);
// Load the image into a CUDA module.
CUmodule binary;
if (CUresult err = cuModuleLoadDataEx(&binary, image, 0, nullptr, nullptr))
handle_error(err);
// Allocate pinned memory on the host to hold the pointer array for the
// copied argv and allow the GPU device to access it.
auto allocator = [&](uint64_t size) -> void * {
void *dev_ptr;
if (CUresult err = cuMemAllocHost(&dev_ptr, size))
handle_error(err);
return dev_ptr;
};
auto memory_or_err = get_ctor_dtor_array(image, size, allocator, binary);
if (!memory_or_err)
handle_error(toString(memory_or_err.takeError()).c_str());
void *dev_argv = copy_argument_vector(argc, argv, allocator);
if (!dev_argv)
handle_error("Failed to allocate device argv");
// Allocate pinned memory on the host to hold the pointer array for the
// copied environment array and allow the GPU device to access it.
void *dev_envp = copy_environment(envp, allocator);
if (!dev_envp)
handle_error("Failed to allocate device environment");
// Allocate space for the return pointer and initialize it to zero.
CUdeviceptr dev_ret;
if (CUresult err = cuMemAlloc(&dev_ret, sizeof(int)))
handle_error(err);
if (CUresult err = cuMemsetD32(dev_ret, 0, 1))
handle_error(err);
uint64_t port_size = __llvm_libc::rpc::default_port_count;
uint32_t warp_size = 32;
void *server_inbox =
allocator(port_size * sizeof(__llvm_libc::cpp::Atomic<int>));
void *server_outbox =
allocator(port_size * sizeof(__llvm_libc::cpp::Atomic<int>));
void *buffer = allocator(
port_size * align_up(sizeof(__llvm_libc::rpc::Header) +
(warp_size * sizeof(__llvm_libc::rpc::Buffer)),
alignof(__llvm_libc::rpc::Packet)));
if (!server_inbox || !server_outbox || !buffer)
handle_error("Failed to allocate memory the RPC client / server.");
// Initialize the RPC server's buffer for host-device communication.
server.reset(port_size, warp_size, &lock, server_inbox, server_outbox,
buffer);
LaunchParameters single_threaded_params = {1, 1, 1, 1, 1, 1};
// Call the kernel to
begin_args_t init_args = {argc, dev_argv, dev_envp,
server_outbox, server_inbox, buffer};
if (CUresult err = launch_kernel(binary, stream, single_threaded_params,
"_begin", init_args))
handle_error(err);
start_args_t args = {argc, dev_argv, dev_envp,
reinterpret_cast<void *>(dev_ret)};
if (CUresult err = launch_kernel(binary, stream, params, "_start", args))
handle_error(err);
// Copy the return value back from the kernel and wait.
int host_ret = 0;
if (CUresult err = cuMemcpyDtoH(&host_ret, dev_ret, sizeof(int)))
handle_error(err);
if (CUresult err = cuStreamSynchronize(stream))
handle_error(err);
end_args_t fini_args = {host_ret};
if (CUresult err = launch_kernel(binary, stream, single_threaded_params,
"_end", fini_args))
handle_error(err);
// Free the memory allocated for the device.
if (CUresult err = cuMemFreeHost(*memory_or_err))
handle_error(err);
if (CUresult err = cuMemFree(dev_ret))
handle_error(err);
if (CUresult err = cuMemFreeHost(dev_argv))
handle_error(err);
if (CUresult err = cuMemFreeHost(server_inbox))
handle_error(err);
if (CUresult err = cuMemFreeHost(server_outbox))
handle_error(err);
if (CUresult err = cuMemFreeHost(buffer))
handle_error(err);
// Destroy the context and the loaded binary.
if (CUresult err = cuModuleUnload(binary))
handle_error(err);
if (CUresult err = cuDevicePrimaryCtxRelease(device))
handle_error(err);
return host_ret;
}