Files
clang-p2996/mlir/lib/Conversion/GPUCommon/GPUToLLVMConversion.cpp
Aart Bik 9fc02a7a08 [mlir][sparse][gpu] add AoS COO support to cuSPARSE
Even though this feature was deprecated in release 11.2,
any library before this version still supports the feature,
which is why we are making it available under a macro.

Reviewed By: K-Wu

Differential Revision: https://reviews.llvm.org/D152290
2023-06-06 12:32:46 -07:00

1710 lines
70 KiB
C++

//===- ConvertLaunchFuncToGpuRuntimeCalls.cpp - MLIR GPU lowering passes --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to convert gpu.launch_func op into a sequence of
// GPU runtime calls. As most of GPU runtimes does not have a stable published
// ABI, this pass uses a slim runtime layer that builds on top of the public
// API from GPU runtime headers.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/GPUCommon/GPUCommonPass.h"
#include "mlir/Conversion/ArithToLLVM/ArithToLLVM.h"
#include "mlir/Conversion/AsyncToLLVM/AsyncToLLVM.h"
#include "mlir/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.h"
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVM.h"
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVMPass.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h"
#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
#include "mlir/Dialect/Async/IR/Async.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/GPU/Transforms/Passes.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FormatVariadic.h"
namespace mlir {
#define GEN_PASS_DEF_GPUTOLLVMCONVERSIONPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
static constexpr const char *kGpuBinaryStorageSuffix = "_gpubin_cst";
namespace {
class GpuToLLVMConversionPass
: public impl::GpuToLLVMConversionPassBase<GpuToLLVMConversionPass> {
public:
using Base::Base;
// Run the dialect converter on the module.
void runOnOperation() override;
};
struct FunctionCallBuilder {
FunctionCallBuilder(StringRef functionName, Type returnType,
ArrayRef<Type> argumentTypes)
: functionName(functionName),
functionType(LLVM::LLVMFunctionType::get(returnType, argumentTypes)) {}
LLVM::CallOp create(Location loc, OpBuilder &builder,
ArrayRef<Value> arguments) const;
StringRef functionName;
LLVM::LLVMFunctionType functionType;
};
template <typename OpTy>
class ConvertOpToGpuRuntimeCallPattern : public ConvertOpToLLVMPattern<OpTy> {
public:
explicit ConvertOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToLLVMPattern<OpTy>(typeConverter) {}
protected:
Value getNumElements(ConversionPatternRewriter &rewriter, Location loc,
MemRefType type, MemRefDescriptor desc) const {
return type.hasStaticShape()
? ConvertToLLVMPattern::createIndexConstant(
rewriter, loc, type.getNumElements())
// For identity maps (verified by caller), the number of
// elements is stride[0] * size[0].
: rewriter.create<LLVM::MulOp>(loc,
desc.stride(rewriter, loc, 0),
desc.size(rewriter, loc, 0));
}
MLIRContext *context = &this->getTypeConverter()->getContext();
Type llvmVoidType = LLVM::LLVMVoidType::get(context);
LLVM::LLVMPointerType llvmPointerType =
this->getTypeConverter()->getPointerType(IntegerType::get(context, 8));
Type llvmPointerPointerType =
this->getTypeConverter()->getPointerType(llvmPointerType);
Type llvmInt8Type = IntegerType::get(context, 8);
Type llvmInt32Type = IntegerType::get(context, 32);
Type llvmInt64Type = IntegerType::get(context, 64);
Type llvmIntPtrType = IntegerType::get(
context, this->getTypeConverter()->getPointerBitwidth(0));
FunctionCallBuilder moduleLoadCallBuilder = {
"mgpuModuleLoad",
llvmPointerType /* void *module */,
{llvmPointerType /* void *cubin */}};
FunctionCallBuilder moduleUnloadCallBuilder = {
"mgpuModuleUnload", llvmVoidType, {llvmPointerType /* void *module */}};
FunctionCallBuilder moduleGetFunctionCallBuilder = {
"mgpuModuleGetFunction",
llvmPointerType /* void *function */,
{
llvmPointerType, /* void *module */
llvmPointerType /* char *name */
}};
FunctionCallBuilder launchKernelCallBuilder = {
"mgpuLaunchKernel",
llvmVoidType,
{
llvmPointerType, /* void* f */
llvmIntPtrType, /* intptr_t gridXDim */
llvmIntPtrType, /* intptr_t gridyDim */
llvmIntPtrType, /* intptr_t gridZDim */
llvmIntPtrType, /* intptr_t blockXDim */
llvmIntPtrType, /* intptr_t blockYDim */
llvmIntPtrType, /* intptr_t blockZDim */
llvmInt32Type, /* unsigned int sharedMemBytes */
llvmPointerType, /* void *hstream */
llvmPointerPointerType, /* void **kernelParams */
llvmPointerPointerType /* void **extra */
}};
FunctionCallBuilder streamCreateCallBuilder = {
"mgpuStreamCreate", llvmPointerType /* void *stream */, {}};
FunctionCallBuilder streamDestroyCallBuilder = {
"mgpuStreamDestroy", llvmVoidType, {llvmPointerType /* void *stream */}};
FunctionCallBuilder streamSynchronizeCallBuilder = {
"mgpuStreamSynchronize",
llvmVoidType,
{llvmPointerType /* void *stream */}};
FunctionCallBuilder streamWaitEventCallBuilder = {
"mgpuStreamWaitEvent",
llvmVoidType,
{llvmPointerType /* void *stream */, llvmPointerType /* void *event */}};
FunctionCallBuilder eventCreateCallBuilder = {
"mgpuEventCreate", llvmPointerType /* void *event */, {}};
FunctionCallBuilder eventDestroyCallBuilder = {
"mgpuEventDestroy", llvmVoidType, {llvmPointerType /* void *event */}};
FunctionCallBuilder eventSynchronizeCallBuilder = {
"mgpuEventSynchronize",
llvmVoidType,
{llvmPointerType /* void *event */}};
FunctionCallBuilder eventRecordCallBuilder = {
"mgpuEventRecord",
llvmVoidType,
{llvmPointerType /* void *event */, llvmPointerType /* void *stream */}};
FunctionCallBuilder hostRegisterCallBuilder = {
"mgpuMemHostRegisterMemRef",
llvmVoidType,
{llvmIntPtrType /* intptr_t rank */,
llvmPointerType /* void *memrefDesc */,
llvmIntPtrType /* intptr_t elementSizeBytes */}};
FunctionCallBuilder hostUnregisterCallBuilder = {
"mgpuMemHostUnregisterMemRef",
llvmVoidType,
{llvmIntPtrType /* intptr_t rank */,
llvmPointerType /* void *memrefDesc */,
llvmIntPtrType /* intptr_t elementSizeBytes */}};
FunctionCallBuilder allocCallBuilder = {
"mgpuMemAlloc",
llvmPointerType /* void * */,
{llvmIntPtrType /* intptr_t sizeBytes */,
llvmPointerType /* void *stream */}};
FunctionCallBuilder deallocCallBuilder = {
"mgpuMemFree",
llvmVoidType,
{llvmPointerType /* void *ptr */, llvmPointerType /* void *stream */}};
FunctionCallBuilder memcpyCallBuilder = {
"mgpuMemcpy",
llvmVoidType,
{llvmPointerType /* void *dst */, llvmPointerType /* void *src */,
llvmIntPtrType /* intptr_t sizeBytes */,
llvmPointerType /* void *stream */}};
FunctionCallBuilder memsetCallBuilder = {
"mgpuMemset32",
llvmVoidType,
{llvmPointerType /* void *dst */, llvmInt32Type /* unsigned int value */,
llvmIntPtrType /* intptr_t sizeBytes */,
llvmPointerType /* void *stream */}};
FunctionCallBuilder setDefaultDeviceCallBuilder = {
"mgpuSetDefaultDevice",
llvmVoidType,
{llvmInt32Type /* uint32_t devIndex */}};
FunctionCallBuilder createSparseEnvCallBuilder = {
"mgpuCreateSparseEnv",
llvmPointerType,
{llvmPointerType /* void *stream */}};
FunctionCallBuilder destroySparseEnvCallBuilder = {
"mgpuDestroySparseEnv",
llvmVoidType,
{llvmPointerType, llvmPointerType /* void *stream */}};
FunctionCallBuilder createDnVecCallBuilder = {
"mgpuCreateDnVec",
llvmPointerType,
{llvmIntPtrType, llvmPointerType, llvmInt32Type,
llvmPointerType /* void *stream */}};
FunctionCallBuilder destroyDnVecCallBuilder = {
"mgpuDestroyDnVec",
llvmVoidType,
{llvmPointerType, llvmPointerType /* void *stream */}};
FunctionCallBuilder createDnMatCallBuilder = {
"mgpuCreateDnMat",
llvmPointerType,
{llvmIntPtrType, llvmIntPtrType, llvmPointerType, llvmInt32Type,
llvmPointerType /* void *stream */}};
FunctionCallBuilder destroyDnMatCallBuilder = {
"mgpuDestroyDnMat",
llvmVoidType,
{llvmPointerType, llvmPointerType /* void *stream */}};
FunctionCallBuilder createCooCallBuilder = {
"mgpuCreateCoo",
llvmPointerType,
{llvmIntPtrType, llvmIntPtrType, llvmIntPtrType, llvmPointerType,
llvmPointerType, llvmPointerType, llvmInt32Type, llvmInt32Type,
llvmPointerType /* void *stream */}};
FunctionCallBuilder createCooAoSCallBuilder = {
"mgpuCreateCooAoS", // deprecated in cuSPARSE 11.2
llvmPointerType,
{llvmIntPtrType, llvmIntPtrType, llvmIntPtrType, llvmPointerType,
llvmPointerType, llvmInt32Type, llvmInt32Type,
llvmPointerType /* void *stream */}};
FunctionCallBuilder createCsrCallBuilder = {
"mgpuCreateCsr",
llvmPointerType,
{llvmIntPtrType, llvmIntPtrType, llvmIntPtrType, llvmPointerType,
llvmPointerType, llvmPointerType, llvmInt32Type, llvmInt32Type,
llvmInt32Type, llvmPointerType /* void *stream */}};
FunctionCallBuilder destroySpMatCallBuilder = {
"mgpuDestroySpMat",
llvmVoidType,
{llvmPointerType, llvmPointerType /* void *stream */}};
FunctionCallBuilder spMVBufferSizeCallBuilder = {
"mgpuSpMVBufferSize",
llvmIntPtrType,
{llvmPointerType, llvmInt32Type, llvmPointerType, llvmPointerType,
llvmPointerType, llvmInt32Type, llvmPointerType /* void *stream */}};
FunctionCallBuilder spMVCallBuilder = {
"mgpuSpMV",
llvmVoidType,
{llvmPointerType, llvmInt32Type, llvmPointerType, llvmPointerType,
llvmPointerType, llvmInt32Type, llvmPointerType,
llvmPointerType /* void *stream */}};
FunctionCallBuilder spMMBufferSizeCallBuilder = {
"mgpuSpMMBufferSize",
llvmIntPtrType,
{llvmPointerType, llvmInt32Type, llvmInt32Type, llvmPointerType,
llvmPointerType, llvmPointerType, llvmInt32Type,
llvmPointerType /* void *stream */}};
FunctionCallBuilder spMMCallBuilder = {
"mgpuSpMM",
llvmVoidType,
{llvmPointerType, llvmInt32Type, llvmInt32Type, llvmPointerType,
llvmPointerType, llvmPointerType, llvmInt32Type, llvmPointerType,
llvmPointerType /* void *stream */}};
FunctionCallBuilder SDDMMBufferSizeCallBuilder = {
"mgpuSDDMMBufferSize",
llvmIntPtrType,
{llvmPointerType, llvmInt32Type, llvmInt32Type, llvmPointerType,
llvmPointerType, llvmPointerType, llvmInt32Type,
llvmPointerType /* void *stream */}};
FunctionCallBuilder SDDMMCallBuilder = {
"mgpuSDDMM",
llvmVoidType,
{llvmPointerType, llvmInt32Type, llvmInt32Type, llvmPointerType,
llvmPointerType, llvmPointerType, llvmInt32Type, llvmPointerType,
llvmPointerType /* void *stream */}};
};
/// A rewrite pattern to convert gpu.host_register operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertHostRegisterOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::HostRegisterOp> {
public:
ConvertHostRegisterOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::HostRegisterOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::HostRegisterOp hostRegisterOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class ConvertHostUnregisterOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::HostUnregisterOp> {
public:
ConvertHostUnregisterOpToGpuRuntimeCallPattern(
LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::HostUnregisterOp>(typeConverter) {
}
private:
LogicalResult
matchAndRewrite(gpu::HostUnregisterOp hostUnregisterOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite pattern to convert gpu.alloc operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertAllocOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::AllocOp> {
public:
ConvertAllocOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::AllocOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::AllocOp allocOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite pattern to convert gpu.dealloc operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertDeallocOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::DeallocOp> {
public:
ConvertDeallocOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::DeallocOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::DeallocOp deallocOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class ConvertAsyncYieldToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<async::YieldOp> {
public:
ConvertAsyncYieldToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<async::YieldOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(async::YieldOp yieldOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite pattern to convert gpu.wait operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertWaitOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp> {
public:
ConvertWaitOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::WaitOp waitOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite pattern to convert gpu.wait async operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertWaitAsyncOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp> {
public:
ConvertWaitAsyncOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::WaitOp waitOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite patter to convert gpu.launch_func operations into a sequence of
/// GPU runtime calls. Currently it supports CUDA and ROCm (HIP).
///
/// In essence, a gpu.launch_func operations gets compiled into the following
/// sequence of runtime calls:
///
/// * moduleLoad -- loads the module given the cubin / hsaco data
/// * moduleGetFunction -- gets a handle to the actual kernel function
/// * getStreamHelper -- initializes a new compute stream on GPU
/// * launchKernel -- launches the kernel on a stream
/// * streamSynchronize -- waits for operations on the stream to finish
///
/// Intermediate data structures are allocated on the stack.
class ConvertLaunchFuncOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::LaunchFuncOp> {
public:
ConvertLaunchFuncOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter,
StringRef gpuBinaryAnnotation,
bool kernelBarePtrCallConv)
: ConvertOpToGpuRuntimeCallPattern<gpu::LaunchFuncOp>(typeConverter),
gpuBinaryAnnotation(gpuBinaryAnnotation),
kernelBarePtrCallConv(kernelBarePtrCallConv) {}
private:
Value generateParamsArray(gpu::LaunchFuncOp launchOp, OpAdaptor adaptor,
OpBuilder &builder) const;
Value generateKernelNameConstant(StringRef moduleName, StringRef name,
Location loc, OpBuilder &builder) const;
LogicalResult
matchAndRewrite(gpu::LaunchFuncOp launchOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
llvm::SmallString<32> gpuBinaryAnnotation;
bool kernelBarePtrCallConv;
};
class EraseGpuModuleOpPattern : public OpRewritePattern<gpu::GPUModuleOp> {
using OpRewritePattern<gpu::GPUModuleOp>::OpRewritePattern;
LogicalResult matchAndRewrite(gpu::GPUModuleOp op,
PatternRewriter &rewriter) const override {
// GPU kernel modules are no longer necessary since we have a global
// constant with the CUBIN, or HSACO data.
rewriter.eraseOp(op);
return success();
}
};
/// A rewrite pattern to convert gpu.memcpy operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertMemcpyOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::MemcpyOp> {
public:
ConvertMemcpyOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::MemcpyOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::MemcpyOp memcpyOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite pattern to convert gpu.memset operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertMemsetOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::MemsetOp> {
public:
ConvertMemsetOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::MemsetOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::MemsetOp memsetOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite pattern to convert gpu.set_default_device to a GPU runtime call.
/// Currently supports CUDA and ROCm (HIP)
class ConvertSetDefaultDeviceOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::SetDefaultDeviceOp> {
public:
ConvertSetDefaultDeviceOpToGpuRuntimeCallPattern(
LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::SetDefaultDeviceOp>(
typeConverter) {}
LogicalResult
matchAndRewrite(gpu::SetDefaultDeviceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class ConvertCreateSparseEnvOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::CreateSparseEnvOp> {
public:
ConvertCreateSparseEnvOpToGpuRuntimeCallPattern(
LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::CreateSparseEnvOp>(
typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::CreateSparseEnvOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class ConvertDestroySparseEnvOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::DestroySparseEnvOp> {
public:
ConvertDestroySparseEnvOpToGpuRuntimeCallPattern(
LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::DestroySparseEnvOp>(
typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::DestroySparseEnvOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class ConvertCreateDnVecOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::CreateDnVecOp> {
public:
ConvertCreateDnVecOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::CreateDnVecOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::CreateDnVecOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class ConvertDestroyDnVecOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::DestroyDnVecOp> {
public:
ConvertDestroyDnVecOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::DestroyDnVecOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::DestroyDnVecOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class ConvertCreateDnMatOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::CreateDnMatOp> {
public:
ConvertCreateDnMatOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::CreateDnMatOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::CreateDnMatOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class ConvertDestroyDnMatOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::DestroyDnMatOp> {
public:
ConvertDestroyDnMatOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::DestroyDnMatOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::DestroyDnMatOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class ConvertCreateCooOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::CreateCooOp> {
public:
ConvertCreateCooOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::CreateCooOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::CreateCooOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class ConvertCreateCooAoSOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::CreateCooAoSOp> {
public:
ConvertCreateCooAoSOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::CreateCooAoSOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::CreateCooAoSOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class ConvertCreateCsrOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::CreateCsrOp> {
public:
ConvertCreateCsrOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::CreateCsrOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::CreateCsrOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class ConvertDestroySpMatOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::DestroySpMatOp> {
public:
ConvertDestroySpMatOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::DestroySpMatOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::DestroySpMatOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class ConvertSpMVBufferSizeOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::SpMVBufferSizeOp> {
public:
ConvertSpMVBufferSizeOpToGpuRuntimeCallPattern(
LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::SpMVBufferSizeOp>(typeConverter) {
}
private:
LogicalResult
matchAndRewrite(gpu::SpMVBufferSizeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class ConvertSpMVOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::SpMVOp> {
public:
ConvertSpMVOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::SpMVOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::SpMVOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class ConvertSpMMBufferSizeOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::SpMMBufferSizeOp> {
public:
ConvertSpMMBufferSizeOpToGpuRuntimeCallPattern(
LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::SpMMBufferSizeOp>(typeConverter) {
}
private:
LogicalResult
matchAndRewrite(gpu::SpMMBufferSizeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class ConvertSDDMMBufferSizeOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::SDDMMBufferSizeOp> {
public:
ConvertSDDMMBufferSizeOpToGpuRuntimeCallPattern(
LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::SDDMMBufferSizeOp>(
typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::SDDMMBufferSizeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class ConvertSpMMOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::SpMMOp> {
public:
ConvertSpMMOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::SpMMOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::SpMMOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class ConvertSDDMMOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::SDDMMOp> {
public:
ConvertSDDMMOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::SDDMMOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::SDDMMOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
void GpuToLLVMConversionPass::runOnOperation() {
LowerToLLVMOptions options(&getContext());
options.useOpaquePointers = useOpaquePointers;
LLVMTypeConverter converter(&getContext(), options);
RewritePatternSet patterns(&getContext());
LLVMConversionTarget target(getContext());
target.addIllegalDialect<gpu::GPUDialect>();
mlir::arith::populateArithToLLVMConversionPatterns(converter, patterns);
mlir::cf::populateControlFlowToLLVMConversionPatterns(converter, patterns);
populateVectorToLLVMConversionPatterns(converter, patterns);
populateFinalizeMemRefToLLVMConversionPatterns(converter, patterns);
populateFuncToLLVMConversionPatterns(converter, patterns);
populateAsyncStructuralTypeConversionsAndLegality(converter, patterns,
target);
populateGpuToLLVMConversionPatterns(converter, patterns, gpuBinaryAnnotation,
kernelBarePtrCallConv);
if (failed(
applyPartialConversion(getOperation(), target, std::move(patterns))))
signalPassFailure();
}
LLVM::CallOp FunctionCallBuilder::create(Location loc, OpBuilder &builder,
ArrayRef<Value> arguments) const {
auto module = builder.getBlock()->getParent()->getParentOfType<ModuleOp>();
auto function = [&] {
if (auto function = module.lookupSymbol<LLVM::LLVMFuncOp>(functionName))
return function;
return OpBuilder::atBlockEnd(module.getBody())
.create<LLVM::LLVMFuncOp>(loc, functionName, functionType);
}();
return builder.create<LLVM::CallOp>(loc, function, arguments);
}
// Corresponding to cusparseIndexType_t defined in cusparse.h.
static int32_t getCuSparseIndexTypeFrom(Type type) {
if (type.isa<IndexType>())
return 3; // CUSPARSE_INDEX_64I
else
return 2; // CUSPARSE_INDEX_32I
// TODO: add support to CUSPARSE_INDEX_16U: 1
}
// Corresponding to cudaDataType_t defined in CUDA library_types.h.
static int32_t getCuSparseDataTypeFrom(Type type) {
if (llvm::isa<ComplexType>(type)) {
// get the element type
auto elementType = type.cast<ComplexType>().getElementType();
if (elementType.isBF16())
return 15; // CUDA_C_16BF
if (elementType.isF16())
return 6; // CUDA_C_16F
if (elementType.isF32())
return 4; // CUDA_C_32F
if (elementType.isF64())
return 5; // CUDA_C_64F
if (elementType.isInteger(8))
return 7; // CUDA_C_8I
if (elementType.isInteger(16))
return 21; // CUDA_C_16I
if (elementType.isInteger(32))
return 11; // CUDA_C_32I
}
if (type.isBF16())
return 14; // CUDA_R_16BF
if (type.isF16())
return 2; // CUDA_R_16F
if (type.isF32())
return 0; // CUDA_R_32F
if (type.isF64())
return 1; // CUDA_R_64F
if (type.isInteger(8))
return 3; // CUDA_R_8I
if (type.isInteger(16))
return 20; // CUDA_R_16I
if (type.isInteger(32))
return 10; // CUDA_R_32I
llvm_unreachable("unsupported element type");
}
// Returns whether all operands are of LLVM type.
static LogicalResult areAllLLVMTypes(Operation *op, ValueRange operands,
ConversionPatternRewriter &rewriter) {
if (!llvm::all_of(operands, [](Value value) {
return LLVM::isCompatibleType(value.getType());
}))
return rewriter.notifyMatchFailure(
op, "Cannot convert if operands aren't of LLVM type.");
return success();
}
static LogicalResult
isAsyncWithOneDependency(ConversionPatternRewriter &rewriter,
gpu::AsyncOpInterface op) {
if (op.getAsyncDependencies().size() != 1)
return rewriter.notifyMatchFailure(
op, "Can only convert with exactly one async dependency.");
if (!op.getAsyncToken())
return rewriter.notifyMatchFailure(op, "Can convert only async version.");
return success();
}
LogicalResult ConvertHostRegisterOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::HostRegisterOp hostRegisterOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto *op = hostRegisterOp.getOperation();
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)))
return failure();
Location loc = op->getLoc();
auto memRefType = hostRegisterOp.getValue().getType();
auto elementType = cast<UnrankedMemRefType>(memRefType).getElementType();
auto elementSize = getSizeInBytes(loc, elementType, rewriter);
auto arguments = getTypeConverter()->promoteOperands(
loc, op->getOperands(), adaptor.getOperands(), rewriter);
arguments.push_back(elementSize);
hostRegisterCallBuilder.create(loc, rewriter, arguments);
rewriter.eraseOp(op);
return success();
}
LogicalResult ConvertHostUnregisterOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::HostUnregisterOp hostUnregisterOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Operation *op = hostUnregisterOp.getOperation();
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)))
return failure();
Location loc = op->getLoc();
auto memRefType = hostUnregisterOp.getValue().getType();
auto elementType = cast<UnrankedMemRefType>(memRefType).getElementType();
auto elementSize = getSizeInBytes(loc, elementType, rewriter);
auto arguments = getTypeConverter()->promoteOperands(
loc, op->getOperands(), adaptor.getOperands(), rewriter);
arguments.push_back(elementSize);
hostUnregisterCallBuilder.create(loc, rewriter, arguments);
rewriter.eraseOp(op);
return success();
}
LogicalResult ConvertAllocOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::AllocOp allocOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (adaptor.getHostShared())
return rewriter.notifyMatchFailure(
allocOp, "host_shared allocation is not supported");
MemRefType memRefType = allocOp.getType();
if (failed(areAllLLVMTypes(allocOp, adaptor.getOperands(), rewriter)) ||
!isConvertibleAndHasIdentityMaps(memRefType) ||
failed(isAsyncWithOneDependency(rewriter, allocOp)))
return failure();
auto loc = allocOp.getLoc();
// Get shape of the memref as values: static sizes are constant
// values and dynamic sizes are passed to 'alloc' as operands.
SmallVector<Value, 4> shape;
SmallVector<Value, 4> strides;
Value sizeBytes;
getMemRefDescriptorSizes(loc, memRefType, adaptor.getDynamicSizes(), rewriter,
shape, strides, sizeBytes);
// Allocate the underlying buffer and store a pointer to it in the MemRef
// descriptor.
Type elementPtrType = this->getElementPtrType(memRefType);
auto stream = adaptor.getAsyncDependencies().front();
Value allocatedPtr =
allocCallBuilder.create(loc, rewriter, {sizeBytes, stream}).getResult();
if (!getTypeConverter()->useOpaquePointers())
allocatedPtr =
rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, allocatedPtr);
// No alignment.
Value alignedPtr = allocatedPtr;
// Create the MemRef descriptor.
auto memRefDescriptor = this->createMemRefDescriptor(
loc, memRefType, allocatedPtr, alignedPtr, shape, strides, rewriter);
rewriter.replaceOp(allocOp, {memRefDescriptor, stream});
return success();
}
LogicalResult ConvertDeallocOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::DeallocOp deallocOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(deallocOp, adaptor.getOperands(), rewriter)) ||
failed(isAsyncWithOneDependency(rewriter, deallocOp)))
return failure();
Location loc = deallocOp.getLoc();
Value pointer =
MemRefDescriptor(adaptor.getMemref()).allocatedPtr(rewriter, loc);
if (!getTypeConverter()->useOpaquePointers())
pointer = rewriter.create<LLVM::BitcastOp>(loc, llvmPointerType, pointer);
Value stream = adaptor.getAsyncDependencies().front();
deallocCallBuilder.create(loc, rewriter, {pointer, stream});
rewriter.replaceOp(deallocOp, {stream});
return success();
}
static bool isGpuAsyncTokenType(Value value) {
return isa<gpu::AsyncTokenType>(value.getType());
}
// Converts !gpu.async.token operands of `async.yield` to runtime calls. The
// !gpu.async.token are lowered to stream within the async.execute region, but
// are passed as events between them. For each !gpu.async.token operand, we
// create an event and record it on the stream.
LogicalResult ConvertAsyncYieldToGpuRuntimeCallPattern::matchAndRewrite(
async::YieldOp yieldOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (llvm::none_of(yieldOp.getOperands(), isGpuAsyncTokenType))
return rewriter.notifyMatchFailure(yieldOp, "no gpu async token operand");
Location loc = yieldOp.getLoc();
SmallVector<Value, 4> newOperands(adaptor.getOperands());
llvm::SmallDenseSet<Value> streams;
for (auto &operand : yieldOp->getOpOperands()) {
if (!isGpuAsyncTokenType(operand.get()))
continue;
auto idx = operand.getOperandNumber();
auto stream = adaptor.getOperands()[idx];
auto event = eventCreateCallBuilder.create(loc, rewriter, {}).getResult();
eventRecordCallBuilder.create(loc, rewriter, {event, stream});
newOperands[idx] = event;
streams.insert(stream);
}
for (auto stream : streams)
streamDestroyCallBuilder.create(loc, rewriter, {stream});
rewriter.updateRootInPlace(yieldOp,
[&] { yieldOp->setOperands(newOperands); });
return success();
}
// Returns whether `value` is the result of an LLVM::CallOp to `functionName`.
static bool isDefinedByCallTo(Value value, StringRef functionName) {
assert(isa<LLVM::LLVMPointerType>(value.getType()));
if (auto defOp = value.getDefiningOp<LLVM::CallOp>())
return defOp.getCallee()->equals(functionName);
return false;
}
// Converts `gpu.wait` to runtime calls. The converted op synchronizes the host
// with the stream/event operands. The operands are destroyed. That is, it
// assumes that it is not used afterwards or elsewhere. Otherwise we will get a
// runtime error. Eventually, we should guarantee this property.
LogicalResult ConvertWaitOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::WaitOp waitOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (waitOp.getAsyncToken())
return rewriter.notifyMatchFailure(waitOp, "Cannot convert async op.");
Location loc = waitOp.getLoc();
for (auto operand : adaptor.getOperands()) {
if (isDefinedByCallTo(operand, streamCreateCallBuilder.functionName)) {
// The converted operand's definition created a stream.
streamSynchronizeCallBuilder.create(loc, rewriter, {operand});
streamDestroyCallBuilder.create(loc, rewriter, {operand});
} else {
// Otherwise the converted operand is an event. This assumes that we use
// events in control flow code as well.
eventSynchronizeCallBuilder.create(loc, rewriter, {operand});
eventDestroyCallBuilder.create(loc, rewriter, {operand});
}
}
rewriter.eraseOp(waitOp);
return success();
}
// Converts `gpu.wait async` to runtime calls. The converted op creates a new
// stream that is synchronized with stream/event operands. The operands are
// destroyed. That is, it assumes that it is not used afterwards or elsewhere.
// Otherwise we will get a runtime error. Eventually, we should guarantee this
// property.
LogicalResult ConvertWaitAsyncOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::WaitOp waitOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (!waitOp.getAsyncToken())
return rewriter.notifyMatchFailure(waitOp, "Can only convert async op.");
Location loc = waitOp.getLoc();
auto insertionPoint = rewriter.saveInsertionPoint();
SmallVector<Value, 1> events;
for (auto pair :
llvm::zip(waitOp.getAsyncDependencies(), adaptor.getOperands())) {
auto operand = std::get<1>(pair);
if (isDefinedByCallTo(operand, streamCreateCallBuilder.functionName)) {
// The converted operand's definition created a stream. Insert an event
// into the stream just after the last use of the original token operand.
auto *defOp = std::get<0>(pair).getDefiningOp();
rewriter.setInsertionPointAfter(defOp);
auto event = eventCreateCallBuilder.create(loc, rewriter, {}).getResult();
eventRecordCallBuilder.create(loc, rewriter, {event, operand});
events.push_back(event);
} else {
// Otherwise the converted operand is an event. This assumes that we use
// events in control flow code as well.
events.push_back(operand);
}
}
rewriter.restoreInsertionPoint(insertionPoint);
auto stream = streamCreateCallBuilder.create(loc, rewriter, {}).getResult();
for (auto event : events)
streamWaitEventCallBuilder.create(loc, rewriter, {stream, event});
for (auto event : events)
eventDestroyCallBuilder.create(loc, rewriter, {event});
rewriter.replaceOp(waitOp, {stream});
return success();
}
// Creates a struct containing all kernel parameters on the stack and returns
// an array of type-erased pointers to the fields of the struct. The array can
// then be passed to the CUDA / ROCm (HIP) kernel launch calls.
// The generated code is essentially as follows:
//
// %struct = alloca(sizeof(struct { Parameters... }))
// %array = alloca(NumParameters * sizeof(void *))
// for (i : [0, NumParameters))
// %fieldPtr = llvm.getelementptr %struct[0, i]
// llvm.store parameters[i], %fieldPtr
// %elementPtr = llvm.getelementptr %array[i]
// llvm.store %fieldPtr, %elementPtr
// return %array
Value ConvertLaunchFuncOpToGpuRuntimeCallPattern::generateParamsArray(
gpu::LaunchFuncOp launchOp, OpAdaptor adaptor, OpBuilder &builder) const {
auto loc = launchOp.getLoc();
auto numKernelOperands = launchOp.getNumKernelOperands();
SmallVector<Value, 4> arguments;
if (kernelBarePtrCallConv) {
// Hack the bare pointer value on just for the argument promotion
LLVMTypeConverter *converter = getTypeConverter();
LowerToLLVMOptions options = converter->getOptions();
LowerToLLVMOptions overrideToMatchKernelOpts = options;
overrideToMatchKernelOpts.useBarePtrCallConv = true;
converter->dangerousSetOptions(overrideToMatchKernelOpts);
arguments = converter->promoteOperands(
loc, launchOp.getOperands().take_back(numKernelOperands),
adaptor.getOperands().take_back(numKernelOperands), builder);
converter->dangerousSetOptions(options);
} else {
arguments = getTypeConverter()->promoteOperands(
loc, launchOp.getOperands().take_back(numKernelOperands),
adaptor.getOperands().take_back(numKernelOperands), builder);
}
auto numArguments = arguments.size();
SmallVector<Type, 4> argumentTypes;
argumentTypes.reserve(numArguments);
for (auto argument : arguments)
argumentTypes.push_back(argument.getType());
auto structType = LLVM::LLVMStructType::getNewIdentified(context, StringRef(),
argumentTypes);
auto one = builder.create<LLVM::ConstantOp>(loc, llvmInt32Type, 1);
auto structPtr = builder.create<LLVM::AllocaOp>(
loc, getTypeConverter()->getPointerType(structType), structType, one,
/*alignment=*/0);
auto arraySize =
builder.create<LLVM::ConstantOp>(loc, llvmInt32Type, numArguments);
auto arrayPtr = builder.create<LLVM::AllocaOp>(
loc, llvmPointerPointerType, llvmPointerType, arraySize, /*alignment=*/0);
for (const auto &en : llvm::enumerate(arguments)) {
Value fieldPtr = builder.create<LLVM::GEPOp>(
loc, getTypeConverter()->getPointerType(argumentTypes[en.index()]),
structType, structPtr, ArrayRef<LLVM::GEPArg>{0, en.index()});
builder.create<LLVM::StoreOp>(loc, en.value(), fieldPtr);
auto elementPtr = builder.create<LLVM::GEPOp>(
loc, llvmPointerPointerType, llvmPointerType, arrayPtr,
ArrayRef<LLVM::GEPArg>{en.index()});
if (!getTypeConverter()->useOpaquePointers())
fieldPtr =
builder.create<LLVM::BitcastOp>(loc, llvmPointerType, fieldPtr);
builder.create<LLVM::StoreOp>(loc, fieldPtr, elementPtr);
}
return arrayPtr;
}
// Generates an LLVM IR dialect global that contains the name of the given
// kernel function as a C string, and returns a pointer to its beginning.
// The code is essentially:
//
// llvm.global constant @kernel_name("function_name\00")
// func(...) {
// %0 = llvm.addressof @kernel_name
// %1 = llvm.constant (0 : index)
// %2 = llvm.getelementptr %0[%1, %1] : !llvm<"i8*">
// }
Value ConvertLaunchFuncOpToGpuRuntimeCallPattern::generateKernelNameConstant(
StringRef moduleName, StringRef name, Location loc,
OpBuilder &builder) const {
// Make sure the trailing zero is included in the constant.
std::vector<char> kernelName(name.begin(), name.end());
kernelName.push_back('\0');
std::string globalName =
std::string(llvm::formatv("{0}_{1}_kernel_name", moduleName, name));
return LLVM::createGlobalString(
loc, builder, globalName, StringRef(kernelName.data(), kernelName.size()),
LLVM::Linkage::Internal, getTypeConverter()->useOpaquePointers());
}
// Emits LLVM IR to launch a kernel function. Expects the module that contains
// the compiled kernel function as a cubin in the 'nvvm.cubin' attribute, or a
// hsaco in the 'rocdl.hsaco' attribute of the kernel function in the IR.
//
// %0 = call %binarygetter
// %1 = call %moduleLoad(%0)
// %2 = <see generateKernelNameConstant>
// %3 = call %moduleGetFunction(%1, %2)
// %4 = call %streamCreate()
// %5 = <see generateParamsArray>
// call %launchKernel(%3, <launchOp operands 0..5>, 0, %4, %5, nullptr)
// call %streamSynchronize(%4)
// call %streamDestroy(%4)
// call %moduleUnload(%1)
//
// If the op is async, the stream corresponds to the (single) async dependency
// as well as the async token the op produces.
LogicalResult ConvertLaunchFuncOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::LaunchFuncOp launchOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(launchOp, adaptor.getOperands(), rewriter)))
return failure();
if (launchOp.getAsyncDependencies().size() > 1)
return rewriter.notifyMatchFailure(
launchOp, "Cannot convert with more than one async dependency.");
// Fail when the synchronous version of the op has async dependencies. The
// lowering destroys the stream, and we do not want to check that there is no
// use of the stream after this op.
if (!launchOp.getAsyncToken() && !launchOp.getAsyncDependencies().empty())
return rewriter.notifyMatchFailure(
launchOp, "Cannot convert non-async op with async dependencies.");
Location loc = launchOp.getLoc();
// Create an LLVM global with CUBIN extracted from the kernel annotation and
// obtain a pointer to the first byte in it.
auto kernelModule = SymbolTable::lookupNearestSymbolFrom<gpu::GPUModuleOp>(
launchOp, launchOp.getKernelModuleName());
assert(kernelModule && "expected a kernel module");
auto binaryAttr =
kernelModule->getAttrOfType<StringAttr>(gpuBinaryAnnotation);
if (!binaryAttr) {
kernelModule.emitOpError()
<< "missing " << gpuBinaryAnnotation << " attribute";
return failure();
}
SmallString<128> nameBuffer(kernelModule.getName());
nameBuffer.append(kGpuBinaryStorageSuffix);
Value data = LLVM::createGlobalString(
loc, rewriter, nameBuffer.str(), binaryAttr.getValue(),
LLVM::Linkage::Internal, getTypeConverter()->useOpaquePointers());
auto module = moduleLoadCallBuilder.create(loc, rewriter, data);
// Get the function from the module. The name corresponds to the name of
// the kernel function.
auto kernelName = generateKernelNameConstant(
launchOp.getKernelModuleName().getValue(),
launchOp.getKernelName().getValue(), loc, rewriter);
auto function = moduleGetFunctionCallBuilder.create(
loc, rewriter, {module.getResult(), kernelName});
Value zero = rewriter.create<LLVM::ConstantOp>(loc, llvmInt32Type, 0);
Value stream =
adaptor.getAsyncDependencies().empty()
? streamCreateCallBuilder.create(loc, rewriter, {}).getResult()
: adaptor.getAsyncDependencies().front();
// Create array of pointers to kernel arguments.
auto kernelParams = generateParamsArray(launchOp, adaptor, rewriter);
auto nullpointer = rewriter.create<LLVM::NullOp>(loc, llvmPointerPointerType);
Value dynamicSharedMemorySize = launchOp.getDynamicSharedMemorySize()
? launchOp.getDynamicSharedMemorySize()
: zero;
launchKernelCallBuilder.create(
loc, rewriter,
{function.getResult(), adaptor.getGridSizeX(), adaptor.getGridSizeY(),
adaptor.getGridSizeZ(), adaptor.getBlockSizeX(), adaptor.getBlockSizeY(),
adaptor.getBlockSizeZ(), dynamicSharedMemorySize, stream, kernelParams,
/*extra=*/nullpointer});
if (launchOp.getAsyncToken()) {
// Async launch: make dependent ops use the same stream.
rewriter.replaceOp(launchOp, {stream});
} else {
// Synchronize with host and destroy stream. This must be the stream created
// above (with no other uses) because we check that the synchronous version
// does not have any async dependencies.
streamSynchronizeCallBuilder.create(loc, rewriter, stream);
streamDestroyCallBuilder.create(loc, rewriter, stream);
rewriter.eraseOp(launchOp);
}
moduleUnloadCallBuilder.create(loc, rewriter, module.getResult());
return success();
}
static Value bitAndAddrspaceCast(Location loc,
ConversionPatternRewriter &rewriter,
LLVM::LLVMPointerType destinationType,
Value sourcePtr,
LLVMTypeConverter &typeConverter) {
auto sourceTy = cast<LLVM::LLVMPointerType>(sourcePtr.getType());
if (destinationType.getAddressSpace() != sourceTy.getAddressSpace())
sourcePtr = rewriter.create<LLVM::AddrSpaceCastOp>(
loc,
typeConverter.getPointerType(sourceTy.getElementType(),
destinationType.getAddressSpace()),
sourcePtr);
if (typeConverter.useOpaquePointers())
return sourcePtr;
return rewriter.create<LLVM::BitcastOp>(loc, destinationType, sourcePtr);
}
LogicalResult ConvertMemcpyOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::MemcpyOp memcpyOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto memRefType = cast<MemRefType>(memcpyOp.getSrc().getType());
if (failed(areAllLLVMTypes(memcpyOp, adaptor.getOperands(), rewriter)) ||
!isConvertibleAndHasIdentityMaps(memRefType) ||
failed(isAsyncWithOneDependency(rewriter, memcpyOp)))
return failure();
auto loc = memcpyOp.getLoc();
MemRefDescriptor srcDesc(adaptor.getSrc());
Value numElements = getNumElements(rewriter, loc, memRefType, srcDesc);
Type elementPtrType = getElementPtrType(memRefType);
Value nullPtr = rewriter.create<LLVM::NullOp>(loc, elementPtrType);
Value gepPtr = rewriter.create<LLVM::GEPOp>(
loc, elementPtrType,
typeConverter->convertType(memRefType.getElementType()), nullPtr,
numElements);
auto sizeBytes =
rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), gepPtr);
auto src = bitAndAddrspaceCast(loc, rewriter, llvmPointerType,
srcDesc.alignedPtr(rewriter, loc),
*getTypeConverter());
auto dst = bitAndAddrspaceCast(
loc, rewriter, llvmPointerType,
MemRefDescriptor(adaptor.getDst()).alignedPtr(rewriter, loc),
*getTypeConverter());
auto stream = adaptor.getAsyncDependencies().front();
memcpyCallBuilder.create(loc, rewriter, {dst, src, sizeBytes, stream});
rewriter.replaceOp(memcpyOp, {stream});
return success();
}
LogicalResult ConvertMemsetOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::MemsetOp memsetOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto memRefType = cast<MemRefType>(memsetOp.getDst().getType());
if (failed(areAllLLVMTypes(memsetOp, adaptor.getOperands(), rewriter)) ||
!isConvertibleAndHasIdentityMaps(memRefType) ||
failed(isAsyncWithOneDependency(rewriter, memsetOp)))
return failure();
auto loc = memsetOp.getLoc();
Type valueType = adaptor.getValue().getType();
if (!valueType.isIntOrFloat() || valueType.getIntOrFloatBitWidth() != 32) {
return rewriter.notifyMatchFailure(memsetOp,
"value must be a 32 bit scalar");
}
MemRefDescriptor dstDesc(adaptor.getDst());
Value numElements = getNumElements(rewriter, loc, memRefType, dstDesc);
auto value =
rewriter.create<LLVM::BitcastOp>(loc, llvmInt32Type, adaptor.getValue());
auto dst = bitAndAddrspaceCast(loc, rewriter, llvmPointerType,
dstDesc.alignedPtr(rewriter, loc),
*getTypeConverter());
auto stream = adaptor.getAsyncDependencies().front();
memsetCallBuilder.create(loc, rewriter, {dst, value, numElements, stream});
rewriter.replaceOp(memsetOp, {stream});
return success();
}
LogicalResult ConvertSetDefaultDeviceOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::SetDefaultDeviceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = op.getLoc();
setDefaultDeviceCallBuilder.create(loc, rewriter, {adaptor.getDevIndex()});
rewriter.replaceOp(op, {});
return success();
}
template <typename T>
static Value genConstInt32From(OpBuilder &builder, Location loc, T TValue) {
Type llvmInt32Type = builder.getIntegerType(32);
return builder.create<LLVM::ConstantOp>(loc, llvmInt32Type,
static_cast<int32_t>(TValue));
}
static Value genConstInt32FromComputeMode(OpBuilder &builder, Location loc,
Type computeType) {
auto computeTypeInt = getCuSparseDataTypeFrom(computeType);
auto computeTypeConst = genConstInt32From(builder, loc, computeTypeInt);
return computeTypeConst;
}
LogicalResult ConvertCreateSparseEnvOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::CreateSparseEnvOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
failed(isAsyncWithOneDependency(rewriter, op)))
return failure();
Location loc = op.getLoc();
auto stream = adaptor.getAsyncDependencies().front();
auto handle =
createSparseEnvCallBuilder.create(loc, rewriter, {stream}).getResult();
rewriter.replaceOp(op, {handle, stream});
return success();
}
LogicalResult ConvertDestroySparseEnvOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::DestroySparseEnvOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
failed(isAsyncWithOneDependency(rewriter, op)))
return failure();
Location loc = op.getLoc();
auto stream = adaptor.getAsyncDependencies().front();
destroySparseEnvCallBuilder.create(loc, rewriter, {adaptor.getEnv(), stream});
rewriter.replaceOp(op, {stream});
return success();
}
LogicalResult ConvertCreateDnVecOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::CreateDnVecOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
failed(isAsyncWithOneDependency(rewriter, op)))
return failure();
Location loc = op.getLoc();
auto stream = adaptor.getAsyncDependencies().front();
Value pVec =
MemRefDescriptor(adaptor.getMemref()).allocatedPtr(rewriter, loc);
if (!getTypeConverter()->useOpaquePointers())
pVec = rewriter.create<LLVM::BitcastOp>(loc, llvmPointerType, pVec);
Type dType = op.getMemref().getType().getElementType();
auto dtp = genConstInt32From(rewriter, loc, getCuSparseDataTypeFrom(dType));
auto handle =
createDnVecCallBuilder
.create(loc, rewriter, {adaptor.getSize(), pVec, dtp, stream})
.getResult();
rewriter.replaceOp(op, {handle, stream});
return success();
}
LogicalResult ConvertDestroyDnVecOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::DestroyDnVecOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
failed(isAsyncWithOneDependency(rewriter, op)))
return failure();
Location loc = op.getLoc();
auto stream = adaptor.getAsyncDependencies().front();
destroyDnVecCallBuilder.create(loc, rewriter, {adaptor.getDvec(), stream});
rewriter.replaceOp(op, {stream});
return success();
}
LogicalResult ConvertCreateDnMatOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::CreateDnMatOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
failed(isAsyncWithOneDependency(rewriter, op)))
return failure();
Location loc = op.getLoc();
auto stream = adaptor.getAsyncDependencies().front();
Value pMat =
MemRefDescriptor(adaptor.getMemref()).allocatedPtr(rewriter, loc);
if (!getTypeConverter()->useOpaquePointers())
pMat = rewriter.create<LLVM::BitcastOp>(loc, llvmPointerType, pMat);
Type dType = op.getMemref().getType().getElementType();
auto dtp = genConstInt32From(rewriter, loc, getCuSparseDataTypeFrom(dType));
auto handle =
createDnMatCallBuilder
.create(loc, rewriter,
{adaptor.getRows(), adaptor.getCols(), pMat, dtp, stream})
.getResult();
rewriter.replaceOp(op, {handle, stream});
return success();
}
LogicalResult ConvertDestroyDnMatOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::DestroyDnMatOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
failed(isAsyncWithOneDependency(rewriter, op)))
return failure();
Location loc = op.getLoc();
auto stream = adaptor.getAsyncDependencies().front();
destroyDnMatCallBuilder.create(loc, rewriter, {adaptor.getDmat(), stream});
rewriter.replaceOp(op, {stream});
return success();
}
LogicalResult ConvertCreateCooOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::CreateCooOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
failed(isAsyncWithOneDependency(rewriter, op)))
return failure();
Location loc = op.getLoc();
auto stream = adaptor.getAsyncDependencies().front();
Value pRowIdxs =
MemRefDescriptor(adaptor.getRowIdxs()).allocatedPtr(rewriter, loc);
Value pColIdxs =
MemRefDescriptor(adaptor.getColIdxs()).allocatedPtr(rewriter, loc);
Value pValues =
MemRefDescriptor(adaptor.getValues()).allocatedPtr(rewriter, loc);
if (!getTypeConverter()->useOpaquePointers()) {
pRowIdxs = rewriter.create<LLVM::BitcastOp>(loc, llvmPointerType, pRowIdxs);
pColIdxs = rewriter.create<LLVM::BitcastOp>(loc, llvmPointerType, pColIdxs);
pValues = rewriter.create<LLVM::BitcastOp>(loc, llvmPointerType, pValues);
}
Type iType =
llvm::cast<MemRefType>(op.getColIdxs().getType()).getElementType();
Type dType =
llvm::cast<MemRefType>(op.getValues().getType()).getElementType();
auto itp = genConstInt32From(rewriter, loc, getCuSparseIndexTypeFrom(iType));
auto dtp = genConstInt32From(rewriter, loc, getCuSparseDataTypeFrom(dType));
auto handle =
createCooCallBuilder
.create(loc, rewriter,
{adaptor.getRows(), adaptor.getCols(), adaptor.getNnz(),
pRowIdxs, pColIdxs, pValues, itp, dtp, stream})
.getResult();
rewriter.replaceOp(op, {handle, stream});
return success();
}
LogicalResult ConvertCreateCooAoSOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::CreateCooAoSOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
failed(isAsyncWithOneDependency(rewriter, op)))
return failure();
Location loc = op.getLoc();
auto stream = adaptor.getAsyncDependencies().front();
Value pIdxs = MemRefDescriptor(adaptor.getIdxs()).allocatedPtr(rewriter, loc);
Value pValues =
MemRefDescriptor(adaptor.getValues()).allocatedPtr(rewriter, loc);
if (!getTypeConverter()->useOpaquePointers()) {
pIdxs = rewriter.create<LLVM::BitcastOp>(loc, llvmPointerType, pIdxs);
pValues = rewriter.create<LLVM::BitcastOp>(loc, llvmPointerType, pValues);
}
Type iType =
llvm::cast<MemRefType>(op.getIdxs().getType()).getElementType();
Type dType =
llvm::cast<MemRefType>(op.getValues().getType()).getElementType();
auto itp = genConstInt32From(rewriter, loc, getCuSparseIndexTypeFrom(iType));
auto dtp = genConstInt32From(rewriter, loc, getCuSparseDataTypeFrom(dType));
auto handle =
createCooAoSCallBuilder
.create(loc, rewriter,
{adaptor.getRows(), adaptor.getCols(), adaptor.getNnz(),
pIdxs, pValues, itp, dtp, stream})
.getResult();
rewriter.replaceOp(op, {handle, stream});
return success();
}
LogicalResult ConvertCreateCsrOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::CreateCsrOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
failed(isAsyncWithOneDependency(rewriter, op)))
return failure();
Location loc = op.getLoc();
auto stream = adaptor.getAsyncDependencies().front();
Value pRowPos =
MemRefDescriptor(adaptor.getRowPos()).allocatedPtr(rewriter, loc);
Value pColIdxs =
MemRefDescriptor(adaptor.getColIdxs()).allocatedPtr(rewriter, loc);
Value pValues =
MemRefDescriptor(adaptor.getValues()).allocatedPtr(rewriter, loc);
if (!getTypeConverter()->useOpaquePointers()) {
pRowPos = rewriter.create<LLVM::BitcastOp>(loc, llvmPointerType, pRowPos);
pColIdxs = rewriter.create<LLVM::BitcastOp>(loc, llvmPointerType, pColIdxs);
pValues = rewriter.create<LLVM::BitcastOp>(loc, llvmPointerType, pValues);
}
Type pType =
llvm::cast<MemRefType>(op.getRowPos().getType()).getElementType();
Type iType =
llvm::cast<MemRefType>(op.getColIdxs().getType()).getElementType();
Type dType =
llvm::cast<MemRefType>(op.getValues().getType()).getElementType();
auto ptp = genConstInt32From(rewriter, loc, getCuSparseIndexTypeFrom(pType));
auto itp = genConstInt32From(rewriter, loc, getCuSparseIndexTypeFrom(iType));
auto dtp = genConstInt32From(rewriter, loc, getCuSparseDataTypeFrom(dType));
auto handle =
createCsrCallBuilder
.create(loc, rewriter,
{adaptor.getRows(), adaptor.getCols(), adaptor.getNnz(),
pRowPos, pColIdxs, pValues, ptp, itp, dtp, stream})
.getResult();
rewriter.replaceOp(op, {handle, stream});
return success();
}
LogicalResult ConvertDestroySpMatOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::DestroySpMatOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
failed(isAsyncWithOneDependency(rewriter, op)))
return failure();
Location loc = op.getLoc();
auto stream = adaptor.getAsyncDependencies().front();
destroySpMatCallBuilder.create(loc, rewriter, {adaptor.getSpmat(), stream});
rewriter.replaceOp(op, {stream});
return success();
}
LogicalResult ConvertSpMVBufferSizeOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::SpMVBufferSizeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
failed(isAsyncWithOneDependency(rewriter, op)))
return failure();
Location loc = op.getLoc();
auto modeA = genConstInt32From(rewriter, loc, op.getModeA());
auto computeType =
genConstInt32FromComputeMode(rewriter, loc, adaptor.getComputeType());
auto stream = adaptor.getAsyncDependencies().front();
auto bufferSize =
spMVBufferSizeCallBuilder
.create(loc, rewriter,
{adaptor.getEnv(), modeA, adaptor.getSpmatA(),
adaptor.getDnX(), adaptor.getDnY(), computeType, stream})
.getResult();
rewriter.replaceOp(op, {bufferSize, stream});
return success();
}
LogicalResult ConvertSpMVOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::SpMVOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
failed(isAsyncWithOneDependency(rewriter, op)))
return failure();
Location loc = op.getLoc();
auto modeA = genConstInt32From(rewriter, loc, adaptor.getModeA());
auto computeType =
genConstInt32FromComputeMode(rewriter, loc, adaptor.getComputeType());
auto stream = adaptor.getAsyncDependencies().front();
Value pBuf =
MemRefDescriptor(adaptor.getBuffer()).allocatedPtr(rewriter, loc);
if (!getTypeConverter()->useOpaquePointers())
pBuf = rewriter.create<LLVM::BitcastOp>(loc, llvmPointerType, pBuf);
spMVCallBuilder.create(loc, rewriter,
{adaptor.getEnv(), modeA, adaptor.getSpmatA(),
adaptor.getDnX(), adaptor.getDnY(), computeType, pBuf,
stream});
rewriter.replaceOp(op, {stream});
return success();
}
LogicalResult ConvertSpMMBufferSizeOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::SpMMBufferSizeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
failed(isAsyncWithOneDependency(rewriter, op)))
return failure();
Location loc = op.getLoc();
auto modeA = genConstInt32From(rewriter, loc, adaptor.getModeA());
auto modeB = genConstInt32From(rewriter, loc, adaptor.getModeB());
auto stream = adaptor.getAsyncDependencies().front();
auto computeType =
genConstInt32FromComputeMode(rewriter, loc, adaptor.getComputeType());
auto bufferSize = spMMBufferSizeCallBuilder
.create(loc, rewriter,
{adaptor.getEnv(), modeA, modeB,
adaptor.getSpmatA(), adaptor.getDnmatB(),
adaptor.getDnmatC(), computeType, stream})
.getResult();
rewriter.replaceOp(op, {bufferSize, stream});
return success();
}
LogicalResult ConvertSDDMMBufferSizeOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::SDDMMBufferSizeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
failed(isAsyncWithOneDependency(rewriter, op)))
return failure();
Location loc = op.getLoc();
auto modeA = genConstInt32From(rewriter, loc, adaptor.getModeA());
auto modeB = genConstInt32From(rewriter, loc, adaptor.getModeB());
auto computeType =
genConstInt32FromComputeMode(rewriter, loc, adaptor.getComputeType());
auto stream = adaptor.getAsyncDependencies().front();
auto bufferSize = SDDMMBufferSizeCallBuilder
.create(loc, rewriter,
{adaptor.getEnv(), modeA, modeB,
adaptor.getDnmatA(), adaptor.getDnmatB(),
adaptor.getSpmatC(), computeType, stream})
.getResult();
rewriter.replaceOp(op, {bufferSize, stream});
return success();
}
LogicalResult ConvertSpMMOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::SpMMOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
failed(isAsyncWithOneDependency(rewriter, op)))
return failure();
Location loc = op.getLoc();
auto modeA = genConstInt32From(rewriter, loc, adaptor.getModeA());
auto modeB = genConstInt32From(rewriter, loc, adaptor.getModeB());
auto computeType =
genConstInt32FromComputeMode(rewriter, loc, adaptor.getComputeType());
auto stream = adaptor.getAsyncDependencies().front();
Value pBuf =
MemRefDescriptor(adaptor.getBuffer()).allocatedPtr(rewriter, loc);
if (!getTypeConverter()->useOpaquePointers())
pBuf = rewriter.create<LLVM::BitcastOp>(loc, llvmPointerType, pBuf);
spMMCallBuilder.create(loc, rewriter,
{adaptor.getEnv(), modeA, modeB, adaptor.getSpmatA(),
adaptor.getDnmatB(), adaptor.getDnmatC(), computeType,
pBuf, stream});
rewriter.replaceOp(op, {stream});
return success();
}
template <typename T>
static void addOpaquePointerConversion(LLVMTypeConverter &converter) {
converter.addConversion([&converter](T) -> Type {
return converter.getPointerType(
IntegerType::get(&converter.getContext(), 8));
});
}
LogicalResult ConvertSDDMMOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::SDDMMOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)) ||
failed(isAsyncWithOneDependency(rewriter, op)))
return failure();
Location loc = op.getLoc();
auto computeType =
genConstInt32FromComputeMode(rewriter, loc, adaptor.getComputeType());
auto modeA = genConstInt32From(rewriter, loc, adaptor.getModeA());
auto modeB = genConstInt32From(rewriter, loc, adaptor.getModeB());
auto stream = adaptor.getAsyncDependencies().front();
Value pBuf =
MemRefDescriptor(adaptor.getBuffer()).allocatedPtr(rewriter, loc);
if (!getTypeConverter()->useOpaquePointers())
pBuf = rewriter.create<LLVM::BitcastOp>(loc, llvmPointerType, pBuf);
SDDMMCallBuilder.create(loc, rewriter,
{adaptor.getEnv(), modeA, modeB, adaptor.getDnmatA(),
adaptor.getDnmatB(), adaptor.getSpmatC(),
computeType, pBuf, stream});
rewriter.replaceOp(op, {stream});
return success();
}
void mlir::populateGpuToLLVMConversionPatterns(LLVMTypeConverter &converter,
RewritePatternSet &patterns,
StringRef gpuBinaryAnnotation,
bool kernelBarePtrCallConv) {
addOpaquePointerConversion<gpu::AsyncTokenType>(converter);
addOpaquePointerConversion<gpu::SparseDnVecHandleType>(converter);
addOpaquePointerConversion<gpu::SparseDnMatHandleType>(converter);
addOpaquePointerConversion<gpu::SparseSpMatHandleType>(converter);
addOpaquePointerConversion<gpu::SparseEnvHandleType>(converter);
patterns.add<ConvertAllocOpToGpuRuntimeCallPattern,
ConvertDeallocOpToGpuRuntimeCallPattern,
ConvertHostRegisterOpToGpuRuntimeCallPattern,
ConvertHostUnregisterOpToGpuRuntimeCallPattern,
ConvertMemcpyOpToGpuRuntimeCallPattern,
ConvertMemsetOpToGpuRuntimeCallPattern,
ConvertSetDefaultDeviceOpToGpuRuntimeCallPattern,
ConvertWaitAsyncOpToGpuRuntimeCallPattern,
ConvertWaitOpToGpuRuntimeCallPattern,
ConvertAsyncYieldToGpuRuntimeCallPattern,
ConvertCreateSparseEnvOpToGpuRuntimeCallPattern,
ConvertDestroySparseEnvOpToGpuRuntimeCallPattern,
ConvertCreateDnVecOpToGpuRuntimeCallPattern,
ConvertDestroyDnVecOpToGpuRuntimeCallPattern,
ConvertCreateDnMatOpToGpuRuntimeCallPattern,
ConvertDestroyDnMatOpToGpuRuntimeCallPattern,
ConvertCreateCooOpToGpuRuntimeCallPattern,
ConvertCreateCooAoSOpToGpuRuntimeCallPattern,
ConvertCreateCsrOpToGpuRuntimeCallPattern,
ConvertDestroySpMatOpToGpuRuntimeCallPattern,
ConvertSpMVBufferSizeOpToGpuRuntimeCallPattern,
ConvertSpMVOpToGpuRuntimeCallPattern,
ConvertSpMMBufferSizeOpToGpuRuntimeCallPattern,
ConvertSpMMOpToGpuRuntimeCallPattern,
ConvertSDDMMBufferSizeOpToGpuRuntimeCallPattern,
ConvertSDDMMOpToGpuRuntimeCallPattern>(converter);
patterns.add<ConvertLaunchFuncOpToGpuRuntimeCallPattern>(
converter, gpuBinaryAnnotation, kernelBarePtrCallConv);
patterns.add<EraseGpuModuleOpPattern>(&converter.getContext());
}