Files
clang-p2996/lldb/source/Target/RegisterContextUnwind.cpp
Felipe de Azevedo Piovezan 9fe455fd0c [lldb] Add constant value mode for RegisterLocation in UnwindPlans (#100624)
This is useful for language runtimes that compute register values by
inspecting the state of the currently running process. Currently, there
are no mechanisms enabling these runtimes to set register values to
arbitrary values.

The alternative considered would involve creating a dwarf expression
that produces an arbitrary integer (e.g. using OP_constu). However, the
current data structure for Rows is such that they do not own any memory
associated with dwarf expressions, which implies any such expression
would need to have static storage and therefore could not contain a
runtime value.

Adding a new rule for constants leads to a simpler implementation. It's
also worth noting that this does not make the "Location" union any
bigger, since it already contains a pointer+size pair.
2024-07-31 10:25:31 -07:00

2404 lines
95 KiB
C++

//===-- RegisterContextUnwind.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Target/RegisterContextUnwind.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/AddressRange.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/Value.h"
#include "lldb/Expression/DWARFExpressionList.h"
#include "lldb/Symbol/ArmUnwindInfo.h"
#include "lldb/Symbol/CallFrameInfo.h"
#include "lldb/Symbol/DWARFCallFrameInfo.h"
#include "lldb/Symbol/FuncUnwinders.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/Symbol.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Symbol/SymbolFile.h"
#include "lldb/Target/ABI.h"
#include "lldb/Target/DynamicLoader.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/LanguageRuntime.h"
#include "lldb/Target/Platform.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/SectionLoadList.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/LLDBLog.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/VASPrintf.h"
#include "lldb/lldb-private.h"
#include <cassert>
#include <memory>
using namespace lldb;
using namespace lldb_private;
static ConstString GetSymbolOrFunctionName(const SymbolContext &sym_ctx) {
if (sym_ctx.symbol)
return sym_ctx.symbol->GetName();
else if (sym_ctx.function)
return sym_ctx.function->GetName();
return ConstString();
}
RegisterContextUnwind::RegisterContextUnwind(Thread &thread,
const SharedPtr &next_frame,
SymbolContext &sym_ctx,
uint32_t frame_number,
UnwindLLDB &unwind_lldb)
: RegisterContext(thread, frame_number), m_thread(thread),
m_fast_unwind_plan_sp(), m_full_unwind_plan_sp(),
m_fallback_unwind_plan_sp(), m_all_registers_available(false),
m_frame_type(-1), m_cfa(LLDB_INVALID_ADDRESS),
m_afa(LLDB_INVALID_ADDRESS), m_start_pc(), m_current_pc(),
m_current_offset(0), m_current_offset_backed_up_one(0),
m_behaves_like_zeroth_frame(false), m_sym_ctx(sym_ctx),
m_sym_ctx_valid(false), m_frame_number(frame_number), m_registers(),
m_parent_unwind(unwind_lldb) {
m_sym_ctx.Clear(false);
m_sym_ctx_valid = false;
if (IsFrameZero()) {
InitializeZerothFrame();
} else {
InitializeNonZerothFrame();
}
// This same code exists over in the GetFullUnwindPlanForFrame() but it may
// not have been executed yet
if (IsFrameZero() || next_frame->m_frame_type == eTrapHandlerFrame ||
next_frame->m_frame_type == eDebuggerFrame) {
m_all_registers_available = true;
}
}
bool RegisterContextUnwind::IsUnwindPlanValidForCurrentPC(
lldb::UnwindPlanSP unwind_plan_sp) {
if (!unwind_plan_sp)
return false;
// check if m_current_pc is valid
if (unwind_plan_sp->PlanValidAtAddress(m_current_pc)) {
// yes - current offset can be used as is
return true;
}
// if m_current_offset <= 0, we've got nothing else to try
if (m_current_offset <= 0)
return false;
// check pc - 1 to see if it's valid
Address pc_minus_one(m_current_pc);
pc_minus_one.SetOffset(m_current_pc.GetOffset() - 1);
if (unwind_plan_sp->PlanValidAtAddress(pc_minus_one)) {
return true;
}
return false;
}
// Initialize a RegisterContextUnwind which is the first frame of a stack -- the
// zeroth frame or currently executing frame.
void RegisterContextUnwind::InitializeZerothFrame() {
Log *log = GetLog(LLDBLog::Unwind);
ExecutionContext exe_ctx(m_thread.shared_from_this());
RegisterContextSP reg_ctx_sp = m_thread.GetRegisterContext();
if (reg_ctx_sp.get() == nullptr) {
m_frame_type = eNotAValidFrame;
UnwindLogMsg("frame does not have a register context");
return;
}
addr_t current_pc = reg_ctx_sp->GetPC();
if (current_pc == LLDB_INVALID_ADDRESS) {
m_frame_type = eNotAValidFrame;
UnwindLogMsg("frame does not have a pc");
return;
}
Process *process = exe_ctx.GetProcessPtr();
// Let ABIs fixup code addresses to make sure they are valid. In ARM ABIs
// this will strip bit zero in case we read a PC from memory or from the LR.
// (which would be a no-op in frame 0 where we get it from the register set,
// but still a good idea to make the call here for other ABIs that may
// exist.)
if (ABISP abi_sp = process->GetABI())
current_pc = abi_sp->FixCodeAddress(current_pc);
UnwindPlanSP lang_runtime_plan_sp = LanguageRuntime::GetRuntimeUnwindPlan(
m_thread, this, m_behaves_like_zeroth_frame);
if (lang_runtime_plan_sp.get()) {
UnwindLogMsg("This is an async frame");
}
// Initialize m_current_pc, an Address object, based on current_pc, an
// addr_t.
m_current_pc.SetLoadAddress(current_pc, &process->GetTarget());
// If we don't have a Module for some reason, we're not going to find
// symbol/function information - just stick in some reasonable defaults and
// hope we can unwind past this frame.
ModuleSP pc_module_sp(m_current_pc.GetModule());
if (!m_current_pc.IsValid() || !pc_module_sp) {
UnwindLogMsg("using architectural default unwind method");
}
AddressRange addr_range;
m_sym_ctx_valid = m_current_pc.ResolveFunctionScope(m_sym_ctx, &addr_range);
if (m_sym_ctx.symbol) {
UnwindLogMsg("with pc value of 0x%" PRIx64 ", symbol name is '%s'",
current_pc, GetSymbolOrFunctionName(m_sym_ctx).AsCString(""));
} else if (m_sym_ctx.function) {
UnwindLogMsg("with pc value of 0x%" PRIx64 ", function name is '%s'",
current_pc, GetSymbolOrFunctionName(m_sym_ctx).AsCString(""));
} else {
UnwindLogMsg("with pc value of 0x%" PRIx64
", no symbol/function name is known.",
current_pc);
}
if (IsTrapHandlerSymbol(process, m_sym_ctx)) {
m_frame_type = eTrapHandlerFrame;
} else {
// FIXME: Detect eDebuggerFrame here.
m_frame_type = eNormalFrame;
}
// If we were able to find a symbol/function, set addr_range to the bounds of
// that symbol/function. else treat the current pc value as the start_pc and
// record no offset.
if (addr_range.GetBaseAddress().IsValid()) {
m_start_pc = addr_range.GetBaseAddress();
if (m_current_pc.GetSection() == m_start_pc.GetSection()) {
m_current_offset = m_current_pc.GetOffset() - m_start_pc.GetOffset();
} else if (m_current_pc.GetModule() == m_start_pc.GetModule()) {
// This means that whatever symbol we kicked up isn't really correct ---
// we should not cross section boundaries ... We really should NULL out
// the function/symbol in this case unless there is a bad assumption here
// due to inlined functions?
m_current_offset =
m_current_pc.GetFileAddress() - m_start_pc.GetFileAddress();
}
m_current_offset_backed_up_one = m_current_offset;
} else {
m_start_pc = m_current_pc;
m_current_offset = -1;
m_current_offset_backed_up_one = -1;
}
// We've set m_frame_type and m_sym_ctx before these calls.
m_fast_unwind_plan_sp = GetFastUnwindPlanForFrame();
m_full_unwind_plan_sp = GetFullUnwindPlanForFrame();
UnwindPlan::RowSP active_row;
lldb::RegisterKind row_register_kind = eRegisterKindGeneric;
// If we have LanguageRuntime UnwindPlan for this unwind, use those
// rules to find the caller frame instead of the function's normal
// UnwindPlans. The full unwind plan for this frame will be
// the LanguageRuntime-provided unwind plan, and there will not be a
// fast unwind plan.
if (lang_runtime_plan_sp.get()) {
active_row =
lang_runtime_plan_sp->GetRowForFunctionOffset(m_current_offset);
row_register_kind = lang_runtime_plan_sp->GetRegisterKind();
if (!ReadFrameAddress(row_register_kind, active_row->GetCFAValue(),
m_cfa)) {
UnwindLogMsg("Cannot set cfa");
} else {
m_full_unwind_plan_sp = lang_runtime_plan_sp;
if (log) {
StreamString active_row_strm;
active_row->Dump(active_row_strm, lang_runtime_plan_sp.get(), &m_thread,
m_start_pc.GetLoadAddress(exe_ctx.GetTargetPtr()));
UnwindLogMsg("async active row: %s", active_row_strm.GetData());
}
UnwindLogMsg("m_cfa = 0x%" PRIx64 " m_afa = 0x%" PRIx64, m_cfa, m_afa);
UnwindLogMsg(
"initialized async frame current pc is 0x%" PRIx64
" cfa is 0x%" PRIx64 " afa is 0x%" PRIx64,
(uint64_t)m_current_pc.GetLoadAddress(exe_ctx.GetTargetPtr()),
(uint64_t)m_cfa, (uint64_t)m_afa);
return;
}
}
if (m_full_unwind_plan_sp &&
m_full_unwind_plan_sp->PlanValidAtAddress(m_current_pc)) {
active_row =
m_full_unwind_plan_sp->GetRowForFunctionOffset(m_current_offset);
row_register_kind = m_full_unwind_plan_sp->GetRegisterKind();
if (active_row.get() && log) {
StreamString active_row_strm;
active_row->Dump(active_row_strm, m_full_unwind_plan_sp.get(), &m_thread,
m_start_pc.GetLoadAddress(exe_ctx.GetTargetPtr()));
UnwindLogMsg("%s", active_row_strm.GetData());
}
}
if (!active_row.get()) {
UnwindLogMsg("could not find an unwindplan row for this frame's pc");
m_frame_type = eNotAValidFrame;
return;
}
if (!ReadFrameAddress(row_register_kind, active_row->GetCFAValue(), m_cfa)) {
// Try the fall back unwind plan since the
// full unwind plan failed.
FuncUnwindersSP func_unwinders_sp;
UnwindPlanSP call_site_unwind_plan;
bool cfa_status = false;
if (m_sym_ctx_valid) {
func_unwinders_sp =
pc_module_sp->GetUnwindTable().GetFuncUnwindersContainingAddress(
m_current_pc, m_sym_ctx);
}
if (func_unwinders_sp.get() != nullptr)
call_site_unwind_plan = func_unwinders_sp->GetUnwindPlanAtCallSite(
process->GetTarget(), m_thread);
if (call_site_unwind_plan.get() != nullptr) {
m_fallback_unwind_plan_sp = call_site_unwind_plan;
if (TryFallbackUnwindPlan())
cfa_status = true;
}
if (!cfa_status) {
UnwindLogMsg("could not read CFA value for first frame.");
m_frame_type = eNotAValidFrame;
return;
}
} else
ReadFrameAddress(row_register_kind, active_row->GetAFAValue(), m_afa);
if (m_cfa == LLDB_INVALID_ADDRESS && m_afa == LLDB_INVALID_ADDRESS) {
UnwindLogMsg(
"could not read CFA or AFA values for first frame, not valid.");
m_frame_type = eNotAValidFrame;
return;
}
UnwindLogMsg("initialized frame current pc is 0x%" PRIx64 " cfa is 0x%" PRIx64
" afa is 0x%" PRIx64 " using %s UnwindPlan",
(uint64_t)m_current_pc.GetLoadAddress(exe_ctx.GetTargetPtr()),
(uint64_t)m_cfa,
(uint64_t)m_afa,
m_full_unwind_plan_sp->GetSourceName().GetCString());
}
// Initialize a RegisterContextUnwind for the non-zeroth frame -- rely on the
// RegisterContextUnwind "below" it to provide things like its current pc value.
void RegisterContextUnwind::InitializeNonZerothFrame() {
Log *log = GetLog(LLDBLog::Unwind);
if (IsFrameZero()) {
m_frame_type = eNotAValidFrame;
UnwindLogMsg("non-zeroth frame tests positive for IsFrameZero -- that "
"shouldn't happen.");
return;
}
if (!GetNextFrame().get() || !GetNextFrame()->IsValid()) {
m_frame_type = eNotAValidFrame;
UnwindLogMsg("Could not get next frame, marking this frame as invalid.");
return;
}
if (!m_thread.GetRegisterContext()) {
m_frame_type = eNotAValidFrame;
UnwindLogMsg("Could not get register context for this thread, marking this "
"frame as invalid.");
return;
}
ExecutionContext exe_ctx(m_thread.shared_from_this());
Process *process = exe_ctx.GetProcessPtr();
// Some languages may have a logical parent stack frame which is
// not a real stack frame, but the programmer would consider it to
// be the caller of the frame, e.g. Swift asynchronous frames.
//
// A LanguageRuntime may provide an UnwindPlan that is used in this
// stack trace base on the RegisterContext contents, intsead
// of the normal UnwindPlans we would use for the return-pc.
UnwindPlanSP lang_runtime_plan_sp = LanguageRuntime::GetRuntimeUnwindPlan(
m_thread, this, m_behaves_like_zeroth_frame);
if (lang_runtime_plan_sp.get()) {
UnwindLogMsg("This is an async frame");
}
addr_t pc;
if (!ReadGPRValue(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, pc)) {
UnwindLogMsg("could not get pc value");
m_frame_type = eNotAValidFrame;
return;
}
// Let ABIs fixup code addresses to make sure they are valid. In ARM ABIs
// this will strip bit zero in case we read a PC from memory or from the LR.
ABISP abi_sp = process->GetABI();
if (abi_sp)
pc = abi_sp->FixCodeAddress(pc);
if (log) {
UnwindLogMsg("pc = 0x%" PRIx64, pc);
addr_t reg_val;
if (ReadGPRValue(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FP, reg_val)) {
if (abi_sp)
reg_val = abi_sp->FixDataAddress(reg_val);
UnwindLogMsg("fp = 0x%" PRIx64, reg_val);
}
if (ReadGPRValue(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, reg_val)) {
if (abi_sp)
reg_val = abi_sp->FixDataAddress(reg_val);
UnwindLogMsg("sp = 0x%" PRIx64, reg_val);
}
}
// A pc of 0x0 means it's the end of the stack crawl unless we're above a trap
// handler function
bool above_trap_handler = false;
if (GetNextFrame().get() && GetNextFrame()->IsValid() &&
GetNextFrame()->IsTrapHandlerFrame())
above_trap_handler = true;
if (pc == 0 || pc == 0x1) {
if (!above_trap_handler) {
m_frame_type = eNotAValidFrame;
UnwindLogMsg("this frame has a pc of 0x0");
return;
}
}
const bool allow_section_end = true;
m_current_pc.SetLoadAddress(pc, &process->GetTarget(), allow_section_end);
// If we don't have a Module for some reason, we're not going to find
// symbol/function information - just stick in some reasonable defaults and
// hope we can unwind past this frame. If we're above a trap handler,
// we may be at a bogus address because we jumped through a bogus function
// pointer and trapped, so don't force the arch default unwind plan in that
// case.
ModuleSP pc_module_sp(m_current_pc.GetModule());
if ((!m_current_pc.IsValid() || !pc_module_sp) &&
above_trap_handler == false) {
UnwindLogMsg("using architectural default unwind method");
// Test the pc value to see if we know it's in an unmapped/non-executable
// region of memory.
uint32_t permissions;
if (process->GetLoadAddressPermissions(pc, permissions) &&
(permissions & ePermissionsExecutable) == 0) {
// If this is the second frame off the stack, we may have unwound the
// first frame incorrectly. But using the architecture default unwind
// plan may get us back on track -- albeit possibly skipping a real
// frame. Give this frame a clearly-invalid pc and see if we can get any
// further.
if (GetNextFrame().get() && GetNextFrame()->IsValid() &&
GetNextFrame()->IsFrameZero()) {
UnwindLogMsg("had a pc of 0x%" PRIx64 " which is not in executable "
"memory but on frame 1 -- "
"allowing it once.",
(uint64_t)pc);
m_frame_type = eSkipFrame;
} else {
// anywhere other than the second frame, a non-executable pc means
// we're off in the weeds -- stop now.
m_frame_type = eNotAValidFrame;
UnwindLogMsg("pc is in a non-executable section of memory and this "
"isn't the 2nd frame in the stack walk.");
return;
}
}
if (abi_sp) {
m_fast_unwind_plan_sp.reset();
m_full_unwind_plan_sp =
std::make_shared<UnwindPlan>(lldb::eRegisterKindGeneric);
abi_sp->CreateDefaultUnwindPlan(*m_full_unwind_plan_sp);
if (m_frame_type != eSkipFrame) // don't override eSkipFrame
{
m_frame_type = eNormalFrame;
}
m_all_registers_available = false;
m_current_offset = -1;
m_current_offset_backed_up_one = -1;
RegisterKind row_register_kind = m_full_unwind_plan_sp->GetRegisterKind();
UnwindPlan::RowSP row = m_full_unwind_plan_sp->GetRowForFunctionOffset(0);
if (row.get()) {
if (!ReadFrameAddress(row_register_kind, row->GetCFAValue(), m_cfa)) {
UnwindLogMsg("failed to get cfa value");
if (m_frame_type != eSkipFrame) // don't override eSkipFrame
{
m_frame_type = eNotAValidFrame;
}
return;
}
ReadFrameAddress(row_register_kind, row->GetAFAValue(), m_afa);
// A couple of sanity checks..
if (m_cfa == LLDB_INVALID_ADDRESS || m_cfa == 0 || m_cfa == 1) {
UnwindLogMsg("could not find a valid cfa address");
m_frame_type = eNotAValidFrame;
return;
}
// m_cfa should point into the stack memory; if we can query memory
// region permissions, see if the memory is allocated & readable.
if (process->GetLoadAddressPermissions(m_cfa, permissions) &&
(permissions & ePermissionsReadable) == 0) {
m_frame_type = eNotAValidFrame;
UnwindLogMsg(
"the CFA points to a region of memory that is not readable");
return;
}
} else {
UnwindLogMsg("could not find a row for function offset zero");
m_frame_type = eNotAValidFrame;
return;
}
if (CheckIfLoopingStack()) {
TryFallbackUnwindPlan();
if (CheckIfLoopingStack()) {
UnwindLogMsg("same CFA address as next frame, assuming the unwind is "
"looping - stopping");
m_frame_type = eNotAValidFrame;
return;
}
}
UnwindLogMsg("initialized frame cfa is 0x%" PRIx64 " afa is 0x%" PRIx64,
(uint64_t)m_cfa, (uint64_t)m_afa);
return;
}
m_frame_type = eNotAValidFrame;
UnwindLogMsg("could not find any symbol for this pc, or a default unwind "
"plan, to continue unwind.");
return;
}
AddressRange addr_range;
m_sym_ctx_valid = m_current_pc.ResolveFunctionScope(m_sym_ctx, &addr_range);
if (m_sym_ctx.symbol) {
UnwindLogMsg("with pc value of 0x%" PRIx64 ", symbol name is '%s'", pc,
GetSymbolOrFunctionName(m_sym_ctx).AsCString(""));
} else if (m_sym_ctx.function) {
UnwindLogMsg("with pc value of 0x%" PRIx64 ", function name is '%s'", pc,
GetSymbolOrFunctionName(m_sym_ctx).AsCString(""));
} else {
UnwindLogMsg("with pc value of 0x%" PRIx64
", no symbol/function name is known.",
pc);
}
bool decr_pc_and_recompute_addr_range;
if (!m_sym_ctx_valid) {
// Always decrement and recompute if the symbol lookup failed
decr_pc_and_recompute_addr_range = true;
} else if (GetNextFrame()->m_frame_type == eTrapHandlerFrame ||
GetNextFrame()->m_frame_type == eDebuggerFrame) {
// Don't decrement if we're "above" an asynchronous event like
// sigtramp.
decr_pc_and_recompute_addr_range = false;
} else if (!addr_range.GetBaseAddress().IsValid() ||
addr_range.GetBaseAddress().GetSection() != m_current_pc.GetSection() ||
addr_range.GetBaseAddress().GetOffset() != m_current_pc.GetOffset()) {
// If our "current" pc isn't the start of a function, decrement the pc
// if we're up the stack.
if (m_behaves_like_zeroth_frame)
decr_pc_and_recompute_addr_range = false;
else
decr_pc_and_recompute_addr_range = true;
} else if (IsTrapHandlerSymbol(process, m_sym_ctx)) {
// Signal dispatch may set the return address of the handler it calls to
// point to the first byte of a return trampoline (like __kernel_rt_sigreturn),
// so do not decrement and recompute if the symbol we already found is a trap
// handler.
decr_pc_and_recompute_addr_range = false;
} else if (m_behaves_like_zeroth_frame) {
decr_pc_and_recompute_addr_range = false;
} else {
// Decrement to find the function containing the call.
decr_pc_and_recompute_addr_range = true;
}
// We need to back up the pc by 1 byte and re-search for the Symbol to handle
// the case where the "saved pc" value is pointing to the next function, e.g.
// if a function ends with a CALL instruction.
// FIXME this may need to be an architectural-dependent behavior; if so we'll
// need to add a member function
// to the ABI plugin and consult that.
if (decr_pc_and_recompute_addr_range) {
UnwindLogMsg("Backing up the pc value of 0x%" PRIx64
" by 1 and re-doing symbol lookup; old symbol was %s",
pc, GetSymbolOrFunctionName(m_sym_ctx).AsCString(""));
Address temporary_pc;
temporary_pc.SetLoadAddress(pc - 1, &process->GetTarget());
m_sym_ctx.Clear(false);
m_sym_ctx_valid = temporary_pc.ResolveFunctionScope(m_sym_ctx, &addr_range);
UnwindLogMsg("Symbol is now %s",
GetSymbolOrFunctionName(m_sym_ctx).AsCString(""));
}
// If we were able to find a symbol/function, set addr_range_ptr to the
// bounds of that symbol/function. else treat the current pc value as the
// start_pc and record no offset.
if (addr_range.GetBaseAddress().IsValid()) {
m_start_pc = addr_range.GetBaseAddress();
m_current_offset = pc - m_start_pc.GetLoadAddress(&process->GetTarget());
m_current_offset_backed_up_one = m_current_offset;
if (decr_pc_and_recompute_addr_range &&
m_current_offset_backed_up_one > 0) {
m_current_offset_backed_up_one--;
if (m_sym_ctx_valid) {
m_current_pc.SetLoadAddress(pc - 1, &process->GetTarget());
}
}
} else {
m_start_pc = m_current_pc;
m_current_offset = -1;
m_current_offset_backed_up_one = -1;
}
if (IsTrapHandlerSymbol(process, m_sym_ctx)) {
m_frame_type = eTrapHandlerFrame;
} else {
// FIXME: Detect eDebuggerFrame here.
if (m_frame_type != eSkipFrame) // don't override eSkipFrame
{
m_frame_type = eNormalFrame;
}
}
UnwindPlan::RowSP active_row;
RegisterKind row_register_kind = eRegisterKindGeneric;
// If we have LanguageRuntime UnwindPlan for this unwind, use those
// rules to find the caller frame instead of the function's normal
// UnwindPlans. The full unwind plan for this frame will be
// the LanguageRuntime-provided unwind plan, and there will not be a
// fast unwind plan.
if (lang_runtime_plan_sp.get()) {
active_row =
lang_runtime_plan_sp->GetRowForFunctionOffset(m_current_offset);
row_register_kind = lang_runtime_plan_sp->GetRegisterKind();
if (!ReadFrameAddress(row_register_kind, active_row->GetCFAValue(),
m_cfa)) {
UnwindLogMsg("Cannot set cfa");
} else {
m_full_unwind_plan_sp = lang_runtime_plan_sp;
if (log) {
StreamString active_row_strm;
active_row->Dump(active_row_strm, lang_runtime_plan_sp.get(), &m_thread,
m_start_pc.GetLoadAddress(exe_ctx.GetTargetPtr()));
UnwindLogMsg("async active row: %s", active_row_strm.GetData());
}
UnwindLogMsg("m_cfa = 0x%" PRIx64 " m_afa = 0x%" PRIx64, m_cfa, m_afa);
UnwindLogMsg(
"initialized async frame current pc is 0x%" PRIx64
" cfa is 0x%" PRIx64 " afa is 0x%" PRIx64,
(uint64_t)m_current_pc.GetLoadAddress(exe_ctx.GetTargetPtr()),
(uint64_t)m_cfa, (uint64_t)m_afa);
return;
}
}
// We've set m_frame_type and m_sym_ctx before this call.
m_fast_unwind_plan_sp = GetFastUnwindPlanForFrame();
// Try to get by with just the fast UnwindPlan if possible - the full
// UnwindPlan may be expensive to get (e.g. if we have to parse the entire
// eh_frame section of an ObjectFile for the first time.)
if (m_fast_unwind_plan_sp &&
m_fast_unwind_plan_sp->PlanValidAtAddress(m_current_pc)) {
active_row =
m_fast_unwind_plan_sp->GetRowForFunctionOffset(m_current_offset);
row_register_kind = m_fast_unwind_plan_sp->GetRegisterKind();
PropagateTrapHandlerFlagFromUnwindPlan(m_fast_unwind_plan_sp);
if (active_row.get() && log) {
StreamString active_row_strm;
active_row->Dump(active_row_strm, m_fast_unwind_plan_sp.get(), &m_thread,
m_start_pc.GetLoadAddress(exe_ctx.GetTargetPtr()));
UnwindLogMsg("Using fast unwind plan '%s'",
m_fast_unwind_plan_sp->GetSourceName().AsCString());
UnwindLogMsg("active row: %s", active_row_strm.GetData());
}
} else {
m_full_unwind_plan_sp = GetFullUnwindPlanForFrame();
if (IsUnwindPlanValidForCurrentPC(m_full_unwind_plan_sp)) {
active_row = m_full_unwind_plan_sp->GetRowForFunctionOffset(
m_current_offset_backed_up_one);
row_register_kind = m_full_unwind_plan_sp->GetRegisterKind();
PropagateTrapHandlerFlagFromUnwindPlan(m_full_unwind_plan_sp);
if (active_row.get() && log) {
StreamString active_row_strm;
active_row->Dump(active_row_strm, m_full_unwind_plan_sp.get(),
&m_thread,
m_start_pc.GetLoadAddress(exe_ctx.GetTargetPtr()));
UnwindLogMsg("Using full unwind plan '%s'",
m_full_unwind_plan_sp->GetSourceName().AsCString());
UnwindLogMsg("active row: %s", active_row_strm.GetData());
}
}
}
if (!active_row.get()) {
m_frame_type = eNotAValidFrame;
UnwindLogMsg("could not find unwind row for this pc");
return;
}
if (!ReadFrameAddress(row_register_kind, active_row->GetCFAValue(), m_cfa)) {
UnwindLogMsg("failed to get cfa");
m_frame_type = eNotAValidFrame;
return;
}
ReadFrameAddress(row_register_kind, active_row->GetAFAValue(), m_afa);
UnwindLogMsg("m_cfa = 0x%" PRIx64 " m_afa = 0x%" PRIx64, m_cfa, m_afa);
if (CheckIfLoopingStack()) {
TryFallbackUnwindPlan();
if (CheckIfLoopingStack()) {
UnwindLogMsg("same CFA address as next frame, assuming the unwind is "
"looping - stopping");
m_frame_type = eNotAValidFrame;
return;
}
}
UnwindLogMsg("initialized frame current pc is 0x%" PRIx64
" cfa is 0x%" PRIx64 " afa is 0x%" PRIx64,
(uint64_t)m_current_pc.GetLoadAddress(exe_ctx.GetTargetPtr()),
(uint64_t)m_cfa,
(uint64_t)m_afa);
}
bool RegisterContextUnwind::CheckIfLoopingStack() {
// If we have a bad stack setup, we can get the same CFA value multiple times
// -- or even more devious, we can actually oscillate between two CFA values.
// Detect that here and break out to avoid a possible infinite loop in lldb
// trying to unwind the stack. To detect when we have the same CFA value
// multiple times, we compare the
// CFA of the current
// frame with the 2nd next frame because in some specail case (e.g. signal
// hanlders, hand written assembly without ABI compliance) we can have 2
// frames with the same
// CFA (in theory we
// can have arbitrary number of frames with the same CFA, but more then 2 is
// very unlikely)
RegisterContextUnwind::SharedPtr next_frame = GetNextFrame();
if (next_frame) {
RegisterContextUnwind::SharedPtr next_next_frame =
next_frame->GetNextFrame();
addr_t next_next_frame_cfa = LLDB_INVALID_ADDRESS;
if (next_next_frame && next_next_frame->GetCFA(next_next_frame_cfa)) {
if (next_next_frame_cfa == m_cfa) {
// We have a loop in the stack unwind
return true;
}
}
}
return false;
}
bool RegisterContextUnwind::IsFrameZero() const { return m_frame_number == 0; }
bool RegisterContextUnwind::BehavesLikeZerothFrame() const {
if (m_frame_number == 0)
return true;
if (m_behaves_like_zeroth_frame)
return true;
return false;
}
// Find a fast unwind plan for this frame, if possible.
//
// On entry to this method,
//
// 1. m_frame_type should already be set to eTrapHandlerFrame/eDebuggerFrame
// if either of those are correct,
// 2. m_sym_ctx should already be filled in, and
// 3. m_current_pc should have the current pc value for this frame
// 4. m_current_offset_backed_up_one should have the current byte offset into
// the function, maybe backed up by 1, -1 if unknown
UnwindPlanSP RegisterContextUnwind::GetFastUnwindPlanForFrame() {
UnwindPlanSP unwind_plan_sp;
ModuleSP pc_module_sp(m_current_pc.GetModule());
if (!m_current_pc.IsValid() || !pc_module_sp ||
pc_module_sp->GetObjectFile() == nullptr)
return unwind_plan_sp;
if (IsFrameZero())
return unwind_plan_sp;
FuncUnwindersSP func_unwinders_sp(
pc_module_sp->GetUnwindTable().GetFuncUnwindersContainingAddress(
m_current_pc, m_sym_ctx));
if (!func_unwinders_sp)
return unwind_plan_sp;
// If we're in _sigtramp(), unwinding past this frame requires special
// knowledge.
if (m_frame_type == eTrapHandlerFrame || m_frame_type == eDebuggerFrame)
return unwind_plan_sp;
unwind_plan_sp = func_unwinders_sp->GetUnwindPlanFastUnwind(
*m_thread.CalculateTarget(), m_thread);
if (unwind_plan_sp) {
if (unwind_plan_sp->PlanValidAtAddress(m_current_pc)) {
m_frame_type = eNormalFrame;
return unwind_plan_sp;
} else {
unwind_plan_sp.reset();
}
}
return unwind_plan_sp;
}
// On entry to this method,
//
// 1. m_frame_type should already be set to eTrapHandlerFrame/eDebuggerFrame
// if either of those are correct,
// 2. m_sym_ctx should already be filled in, and
// 3. m_current_pc should have the current pc value for this frame
// 4. m_current_offset_backed_up_one should have the current byte offset into
// the function, maybe backed up by 1, -1 if unknown
UnwindPlanSP RegisterContextUnwind::GetFullUnwindPlanForFrame() {
UnwindPlanSP unwind_plan_sp;
UnwindPlanSP arch_default_unwind_plan_sp;
ExecutionContext exe_ctx(m_thread.shared_from_this());
Process *process = exe_ctx.GetProcessPtr();
ABI *abi = process ? process->GetABI().get() : nullptr;
if (abi) {
arch_default_unwind_plan_sp =
std::make_shared<UnwindPlan>(lldb::eRegisterKindGeneric);
abi->CreateDefaultUnwindPlan(*arch_default_unwind_plan_sp);
} else {
UnwindLogMsg(
"unable to get architectural default UnwindPlan from ABI plugin");
}
if (IsFrameZero() || GetNextFrame()->m_frame_type == eTrapHandlerFrame ||
GetNextFrame()->m_frame_type == eDebuggerFrame) {
m_behaves_like_zeroth_frame = true;
// If this frame behaves like a 0th frame (currently executing or
// interrupted asynchronously), all registers can be retrieved.
m_all_registers_available = true;
}
// If we've done a jmp 0x0 / bl 0x0 (called through a null function pointer)
// so the pc is 0x0 in the zeroth frame, we need to use the "unwind at first
// instruction" arch default UnwindPlan Also, if this Process can report on
// memory region attributes, any non-executable region means we jumped
// through a bad function pointer - handle the same way as 0x0. Note, if we
// have a symbol context & a symbol, we don't want to follow this code path.
// This is for jumping to memory regions without any information available.
if ((!m_sym_ctx_valid ||
(m_sym_ctx.function == nullptr && m_sym_ctx.symbol == nullptr)) &&
m_behaves_like_zeroth_frame && m_current_pc.IsValid()) {
uint32_t permissions;
addr_t current_pc_addr =
m_current_pc.GetLoadAddress(exe_ctx.GetTargetPtr());
if (current_pc_addr == 0 ||
(process &&
process->GetLoadAddressPermissions(current_pc_addr, permissions) &&
(permissions & ePermissionsExecutable) == 0)) {
if (abi) {
unwind_plan_sp =
std::make_shared<UnwindPlan>(lldb::eRegisterKindGeneric);
abi->CreateFunctionEntryUnwindPlan(*unwind_plan_sp);
m_frame_type = eNormalFrame;
return unwind_plan_sp;
}
}
}
// No Module for the current pc, try using the architecture default unwind.
ModuleSP pc_module_sp(m_current_pc.GetModule());
if (!m_current_pc.IsValid() || !pc_module_sp ||
pc_module_sp->GetObjectFile() == nullptr) {
m_frame_type = eNormalFrame;
return arch_default_unwind_plan_sp;
}
FuncUnwindersSP func_unwinders_sp;
if (m_sym_ctx_valid) {
func_unwinders_sp =
pc_module_sp->GetUnwindTable().GetFuncUnwindersContainingAddress(
m_current_pc, m_sym_ctx);
}
// No FuncUnwinders available for this pc (stripped function symbols, lldb
// could not augment its function table with another source, like
// LC_FUNCTION_STARTS or eh_frame in ObjectFileMachO). See if eh_frame or the
// .ARM.exidx tables have unwind information for this address, else fall back
// to the architectural default unwind.
if (!func_unwinders_sp) {
m_frame_type = eNormalFrame;
if (!pc_module_sp || !pc_module_sp->GetObjectFile() ||
!m_current_pc.IsValid())
return arch_default_unwind_plan_sp;
// Even with -fomit-frame-pointer, we can try eh_frame to get back on
// track.
DWARFCallFrameInfo *eh_frame =
pc_module_sp->GetUnwindTable().GetEHFrameInfo();
if (eh_frame) {
unwind_plan_sp = std::make_shared<UnwindPlan>(lldb::eRegisterKindGeneric);
if (eh_frame->GetUnwindPlan(m_current_pc, *unwind_plan_sp))
return unwind_plan_sp;
else
unwind_plan_sp.reset();
}
ArmUnwindInfo *arm_exidx =
pc_module_sp->GetUnwindTable().GetArmUnwindInfo();
if (arm_exidx) {
unwind_plan_sp = std::make_shared<UnwindPlan>(lldb::eRegisterKindGeneric);
if (arm_exidx->GetUnwindPlan(exe_ctx.GetTargetRef(), m_current_pc,
*unwind_plan_sp))
return unwind_plan_sp;
else
unwind_plan_sp.reset();
}
CallFrameInfo *object_file_unwind =
pc_module_sp->GetUnwindTable().GetObjectFileUnwindInfo();
if (object_file_unwind) {
unwind_plan_sp = std::make_shared<UnwindPlan>(lldb::eRegisterKindGeneric);
if (object_file_unwind->GetUnwindPlan(m_current_pc, *unwind_plan_sp))
return unwind_plan_sp;
else
unwind_plan_sp.reset();
}
return arch_default_unwind_plan_sp;
}
if (m_frame_type == eTrapHandlerFrame && process) {
m_fast_unwind_plan_sp.reset();
// On some platforms the unwind information for signal handlers is not
// present or correct. Give the platform plugins a chance to provide
// substitute plan. Otherwise, use eh_frame.
if (m_sym_ctx_valid) {
lldb::PlatformSP platform = process->GetTarget().GetPlatform();
unwind_plan_sp = platform->GetTrapHandlerUnwindPlan(
process->GetTarget().GetArchitecture().GetTriple(),
GetSymbolOrFunctionName(m_sym_ctx));
if (unwind_plan_sp)
return unwind_plan_sp;
}
unwind_plan_sp =
func_unwinders_sp->GetEHFrameUnwindPlan(process->GetTarget());
if (!unwind_plan_sp)
unwind_plan_sp =
func_unwinders_sp->GetObjectFileUnwindPlan(process->GetTarget());
if (unwind_plan_sp && unwind_plan_sp->PlanValidAtAddress(m_current_pc) &&
unwind_plan_sp->GetSourcedFromCompiler() == eLazyBoolYes) {
return unwind_plan_sp;
}
}
// Ask the DynamicLoader if the eh_frame CFI should be trusted in this frame
// even when it's frame zero This comes up if we have hand-written functions
// in a Module and hand-written eh_frame. The assembly instruction
// inspection may fail and the eh_frame CFI were probably written with some
// care to do the right thing. It'd be nice if there was a way to ask the
// eh_frame directly if it is asynchronous (can be trusted at every
// instruction point) or synchronous (the normal case - only at call sites).
// But there is not.
if (process && process->GetDynamicLoader() &&
process->GetDynamicLoader()->AlwaysRelyOnEHUnwindInfo(m_sym_ctx)) {
// We must specifically call the GetEHFrameUnwindPlan() method here --
// normally we would call GetUnwindPlanAtCallSite() -- because CallSite may
// return an unwind plan sourced from either eh_frame (that's what we
// intend) or compact unwind (this won't work)
unwind_plan_sp =
func_unwinders_sp->GetEHFrameUnwindPlan(process->GetTarget());
if (!unwind_plan_sp)
unwind_plan_sp =
func_unwinders_sp->GetObjectFileUnwindPlan(process->GetTarget());
if (unwind_plan_sp && unwind_plan_sp->PlanValidAtAddress(m_current_pc)) {
UnwindLogMsgVerbose("frame uses %s for full UnwindPlan because the "
"DynamicLoader suggested we prefer it",
unwind_plan_sp->GetSourceName().GetCString());
return unwind_plan_sp;
}
}
// Typically the NonCallSite UnwindPlan is the unwind created by inspecting
// the assembly language instructions
if (m_behaves_like_zeroth_frame && process) {
unwind_plan_sp = func_unwinders_sp->GetUnwindPlanAtNonCallSite(
process->GetTarget(), m_thread);
if (unwind_plan_sp && unwind_plan_sp->PlanValidAtAddress(m_current_pc)) {
if (unwind_plan_sp->GetSourcedFromCompiler() == eLazyBoolNo) {
// We probably have an UnwindPlan created by inspecting assembly
// instructions. The assembly profilers work really well with compiler-
// generated functions but hand- written assembly can be problematic.
// We set the eh_frame based unwind plan as our fallback unwind plan if
// instruction emulation doesn't work out even for non call sites if it
// is available and use the architecture default unwind plan if it is
// not available. The eh_frame unwind plan is more reliable even on non
// call sites then the architecture default plan and for hand written
// assembly code it is often written in a way that it valid at all
// location what helps in the most common cases when the instruction
// emulation fails.
UnwindPlanSP call_site_unwind_plan =
func_unwinders_sp->GetUnwindPlanAtCallSite(process->GetTarget(),
m_thread);
if (call_site_unwind_plan &&
call_site_unwind_plan.get() != unwind_plan_sp.get() &&
call_site_unwind_plan->GetSourceName() !=
unwind_plan_sp->GetSourceName()) {
m_fallback_unwind_plan_sp = call_site_unwind_plan;
} else {
m_fallback_unwind_plan_sp = arch_default_unwind_plan_sp;
}
}
UnwindLogMsgVerbose("frame uses %s for full UnwindPlan because this "
"is the non-call site unwind plan and this is a "
"zeroth frame",
unwind_plan_sp->GetSourceName().GetCString());
return unwind_plan_sp;
}
// If we're on the first instruction of a function, and we have an
// architectural default UnwindPlan for the initial instruction of a
// function, use that.
if (m_current_offset == 0) {
unwind_plan_sp =
func_unwinders_sp->GetUnwindPlanArchitectureDefaultAtFunctionEntry(
m_thread);
if (unwind_plan_sp) {
UnwindLogMsgVerbose("frame uses %s for full UnwindPlan because we are at "
"the first instruction of a function",
unwind_plan_sp->GetSourceName().GetCString());
return unwind_plan_sp;
}
}
}
// Typically this is unwind info from an eh_frame section intended for
// exception handling; only valid at call sites
if (process) {
unwind_plan_sp = func_unwinders_sp->GetUnwindPlanAtCallSite(
process->GetTarget(), m_thread);
}
if (IsUnwindPlanValidForCurrentPC(unwind_plan_sp)) {
UnwindLogMsgVerbose("frame uses %s for full UnwindPlan because this "
"is the call-site unwind plan",
unwind_plan_sp->GetSourceName().GetCString());
return unwind_plan_sp;
}
// We'd prefer to use an UnwindPlan intended for call sites when we're at a
// call site but if we've struck out on that, fall back to using the non-
// call-site assembly inspection UnwindPlan if possible.
if (process) {
unwind_plan_sp = func_unwinders_sp->GetUnwindPlanAtNonCallSite(
process->GetTarget(), m_thread);
}
if (unwind_plan_sp &&
unwind_plan_sp->GetSourcedFromCompiler() == eLazyBoolNo) {
// We probably have an UnwindPlan created by inspecting assembly
// instructions. The assembly profilers work really well with compiler-
// generated functions but hand- written assembly can be problematic. We
// set the eh_frame based unwind plan as our fallback unwind plan if
// instruction emulation doesn't work out even for non call sites if it is
// available and use the architecture default unwind plan if it is not
// available. The eh_frame unwind plan is more reliable even on non call
// sites then the architecture default plan and for hand written assembly
// code it is often written in a way that it valid at all location what
// helps in the most common cases when the instruction emulation fails.
UnwindPlanSP call_site_unwind_plan =
func_unwinders_sp->GetUnwindPlanAtCallSite(process->GetTarget(),
m_thread);
if (call_site_unwind_plan &&
call_site_unwind_plan.get() != unwind_plan_sp.get() &&
call_site_unwind_plan->GetSourceName() !=
unwind_plan_sp->GetSourceName()) {
m_fallback_unwind_plan_sp = call_site_unwind_plan;
} else {
m_fallback_unwind_plan_sp = arch_default_unwind_plan_sp;
}
}
if (IsUnwindPlanValidForCurrentPC(unwind_plan_sp)) {
UnwindLogMsgVerbose("frame uses %s for full UnwindPlan because we "
"failed to find a call-site unwind plan that would work",
unwind_plan_sp->GetSourceName().GetCString());
return unwind_plan_sp;
}
// If nothing else, use the architectural default UnwindPlan and hope that
// does the job.
if (arch_default_unwind_plan_sp)
UnwindLogMsgVerbose(
"frame uses %s for full UnwindPlan because we are falling back "
"to the arch default plan",
arch_default_unwind_plan_sp->GetSourceName().GetCString());
else
UnwindLogMsg(
"Unable to find any UnwindPlan for full unwind of this frame.");
return arch_default_unwind_plan_sp;
}
void RegisterContextUnwind::InvalidateAllRegisters() {
m_frame_type = eNotAValidFrame;
}
size_t RegisterContextUnwind::GetRegisterCount() {
return m_thread.GetRegisterContext()->GetRegisterCount();
}
const RegisterInfo *RegisterContextUnwind::GetRegisterInfoAtIndex(size_t reg) {
return m_thread.GetRegisterContext()->GetRegisterInfoAtIndex(reg);
}
size_t RegisterContextUnwind::GetRegisterSetCount() {
return m_thread.GetRegisterContext()->GetRegisterSetCount();
}
const RegisterSet *RegisterContextUnwind::GetRegisterSet(size_t reg_set) {
return m_thread.GetRegisterContext()->GetRegisterSet(reg_set);
}
uint32_t RegisterContextUnwind::ConvertRegisterKindToRegisterNumber(
lldb::RegisterKind kind, uint32_t num) {
return m_thread.GetRegisterContext()->ConvertRegisterKindToRegisterNumber(
kind, num);
}
bool RegisterContextUnwind::ReadRegisterValueFromRegisterLocation(
lldb_private::UnwindLLDB::RegisterLocation regloc,
const RegisterInfo *reg_info, RegisterValue &value) {
if (!IsValid())
return false;
bool success = false;
switch (regloc.type) {
case UnwindLLDB::RegisterLocation::eRegisterInLiveRegisterContext: {
const RegisterInfo *other_reg_info =
GetRegisterInfoAtIndex(regloc.location.register_number);
if (!other_reg_info)
return false;
success =
m_thread.GetRegisterContext()->ReadRegister(other_reg_info, value);
} break;
case UnwindLLDB::RegisterLocation::eRegisterInRegister: {
const RegisterInfo *other_reg_info =
GetRegisterInfoAtIndex(regloc.location.register_number);
if (!other_reg_info)
return false;
if (IsFrameZero()) {
success =
m_thread.GetRegisterContext()->ReadRegister(other_reg_info, value);
} else {
success = GetNextFrame()->ReadRegister(other_reg_info, value);
}
} break;
case UnwindLLDB::RegisterLocation::eRegisterValueInferred:
success =
value.SetUInt(regloc.location.inferred_value, reg_info->byte_size);
break;
case UnwindLLDB::RegisterLocation::eRegisterNotSaved:
break;
case UnwindLLDB::RegisterLocation::eRegisterSavedAtHostMemoryLocation:
llvm_unreachable("FIXME debugger inferior function call unwind");
case UnwindLLDB::RegisterLocation::eRegisterSavedAtMemoryLocation: {
Status error(ReadRegisterValueFromMemory(
reg_info, regloc.location.target_memory_location, reg_info->byte_size,
value));
success = error.Success();
} break;
default:
llvm_unreachable("Unknown RegisterLocation type.");
}
return success;
}
bool RegisterContextUnwind::WriteRegisterValueToRegisterLocation(
lldb_private::UnwindLLDB::RegisterLocation regloc,
const RegisterInfo *reg_info, const RegisterValue &value) {
if (!IsValid())
return false;
bool success = false;
switch (regloc.type) {
case UnwindLLDB::RegisterLocation::eRegisterInLiveRegisterContext: {
const RegisterInfo *other_reg_info =
GetRegisterInfoAtIndex(regloc.location.register_number);
success =
m_thread.GetRegisterContext()->WriteRegister(other_reg_info, value);
} break;
case UnwindLLDB::RegisterLocation::eRegisterInRegister: {
const RegisterInfo *other_reg_info =
GetRegisterInfoAtIndex(regloc.location.register_number);
if (IsFrameZero()) {
success =
m_thread.GetRegisterContext()->WriteRegister(other_reg_info, value);
} else {
success = GetNextFrame()->WriteRegister(other_reg_info, value);
}
} break;
case UnwindLLDB::RegisterLocation::eRegisterValueInferred:
case UnwindLLDB::RegisterLocation::eRegisterNotSaved:
break;
case UnwindLLDB::RegisterLocation::eRegisterSavedAtHostMemoryLocation:
llvm_unreachable("FIXME debugger inferior function call unwind");
case UnwindLLDB::RegisterLocation::eRegisterSavedAtMemoryLocation: {
Status error(WriteRegisterValueToMemory(
reg_info, regloc.location.target_memory_location, reg_info->byte_size,
value));
success = error.Success();
} break;
default:
llvm_unreachable("Unknown RegisterLocation type.");
}
return success;
}
bool RegisterContextUnwind::IsValid() const {
return m_frame_type != eNotAValidFrame;
}
// After the final stack frame in a stack walk we'll get one invalid
// (eNotAValidFrame) stack frame -- one past the end of the stack walk. But
// higher-level code will need to tell the difference between "the unwind plan
// below this frame failed" versus "we successfully completed the stack walk"
// so this method helps to disambiguate that.
bool RegisterContextUnwind::IsTrapHandlerFrame() const {
return m_frame_type == eTrapHandlerFrame;
}
// A skip frame is a bogus frame on the stack -- but one where we're likely to
// find a real frame farther
// up the stack if we keep looking. It's always the second frame in an unwind
// (i.e. the first frame after frame zero) where unwinding can be the
// trickiest. Ideally we'll mark up this frame in some way so the user knows
// we're displaying bad data and we may have skipped one frame of their real
// program in the process of getting back on track.
bool RegisterContextUnwind::IsSkipFrame() const {
return m_frame_type == eSkipFrame;
}
bool RegisterContextUnwind::IsTrapHandlerSymbol(
lldb_private::Process *process,
const lldb_private::SymbolContext &m_sym_ctx) const {
PlatformSP platform_sp(process->GetTarget().GetPlatform());
if (platform_sp) {
const std::vector<ConstString> trap_handler_names(
platform_sp->GetTrapHandlerSymbolNames());
for (ConstString name : trap_handler_names) {
if ((m_sym_ctx.function && m_sym_ctx.function->GetName() == name) ||
(m_sym_ctx.symbol && m_sym_ctx.symbol->GetName() == name)) {
return true;
}
}
}
const std::vector<ConstString> user_specified_trap_handler_names(
m_parent_unwind.GetUserSpecifiedTrapHandlerFunctionNames());
for (ConstString name : user_specified_trap_handler_names) {
if ((m_sym_ctx.function && m_sym_ctx.function->GetName() == name) ||
(m_sym_ctx.symbol && m_sym_ctx.symbol->GetName() == name)) {
return true;
}
}
return false;
}
// Answer the question: Where did THIS frame save the CALLER frame ("previous"
// frame)'s register value?
enum UnwindLLDB::RegisterSearchResult
RegisterContextUnwind::SavedLocationForRegister(
uint32_t lldb_regnum, lldb_private::UnwindLLDB::RegisterLocation &regloc) {
RegisterNumber regnum(m_thread, eRegisterKindLLDB, lldb_regnum);
Log *log = GetLog(LLDBLog::Unwind);
// Have we already found this register location?
if (!m_registers.empty()) {
std::map<uint32_t,
lldb_private::UnwindLLDB::RegisterLocation>::const_iterator
iterator;
iterator = m_registers.find(regnum.GetAsKind(eRegisterKindLLDB));
if (iterator != m_registers.end()) {
regloc = iterator->second;
UnwindLogMsg("supplying caller's saved %s (%d)'s location, cached",
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterFound;
}
}
// Look through the available UnwindPlans for the register location.
UnwindPlan::Row::RegisterLocation unwindplan_regloc;
bool have_unwindplan_regloc = false;
RegisterKind unwindplan_registerkind = kNumRegisterKinds;
if (m_fast_unwind_plan_sp) {
UnwindPlan::RowSP active_row =
m_fast_unwind_plan_sp->GetRowForFunctionOffset(m_current_offset);
unwindplan_registerkind = m_fast_unwind_plan_sp->GetRegisterKind();
if (regnum.GetAsKind(unwindplan_registerkind) == LLDB_INVALID_REGNUM) {
UnwindLogMsg("could not convert lldb regnum %s (%d) into %d RegisterKind "
"reg numbering scheme",
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB),
(int)unwindplan_registerkind);
return UnwindLLDB::RegisterSearchResult::eRegisterNotFound;
}
// The architecture default unwind plan marks unknown registers as
// Undefined so that we don't forward them up the stack when a
// jitted stack frame may have overwritten them. But when the
// arch default unwind plan is used as the Fast Unwind Plan, we
// need to recognize this & switch over to the Full Unwind Plan
// to see what unwind rule that (more knoweldgeable, probably)
// UnwindPlan has. If the full UnwindPlan says the register
// location is Undefined, then it really is.
if (active_row->GetRegisterInfo(regnum.GetAsKind(unwindplan_registerkind),
unwindplan_regloc) &&
!unwindplan_regloc.IsUndefined()) {
UnwindLogMsg(
"supplying caller's saved %s (%d)'s location using FastUnwindPlan",
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB));
have_unwindplan_regloc = true;
}
}
if (!have_unwindplan_regloc) {
// m_full_unwind_plan_sp being NULL means that we haven't tried to find a
// full UnwindPlan yet
bool got_new_full_unwindplan = false;
if (!m_full_unwind_plan_sp) {
m_full_unwind_plan_sp = GetFullUnwindPlanForFrame();
got_new_full_unwindplan = true;
}
if (m_full_unwind_plan_sp) {
RegisterNumber pc_regnum(m_thread, eRegisterKindGeneric,
LLDB_REGNUM_GENERIC_PC);
UnwindPlan::RowSP active_row =
m_full_unwind_plan_sp->GetRowForFunctionOffset(
m_current_offset_backed_up_one);
unwindplan_registerkind = m_full_unwind_plan_sp->GetRegisterKind();
if (got_new_full_unwindplan && active_row.get() && log) {
StreamString active_row_strm;
ExecutionContext exe_ctx(m_thread.shared_from_this());
active_row->Dump(active_row_strm, m_full_unwind_plan_sp.get(),
&m_thread,
m_start_pc.GetLoadAddress(exe_ctx.GetTargetPtr()));
UnwindLogMsg("Using full unwind plan '%s'",
m_full_unwind_plan_sp->GetSourceName().AsCString());
UnwindLogMsg("active row: %s", active_row_strm.GetData());
}
RegisterNumber return_address_reg;
// If we're fetching the saved pc and this UnwindPlan defines a
// ReturnAddress register (e.g. lr on arm), look for the return address
// register number in the UnwindPlan's row.
if (pc_regnum.IsValid() && pc_regnum == regnum &&
m_full_unwind_plan_sp->GetReturnAddressRegister() !=
LLDB_INVALID_REGNUM) {
// If this is a trap handler frame, we should have access to
// the complete register context when the interrupt/async
// signal was received, we should fetch the actual saved $pc
// value instead of the Return Address register.
// If $pc is not available, fall back to the RA reg.
UnwindPlan::Row::RegisterLocation scratch;
if (m_frame_type == eTrapHandlerFrame &&
active_row->GetRegisterInfo
(pc_regnum.GetAsKind (unwindplan_registerkind), scratch)) {
UnwindLogMsg("Providing pc register instead of rewriting to "
"RA reg because this is a trap handler and there is "
"a location for the saved pc register value.");
} else {
return_address_reg.init(
m_thread, m_full_unwind_plan_sp->GetRegisterKind(),
m_full_unwind_plan_sp->GetReturnAddressRegister());
regnum = return_address_reg;
UnwindLogMsg("requested caller's saved PC but this UnwindPlan uses a "
"RA reg; getting %s (%d) instead",
return_address_reg.GetName(),
return_address_reg.GetAsKind(eRegisterKindLLDB));
}
} else {
if (regnum.GetAsKind(unwindplan_registerkind) == LLDB_INVALID_REGNUM) {
if (unwindplan_registerkind == eRegisterKindGeneric) {
UnwindLogMsg("could not convert lldb regnum %s (%d) into "
"eRegisterKindGeneric reg numbering scheme",
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB));
} else {
UnwindLogMsg("could not convert lldb regnum %s (%d) into %d "
"RegisterKind reg numbering scheme",
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB),
(int)unwindplan_registerkind);
}
return UnwindLLDB::RegisterSearchResult::eRegisterNotFound;
}
}
if (regnum.IsValid() &&
active_row->GetRegisterInfo(regnum.GetAsKind(unwindplan_registerkind),
unwindplan_regloc)) {
have_unwindplan_regloc = true;
UnwindLogMsg(
"supplying caller's saved %s (%d)'s location using %s UnwindPlan",
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB),
m_full_unwind_plan_sp->GetSourceName().GetCString());
}
// This is frame 0 and we're retrieving the PC and it's saved in a Return
// Address register and it hasn't been saved anywhere yet -- that is,
// it's still live in the actual register. Handle this specially.
if (!have_unwindplan_regloc && return_address_reg.IsValid() &&
BehavesLikeZerothFrame()) {
if (return_address_reg.GetAsKind(eRegisterKindLLDB) !=
LLDB_INVALID_REGNUM) {
lldb_private::UnwindLLDB::RegisterLocation new_regloc;
new_regloc.type =
UnwindLLDB::RegisterLocation::eRegisterInLiveRegisterContext;
new_regloc.location.register_number =
return_address_reg.GetAsKind(eRegisterKindLLDB);
m_registers[regnum.GetAsKind(eRegisterKindLLDB)] = new_regloc;
regloc = new_regloc;
UnwindLogMsg("supplying caller's register %s (%d) from the live "
"RegisterContext at frame 0, saved in %d",
return_address_reg.GetName(),
return_address_reg.GetAsKind(eRegisterKindLLDB),
return_address_reg.GetAsKind(eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterFound;
}
}
// If this architecture stores the return address in a register (it
// defines a Return Address register) and we're on a non-zero stack frame
// and the Full UnwindPlan says that the pc is stored in the
// RA registers (e.g. lr on arm), then we know that the full unwindplan is
// not trustworthy -- this
// is an impossible situation and the instruction emulation code has
// likely been misled. If this stack frame meets those criteria, we need
// to throw away the Full UnwindPlan that the instruction emulation came
// up with and fall back to the architecture's Default UnwindPlan so the
// stack walk can get past this point.
// Special note: If the Full UnwindPlan was generated from the compiler,
// don't second-guess it when we're at a call site location.
// arch_default_ra_regnum is the return address register # in the Full
// UnwindPlan register numbering
RegisterNumber arch_default_ra_regnum(m_thread, eRegisterKindGeneric,
LLDB_REGNUM_GENERIC_RA);
if (arch_default_ra_regnum.GetAsKind(unwindplan_registerkind) !=
LLDB_INVALID_REGNUM &&
pc_regnum == regnum && unwindplan_regloc.IsInOtherRegister() &&
unwindplan_regloc.GetRegisterNumber() ==
arch_default_ra_regnum.GetAsKind(unwindplan_registerkind) &&
m_full_unwind_plan_sp->GetSourcedFromCompiler() != eLazyBoolYes &&
!m_all_registers_available) {
UnwindLogMsg("%s UnwindPlan tried to restore the pc from the link "
"register but this is a non-zero frame",
m_full_unwind_plan_sp->GetSourceName().GetCString());
// Throw away the full unwindplan; install the arch default unwindplan
if (ForceSwitchToFallbackUnwindPlan()) {
// Update for the possibly new unwind plan
unwindplan_registerkind = m_full_unwind_plan_sp->GetRegisterKind();
UnwindPlan::RowSP active_row =
m_full_unwind_plan_sp->GetRowForFunctionOffset(m_current_offset);
// Sanity check: Verify that we can fetch a pc value and CFA value
// with this unwind plan
RegisterNumber arch_default_pc_reg(m_thread, eRegisterKindGeneric,
LLDB_REGNUM_GENERIC_PC);
bool can_fetch_pc_value = false;
bool can_fetch_cfa = false;
addr_t cfa_value;
if (active_row) {
if (arch_default_pc_reg.GetAsKind(unwindplan_registerkind) !=
LLDB_INVALID_REGNUM &&
active_row->GetRegisterInfo(
arch_default_pc_reg.GetAsKind(unwindplan_registerkind),
unwindplan_regloc)) {
can_fetch_pc_value = true;
}
if (ReadFrameAddress(unwindplan_registerkind,
active_row->GetCFAValue(), cfa_value)) {
can_fetch_cfa = true;
}
}
have_unwindplan_regloc = can_fetch_pc_value && can_fetch_cfa;
} else {
// We were unable to fall back to another unwind plan
have_unwindplan_regloc = false;
}
}
}
}
ExecutionContext exe_ctx(m_thread.shared_from_this());
Process *process = exe_ctx.GetProcessPtr();
if (!have_unwindplan_regloc) {
// If the UnwindPlan failed to give us an unwind location for this
// register, we may be able to fall back to some ABI-defined default. For
// example, some ABIs allow to determine the caller's SP via the CFA. Also,
// the ABI may set volatile registers to the undefined state.
ABI *abi = process ? process->GetABI().get() : nullptr;
if (abi) {
const RegisterInfo *reg_info =
GetRegisterInfoAtIndex(regnum.GetAsKind(eRegisterKindLLDB));
if (reg_info &&
abi->GetFallbackRegisterLocation(reg_info, unwindplan_regloc)) {
UnwindLogMsg(
"supplying caller's saved %s (%d)'s location using ABI default",
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB));
have_unwindplan_regloc = true;
}
}
}
if (!have_unwindplan_regloc) {
if (IsFrameZero()) {
// This is frame 0 - we should return the actual live register context
// value
lldb_private::UnwindLLDB::RegisterLocation new_regloc;
new_regloc.type =
UnwindLLDB::RegisterLocation::eRegisterInLiveRegisterContext;
new_regloc.location.register_number = regnum.GetAsKind(eRegisterKindLLDB);
m_registers[regnum.GetAsKind(eRegisterKindLLDB)] = new_regloc;
regloc = new_regloc;
UnwindLogMsg("supplying caller's register %s (%d) from the live "
"RegisterContext at frame 0",
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterFound;
} else {
std::string unwindplan_name;
if (m_full_unwind_plan_sp) {
unwindplan_name += "via '";
unwindplan_name += m_full_unwind_plan_sp->GetSourceName().AsCString();
unwindplan_name += "'";
}
UnwindLogMsg("no save location for %s (%d) %s", regnum.GetName(),
regnum.GetAsKind(eRegisterKindLLDB),
unwindplan_name.c_str());
}
return UnwindLLDB::RegisterSearchResult::eRegisterNotFound;
}
// unwindplan_regloc has valid contents about where to retrieve the register
if (unwindplan_regloc.IsUnspecified()) {
lldb_private::UnwindLLDB::RegisterLocation new_regloc = {};
new_regloc.type = UnwindLLDB::RegisterLocation::eRegisterNotSaved;
m_registers[regnum.GetAsKind(eRegisterKindLLDB)] = new_regloc;
UnwindLogMsg("save location for %s (%d) is unspecified, continue searching",
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterNotFound;
}
if (unwindplan_regloc.IsUndefined()) {
UnwindLogMsg(
"did not supply reg location for %s (%d) because it is volatile",
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterIsVolatile;
}
if (unwindplan_regloc.IsSame()) {
if (!m_all_registers_available &&
(regnum.GetAsKind(eRegisterKindGeneric) == LLDB_REGNUM_GENERIC_PC ||
regnum.GetAsKind(eRegisterKindGeneric) == LLDB_REGNUM_GENERIC_RA)) {
UnwindLogMsg("register %s (%d) is marked as 'IsSame' - it is a pc or "
"return address reg on a frame which does not have all "
"registers available -- treat as if we have no information",
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterNotFound;
} else {
regloc.type = UnwindLLDB::RegisterLocation::eRegisterInRegister;
regloc.location.register_number = regnum.GetAsKind(eRegisterKindLLDB);
m_registers[regnum.GetAsKind(eRegisterKindLLDB)] = regloc;
UnwindLogMsg(
"supplying caller's register %s (%d), saved in register %s (%d)",
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB),
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterFound;
}
}
if (unwindplan_regloc.IsCFAPlusOffset()) {
int offset = unwindplan_regloc.GetOffset();
regloc.type = UnwindLLDB::RegisterLocation::eRegisterValueInferred;
regloc.location.inferred_value = m_cfa + offset;
m_registers[regnum.GetAsKind(eRegisterKindLLDB)] = regloc;
UnwindLogMsg("supplying caller's register %s (%d), value is CFA plus "
"offset %d [value is 0x%" PRIx64 "]",
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB), offset,
regloc.location.inferred_value);
return UnwindLLDB::RegisterSearchResult::eRegisterFound;
}
if (unwindplan_regloc.IsAtCFAPlusOffset()) {
int offset = unwindplan_regloc.GetOffset();
regloc.type = UnwindLLDB::RegisterLocation::eRegisterSavedAtMemoryLocation;
regloc.location.target_memory_location = m_cfa + offset;
m_registers[regnum.GetAsKind(eRegisterKindLLDB)] = regloc;
UnwindLogMsg("supplying caller's register %s (%d) from the stack, saved at "
"CFA plus offset %d [saved at 0x%" PRIx64 "]",
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB), offset,
regloc.location.target_memory_location);
return UnwindLLDB::RegisterSearchResult::eRegisterFound;
}
if (unwindplan_regloc.IsAFAPlusOffset()) {
if (m_afa == LLDB_INVALID_ADDRESS)
return UnwindLLDB::RegisterSearchResult::eRegisterNotFound;
int offset = unwindplan_regloc.GetOffset();
regloc.type = UnwindLLDB::RegisterLocation::eRegisterValueInferred;
regloc.location.inferred_value = m_afa + offset;
m_registers[regnum.GetAsKind(eRegisterKindLLDB)] = regloc;
UnwindLogMsg("supplying caller's register %s (%d), value is AFA plus "
"offset %d [value is 0x%" PRIx64 "]",
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB), offset,
regloc.location.inferred_value);
return UnwindLLDB::RegisterSearchResult::eRegisterFound;
}
if (unwindplan_regloc.IsAtAFAPlusOffset()) {
if (m_afa == LLDB_INVALID_ADDRESS)
return UnwindLLDB::RegisterSearchResult::eRegisterNotFound;
int offset = unwindplan_regloc.GetOffset();
regloc.type = UnwindLLDB::RegisterLocation::eRegisterSavedAtMemoryLocation;
regloc.location.target_memory_location = m_afa + offset;
m_registers[regnum.GetAsKind(eRegisterKindLLDB)] = regloc;
UnwindLogMsg("supplying caller's register %s (%d) from the stack, saved at "
"AFA plus offset %d [saved at 0x%" PRIx64 "]",
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB), offset,
regloc.location.target_memory_location);
return UnwindLLDB::RegisterSearchResult::eRegisterFound;
}
if (unwindplan_regloc.IsInOtherRegister()) {
uint32_t unwindplan_regnum = unwindplan_regloc.GetRegisterNumber();
RegisterNumber row_regnum(m_thread, unwindplan_registerkind,
unwindplan_regnum);
if (row_regnum.GetAsKind(eRegisterKindLLDB) == LLDB_INVALID_REGNUM) {
UnwindLogMsg("could not supply caller's %s (%d) location - was saved in "
"another reg but couldn't convert that regnum",
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterNotFound;
}
regloc.type = UnwindLLDB::RegisterLocation::eRegisterInRegister;
regloc.location.register_number = row_regnum.GetAsKind(eRegisterKindLLDB);
m_registers[regnum.GetAsKind(eRegisterKindLLDB)] = regloc;
UnwindLogMsg(
"supplying caller's register %s (%d), saved in register %s (%d)",
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB),
row_regnum.GetName(), row_regnum.GetAsKind(eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterFound;
}
if (unwindplan_regloc.IsDWARFExpression() ||
unwindplan_regloc.IsAtDWARFExpression()) {
DataExtractor dwarfdata(unwindplan_regloc.GetDWARFExpressionBytes(),
unwindplan_regloc.GetDWARFExpressionLength(),
process->GetByteOrder(),
process->GetAddressByteSize());
ModuleSP opcode_ctx;
DWARFExpressionList dwarfexpr(opcode_ctx, dwarfdata, nullptr);
dwarfexpr.GetMutableExpressionAtAddress()->SetRegisterKind(
unwindplan_registerkind);
Value cfa_val = Scalar(m_cfa);
cfa_val.SetValueType(Value::ValueType::LoadAddress);
llvm::Expected<Value> result =
dwarfexpr.Evaluate(&exe_ctx, this, 0, &cfa_val, nullptr);
if (!result) {
LLDB_LOG_ERROR(log, result.takeError(),
"DWARF expression failed to evaluate: {0}");
} else {
addr_t val;
val = result->GetScalar().ULongLong();
if (unwindplan_regloc.IsDWARFExpression()) {
regloc.type = UnwindLLDB::RegisterLocation::eRegisterValueInferred;
regloc.location.inferred_value = val;
m_registers[regnum.GetAsKind(eRegisterKindLLDB)] = regloc;
UnwindLogMsg("supplying caller's register %s (%d) via DWARF expression "
"(IsDWARFExpression)",
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterFound;
} else {
regloc.type =
UnwindLLDB::RegisterLocation::eRegisterSavedAtMemoryLocation;
regloc.location.target_memory_location = val;
m_registers[regnum.GetAsKind(eRegisterKindLLDB)] = regloc;
UnwindLogMsg("supplying caller's register %s (%d) via DWARF expression "
"(IsAtDWARFExpression)",
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterFound;
}
}
UnwindLogMsg("tried to use IsDWARFExpression or IsAtDWARFExpression for %s "
"(%d) but failed",
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterNotFound;
}
if (unwindplan_regloc.IsConstant()) {
regloc.type = UnwindLLDB::RegisterLocation::eRegisterValueInferred;
regloc.location.inferred_value = unwindplan_regloc.GetConstant();
m_registers[regnum.GetAsKind(eRegisterKindLLDB)] = regloc;
UnwindLogMsg("supplying caller's register %s (%d) via constant value",
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB));
return UnwindLLDB::RegisterSearchResult::eRegisterFound;
}
UnwindLogMsg("no save location for %s (%d) in this stack frame",
regnum.GetName(), regnum.GetAsKind(eRegisterKindLLDB));
// FIXME UnwindPlan::Row types atDWARFExpression and isDWARFExpression are
// unsupported.
return UnwindLLDB::RegisterSearchResult::eRegisterNotFound;
}
// TryFallbackUnwindPlan() -- this method is a little tricky.
//
// When this is called, the frame above -- the caller frame, the "previous"
// frame -- is invalid or bad.
//
// Instead of stopping the stack walk here, we'll try a different UnwindPlan
// and see if we can get a valid frame above us.
//
// This most often happens when an unwind plan based on assembly instruction
// inspection is not correct -- mostly with hand-written assembly functions or
// functions where the stack frame is set up "out of band", e.g. the kernel
// saved the register context and then called an asynchronous trap handler like
// _sigtramp.
//
// Often in these cases, if we just do a dumb stack walk we'll get past this
// tricky frame and our usual techniques can continue to be used.
bool RegisterContextUnwind::TryFallbackUnwindPlan() {
if (m_fallback_unwind_plan_sp.get() == nullptr)
return false;
if (m_full_unwind_plan_sp.get() == nullptr)
return false;
if (m_full_unwind_plan_sp.get() == m_fallback_unwind_plan_sp.get() ||
m_full_unwind_plan_sp->GetSourceName() ==
m_fallback_unwind_plan_sp->GetSourceName()) {
return false;
}
// If a compiler generated unwind plan failed, trying the arch default
// unwindplan isn't going to do any better.
if (m_full_unwind_plan_sp->GetSourcedFromCompiler() == eLazyBoolYes)
return false;
// Get the caller's pc value and our own CFA value. Swap in the fallback
// unwind plan, re-fetch the caller's pc value and CFA value. If they're the
// same, then the fallback unwind plan provides no benefit.
RegisterNumber pc_regnum(m_thread, eRegisterKindGeneric,
LLDB_REGNUM_GENERIC_PC);
addr_t old_caller_pc_value = LLDB_INVALID_ADDRESS;
addr_t new_caller_pc_value = LLDB_INVALID_ADDRESS;
UnwindLLDB::RegisterLocation regloc = {};
if (SavedLocationForRegister(pc_regnum.GetAsKind(eRegisterKindLLDB),
regloc) ==
UnwindLLDB::RegisterSearchResult::eRegisterFound) {
const RegisterInfo *reg_info =
GetRegisterInfoAtIndex(pc_regnum.GetAsKind(eRegisterKindLLDB));
if (reg_info) {
RegisterValue reg_value;
if (ReadRegisterValueFromRegisterLocation(regloc, reg_info, reg_value)) {
old_caller_pc_value = reg_value.GetAsUInt64();
if (ProcessSP process_sp = m_thread.GetProcess()) {
if (ABISP abi_sp = process_sp->GetABI())
old_caller_pc_value = abi_sp->FixCodeAddress(old_caller_pc_value);
}
}
}
}
// This is a tricky wrinkle! If SavedLocationForRegister() detects a really
// impossible register location for the full unwind plan, it may call
// ForceSwitchToFallbackUnwindPlan() which in turn replaces the full
// unwindplan with the fallback... in short, we're done, we're using the
// fallback UnwindPlan. We checked if m_fallback_unwind_plan_sp was nullptr
// at the top -- the only way it became nullptr since then is via
// SavedLocationForRegister().
if (m_fallback_unwind_plan_sp.get() == nullptr)
return true;
// Switch the full UnwindPlan to be the fallback UnwindPlan. If we decide
// this isn't working, we need to restore. We'll also need to save & restore
// the value of the m_cfa ivar. Save is down below a bit in 'old_cfa'.
UnwindPlanSP original_full_unwind_plan_sp = m_full_unwind_plan_sp;
addr_t old_cfa = m_cfa;
addr_t old_afa = m_afa;
m_registers.clear();
m_full_unwind_plan_sp = m_fallback_unwind_plan_sp;
UnwindPlan::RowSP active_row =
m_fallback_unwind_plan_sp->GetRowForFunctionOffset(
m_current_offset_backed_up_one);
if (active_row &&
active_row->GetCFAValue().GetValueType() !=
UnwindPlan::Row::FAValue::unspecified) {
addr_t new_cfa;
if (!ReadFrameAddress(m_fallback_unwind_plan_sp->GetRegisterKind(),
active_row->GetCFAValue(), new_cfa) ||
new_cfa == 0 || new_cfa == 1 || new_cfa == LLDB_INVALID_ADDRESS) {
UnwindLogMsg("failed to get cfa with fallback unwindplan");
m_fallback_unwind_plan_sp.reset();
m_full_unwind_plan_sp = original_full_unwind_plan_sp;
return false;
}
m_cfa = new_cfa;
ReadFrameAddress(m_fallback_unwind_plan_sp->GetRegisterKind(),
active_row->GetAFAValue(), m_afa);
if (SavedLocationForRegister(pc_regnum.GetAsKind(eRegisterKindLLDB),
regloc) ==
UnwindLLDB::RegisterSearchResult::eRegisterFound) {
const RegisterInfo *reg_info =
GetRegisterInfoAtIndex(pc_regnum.GetAsKind(eRegisterKindLLDB));
if (reg_info) {
RegisterValue reg_value;
if (ReadRegisterValueFromRegisterLocation(regloc, reg_info,
reg_value)) {
new_caller_pc_value = reg_value.GetAsUInt64();
if (ProcessSP process_sp = m_thread.GetProcess()) {
if (ABISP abi_sp = process_sp->GetABI())
new_caller_pc_value = abi_sp->FixCodeAddress(new_caller_pc_value);
}
}
}
}
if (new_caller_pc_value == LLDB_INVALID_ADDRESS) {
UnwindLogMsg("failed to get a pc value for the caller frame with the "
"fallback unwind plan");
m_fallback_unwind_plan_sp.reset();
m_full_unwind_plan_sp = original_full_unwind_plan_sp;
m_cfa = old_cfa;
m_afa = old_afa;
return false;
}
if (old_caller_pc_value == new_caller_pc_value &&
m_cfa == old_cfa &&
m_afa == old_afa) {
UnwindLogMsg("fallback unwind plan got the same values for this frame "
"CFA and caller frame pc, not using");
m_fallback_unwind_plan_sp.reset();
m_full_unwind_plan_sp = original_full_unwind_plan_sp;
return false;
}
UnwindLogMsg("trying to unwind from this function with the UnwindPlan '%s' "
"because UnwindPlan '%s' failed.",
m_fallback_unwind_plan_sp->GetSourceName().GetCString(),
original_full_unwind_plan_sp->GetSourceName().GetCString());
// We've copied the fallback unwind plan into the full - now clear the
// fallback.
m_fallback_unwind_plan_sp.reset();
PropagateTrapHandlerFlagFromUnwindPlan(m_full_unwind_plan_sp);
}
return true;
}
bool RegisterContextUnwind::ForceSwitchToFallbackUnwindPlan() {
if (m_fallback_unwind_plan_sp.get() == nullptr)
return false;
if (m_full_unwind_plan_sp.get() == nullptr)
return false;
if (m_full_unwind_plan_sp.get() == m_fallback_unwind_plan_sp.get() ||
m_full_unwind_plan_sp->GetSourceName() ==
m_fallback_unwind_plan_sp->GetSourceName()) {
return false;
}
UnwindPlan::RowSP active_row =
m_fallback_unwind_plan_sp->GetRowForFunctionOffset(m_current_offset);
if (active_row &&
active_row->GetCFAValue().GetValueType() !=
UnwindPlan::Row::FAValue::unspecified) {
addr_t new_cfa;
if (!ReadFrameAddress(m_fallback_unwind_plan_sp->GetRegisterKind(),
active_row->GetCFAValue(), new_cfa) ||
new_cfa == 0 || new_cfa == 1 || new_cfa == LLDB_INVALID_ADDRESS) {
UnwindLogMsg("failed to get cfa with fallback unwindplan");
m_fallback_unwind_plan_sp.reset();
return false;
}
ReadFrameAddress(m_fallback_unwind_plan_sp->GetRegisterKind(),
active_row->GetAFAValue(), m_afa);
m_full_unwind_plan_sp = m_fallback_unwind_plan_sp;
m_fallback_unwind_plan_sp.reset();
m_registers.clear();
m_cfa = new_cfa;
PropagateTrapHandlerFlagFromUnwindPlan(m_full_unwind_plan_sp);
UnwindLogMsg("switched unconditionally to the fallback unwindplan %s",
m_full_unwind_plan_sp->GetSourceName().GetCString());
return true;
}
return false;
}
void RegisterContextUnwind::PropagateTrapHandlerFlagFromUnwindPlan(
lldb::UnwindPlanSP unwind_plan) {
if (unwind_plan->GetUnwindPlanForSignalTrap() != eLazyBoolYes) {
// Unwind plan does not indicate trap handler. Do nothing. We may
// already be flagged as trap handler flag due to the symbol being
// in the trap handler symbol list, and that should take precedence.
return;
} else if (m_frame_type != eNormalFrame) {
// If this is already a trap handler frame, nothing to do.
// If this is a skip or debug or invalid frame, don't override that.
return;
}
m_frame_type = eTrapHandlerFrame;
if (m_current_offset_backed_up_one != m_current_offset) {
// We backed up the pc by 1 to compute the symbol context, but
// now need to undo that because the pc of the trap handler
// frame may in fact be the first instruction of a signal return
// trampoline, rather than the instruction after a call. This
// happens on systems where the signal handler dispatch code, rather
// than calling the handler and being returned to, jumps to the
// handler after pushing the address of a return trampoline on the
// stack -- on these systems, when the handler returns, control will
// be transferred to the return trampoline, so that's the best
// symbol we can present in the callstack.
UnwindLogMsg("Resetting current offset and re-doing symbol lookup; "
"old symbol was %s",
GetSymbolOrFunctionName(m_sym_ctx).AsCString(""));
m_current_offset_backed_up_one = m_current_offset;
AddressRange addr_range;
m_sym_ctx_valid = m_current_pc.ResolveFunctionScope(m_sym_ctx, &addr_range);
UnwindLogMsg("Symbol is now %s",
GetSymbolOrFunctionName(m_sym_ctx).AsCString(""));
ExecutionContext exe_ctx(m_thread.shared_from_this());
Process *process = exe_ctx.GetProcessPtr();
Target *target = &process->GetTarget();
m_start_pc = addr_range.GetBaseAddress();
m_current_offset =
m_current_pc.GetLoadAddress(target) - m_start_pc.GetLoadAddress(target);
}
}
bool RegisterContextUnwind::ReadFrameAddress(
lldb::RegisterKind row_register_kind, UnwindPlan::Row::FAValue &fa,
addr_t &address) {
RegisterValue reg_value;
address = LLDB_INVALID_ADDRESS;
addr_t cfa_reg_contents;
ABISP abi_sp = m_thread.GetProcess()->GetABI();
switch (fa.GetValueType()) {
case UnwindPlan::Row::FAValue::isRegisterDereferenced: {
RegisterNumber cfa_reg(m_thread, row_register_kind,
fa.GetRegisterNumber());
if (ReadGPRValue(cfa_reg, cfa_reg_contents)) {
const RegisterInfo *reg_info =
GetRegisterInfoAtIndex(cfa_reg.GetAsKind(eRegisterKindLLDB));
RegisterValue reg_value;
if (reg_info) {
if (abi_sp)
cfa_reg_contents = abi_sp->FixDataAddress(cfa_reg_contents);
Status error = ReadRegisterValueFromMemory(
reg_info, cfa_reg_contents, reg_info->byte_size, reg_value);
if (error.Success()) {
address = reg_value.GetAsUInt64();
if (abi_sp)
address = abi_sp->FixCodeAddress(address);
UnwindLogMsg(
"CFA value via dereferencing reg %s (%d): reg has val 0x%" PRIx64
", CFA value is 0x%" PRIx64,
cfa_reg.GetName(), cfa_reg.GetAsKind(eRegisterKindLLDB),
cfa_reg_contents, address);
return true;
} else {
UnwindLogMsg("Tried to deref reg %s (%d) [0x%" PRIx64
"] but memory read failed.",
cfa_reg.GetName(), cfa_reg.GetAsKind(eRegisterKindLLDB),
cfa_reg_contents);
}
}
}
break;
}
case UnwindPlan::Row::FAValue::isRegisterPlusOffset: {
RegisterNumber cfa_reg(m_thread, row_register_kind,
fa.GetRegisterNumber());
if (ReadGPRValue(cfa_reg, cfa_reg_contents)) {
if (abi_sp)
cfa_reg_contents = abi_sp->FixDataAddress(cfa_reg_contents);
if (cfa_reg_contents == LLDB_INVALID_ADDRESS || cfa_reg_contents == 0 ||
cfa_reg_contents == 1) {
UnwindLogMsg(
"Got an invalid CFA register value - reg %s (%d), value 0x%" PRIx64,
cfa_reg.GetName(), cfa_reg.GetAsKind(eRegisterKindLLDB),
cfa_reg_contents);
cfa_reg_contents = LLDB_INVALID_ADDRESS;
return false;
}
address = cfa_reg_contents + fa.GetOffset();
UnwindLogMsg(
"CFA is 0x%" PRIx64 ": Register %s (%d) contents are 0x%" PRIx64
", offset is %d",
address, cfa_reg.GetName(), cfa_reg.GetAsKind(eRegisterKindLLDB),
cfa_reg_contents, fa.GetOffset());
return true;
}
break;
}
case UnwindPlan::Row::FAValue::isDWARFExpression: {
ExecutionContext exe_ctx(m_thread.shared_from_this());
Process *process = exe_ctx.GetProcessPtr();
DataExtractor dwarfdata(fa.GetDWARFExpressionBytes(),
fa.GetDWARFExpressionLength(),
process->GetByteOrder(),
process->GetAddressByteSize());
ModuleSP opcode_ctx;
DWARFExpressionList dwarfexpr(opcode_ctx, dwarfdata, nullptr);
dwarfexpr.GetMutableExpressionAtAddress()->SetRegisterKind(
row_register_kind);
llvm::Expected<Value> result =
dwarfexpr.Evaluate(&exe_ctx, this, 0, nullptr, nullptr);
if (result) {
address = result->GetScalar().ULongLong();
if (ABISP abi_sp = m_thread.GetProcess()->GetABI())
address = abi_sp->FixCodeAddress(address);
UnwindLogMsg("CFA value set by DWARF expression is 0x%" PRIx64,
address);
return true;
}
UnwindLogMsg("Failed to set CFA value via DWARF expression: %s",
llvm::toString(result.takeError()).c_str());
break;
}
case UnwindPlan::Row::FAValue::isRaSearch: {
Process &process = *m_thread.GetProcess();
lldb::addr_t return_address_hint = GetReturnAddressHint(fa.GetOffset());
if (return_address_hint == LLDB_INVALID_ADDRESS)
return false;
const unsigned max_iterations = 256;
for (unsigned i = 0; i < max_iterations; ++i) {
Status st;
lldb::addr_t candidate_addr =
return_address_hint + i * process.GetAddressByteSize();
lldb::addr_t candidate =
process.ReadPointerFromMemory(candidate_addr, st);
if (st.Fail()) {
UnwindLogMsg("Cannot read memory at 0x%" PRIx64 ": %s", candidate_addr,
st.AsCString());
return false;
}
Address addr;
uint32_t permissions;
if (process.GetLoadAddressPermissions(candidate, permissions) &&
permissions & lldb::ePermissionsExecutable) {
address = candidate_addr;
UnwindLogMsg("Heuristically found CFA: 0x%" PRIx64, address);
return true;
}
}
UnwindLogMsg("No suitable CFA found");
break;
}
default:
return false;
}
return false;
}
lldb::addr_t RegisterContextUnwind::GetReturnAddressHint(int32_t plan_offset) {
addr_t hint;
if (!ReadGPRValue(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, hint))
return LLDB_INVALID_ADDRESS;
if (!m_sym_ctx.module_sp || !m_sym_ctx.symbol)
return LLDB_INVALID_ADDRESS;
if (ABISP abi_sp = m_thread.GetProcess()->GetABI())
hint = abi_sp->FixCodeAddress(hint);
hint += plan_offset;
if (auto next = GetNextFrame()) {
if (!next->m_sym_ctx.module_sp || !next->m_sym_ctx.symbol)
return LLDB_INVALID_ADDRESS;
if (auto expected_size =
next->m_sym_ctx.module_sp->GetSymbolFile()->GetParameterStackSize(
*next->m_sym_ctx.symbol))
hint += *expected_size;
else {
UnwindLogMsgVerbose("Could not retrieve parameter size: %s",
llvm::toString(expected_size.takeError()).c_str());
return LLDB_INVALID_ADDRESS;
}
}
return hint;
}
// Retrieve a general purpose register value for THIS frame, as saved by the
// NEXT frame, i.e. the frame that
// this frame called. e.g.
//
// foo () { }
// bar () { foo (); }
// main () { bar (); }
//
// stopped in foo() so
// frame 0 - foo
// frame 1 - bar
// frame 2 - main
// and this RegisterContext is for frame 1 (bar) - if we want to get the pc
// value for frame 1, we need to ask
// where frame 0 (the "next" frame) saved that and retrieve the value.
bool RegisterContextUnwind::ReadGPRValue(lldb::RegisterKind register_kind,
uint32_t regnum, addr_t &value) {
if (!IsValid())
return false;
uint32_t lldb_regnum;
if (register_kind == eRegisterKindLLDB) {
lldb_regnum = regnum;
} else if (!m_thread.GetRegisterContext()->ConvertBetweenRegisterKinds(
register_kind, regnum, eRegisterKindLLDB, lldb_regnum)) {
return false;
}
const RegisterInfo *reg_info = GetRegisterInfoAtIndex(lldb_regnum);
assert(reg_info);
if (!reg_info) {
UnwindLogMsg(
"Could not find RegisterInfo definition for lldb register number %d",
lldb_regnum);
return false;
}
uint32_t generic_regnum = LLDB_INVALID_REGNUM;
if (register_kind == eRegisterKindGeneric)
generic_regnum = regnum;
else
m_thread.GetRegisterContext()->ConvertBetweenRegisterKinds(
register_kind, regnum, eRegisterKindGeneric, generic_regnum);
ABISP abi_sp = m_thread.GetProcess()->GetABI();
RegisterValue reg_value;
// if this is frame 0 (currently executing frame), get the requested reg
// contents from the actual thread registers
if (IsFrameZero()) {
if (m_thread.GetRegisterContext()->ReadRegister(reg_info, reg_value)) {
value = reg_value.GetAsUInt64();
if (abi_sp && generic_regnum != LLDB_INVALID_REGNUM) {
if (generic_regnum == LLDB_REGNUM_GENERIC_PC ||
generic_regnum == LLDB_REGNUM_GENERIC_RA)
value = abi_sp->FixCodeAddress(value);
if (generic_regnum == LLDB_REGNUM_GENERIC_SP ||
generic_regnum == LLDB_REGNUM_GENERIC_FP)
value = abi_sp->FixDataAddress(value);
}
return true;
}
return false;
}
bool pc_register = false;
if (generic_regnum != LLDB_INVALID_REGNUM &&
(generic_regnum == LLDB_REGNUM_GENERIC_PC ||
generic_regnum == LLDB_REGNUM_GENERIC_RA))
pc_register = true;
lldb_private::UnwindLLDB::RegisterLocation regloc;
if (!m_parent_unwind.SearchForSavedLocationForRegister(
lldb_regnum, regloc, m_frame_number - 1, pc_register)) {
return false;
}
if (ReadRegisterValueFromRegisterLocation(regloc, reg_info, reg_value)) {
value = reg_value.GetAsUInt64();
if (pc_register) {
if (ABISP abi_sp = m_thread.GetProcess()->GetABI()) {
value = abi_sp->FixCodeAddress(value);
}
}
return true;
}
return false;
}
bool RegisterContextUnwind::ReadGPRValue(const RegisterNumber &regnum,
addr_t &value) {
return ReadGPRValue(regnum.GetRegisterKind(), regnum.GetRegisterNumber(),
value);
}
// Find the value of a register in THIS frame
bool RegisterContextUnwind::ReadRegister(const RegisterInfo *reg_info,
RegisterValue &value) {
if (!IsValid())
return false;
const uint32_t lldb_regnum = reg_info->kinds[eRegisterKindLLDB];
UnwindLogMsgVerbose("looking for register saved location for reg %d",
lldb_regnum);
// If this is the 0th frame, hand this over to the live register context
if (IsFrameZero()) {
UnwindLogMsgVerbose("passing along to the live register context for reg %d",
lldb_regnum);
return m_thread.GetRegisterContext()->ReadRegister(reg_info, value);
}
bool is_pc_regnum = false;
if (reg_info->kinds[eRegisterKindGeneric] == LLDB_REGNUM_GENERIC_PC ||
reg_info->kinds[eRegisterKindGeneric] == LLDB_REGNUM_GENERIC_RA) {
is_pc_regnum = true;
}
lldb_private::UnwindLLDB::RegisterLocation regloc;
// Find out where the NEXT frame saved THIS frame's register contents
if (!m_parent_unwind.SearchForSavedLocationForRegister(
lldb_regnum, regloc, m_frame_number - 1, is_pc_regnum))
return false;
bool result = ReadRegisterValueFromRegisterLocation(regloc, reg_info, value);
if (result) {
if (is_pc_regnum && value.GetType() == RegisterValue::eTypeUInt64) {
addr_t reg_value = value.GetAsUInt64(LLDB_INVALID_ADDRESS);
if (reg_value != LLDB_INVALID_ADDRESS) {
if (ABISP abi_sp = m_thread.GetProcess()->GetABI())
value = abi_sp->FixCodeAddress(reg_value);
}
}
}
return result;
}
bool RegisterContextUnwind::WriteRegister(const RegisterInfo *reg_info,
const RegisterValue &value) {
if (!IsValid())
return false;
const uint32_t lldb_regnum = reg_info->kinds[eRegisterKindLLDB];
UnwindLogMsgVerbose("looking for register saved location for reg %d",
lldb_regnum);
// If this is the 0th frame, hand this over to the live register context
if (IsFrameZero()) {
UnwindLogMsgVerbose("passing along to the live register context for reg %d",
lldb_regnum);
return m_thread.GetRegisterContext()->WriteRegister(reg_info, value);
}
lldb_private::UnwindLLDB::RegisterLocation regloc;
// Find out where the NEXT frame saved THIS frame's register contents
if (!m_parent_unwind.SearchForSavedLocationForRegister(
lldb_regnum, regloc, m_frame_number - 1, false))
return false;
return WriteRegisterValueToRegisterLocation(regloc, reg_info, value);
}
// Don't need to implement this one
bool RegisterContextUnwind::ReadAllRegisterValues(
lldb::WritableDataBufferSP &data_sp) {
return false;
}
// Don't need to implement this one
bool RegisterContextUnwind::WriteAllRegisterValues(
const lldb::DataBufferSP &data_sp) {
return false;
}
// Retrieve the pc value for THIS from
bool RegisterContextUnwind::GetCFA(addr_t &cfa) {
if (!IsValid()) {
return false;
}
if (m_cfa == LLDB_INVALID_ADDRESS) {
return false;
}
cfa = m_cfa;
return true;
}
RegisterContextUnwind::SharedPtr RegisterContextUnwind::GetNextFrame() const {
RegisterContextUnwind::SharedPtr regctx;
if (m_frame_number == 0)
return regctx;
return m_parent_unwind.GetRegisterContextForFrameNum(m_frame_number - 1);
}
RegisterContextUnwind::SharedPtr RegisterContextUnwind::GetPrevFrame() const {
RegisterContextUnwind::SharedPtr regctx;
return m_parent_unwind.GetRegisterContextForFrameNum(m_frame_number + 1);
}
// Retrieve the address of the start of the function of THIS frame
bool RegisterContextUnwind::GetStartPC(addr_t &start_pc) {
if (!IsValid())
return false;
if (!m_start_pc.IsValid()) {
bool read_successfully = ReadPC (start_pc);
if (read_successfully)
{
ProcessSP process_sp (m_thread.GetProcess());
if (process_sp)
{
if (ABISP abi_sp = process_sp->GetABI())
start_pc = abi_sp->FixCodeAddress(start_pc);
}
}
return read_successfully;
}
start_pc = m_start_pc.GetLoadAddress(CalculateTarget().get());
return true;
}
// Retrieve the current pc value for THIS frame, as saved by the NEXT frame.
bool RegisterContextUnwind::ReadPC(addr_t &pc) {
if (!IsValid())
return false;
bool above_trap_handler = false;
if (GetNextFrame().get() && GetNextFrame()->IsValid() &&
GetNextFrame()->IsTrapHandlerFrame())
above_trap_handler = true;
if (ReadGPRValue(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, pc)) {
// A pc value of 0 or 1 is impossible in the middle of the stack -- it
// indicates the end of a stack walk.
// On the currently executing frame (or such a frame interrupted
// asynchronously by sigtramp et al) this may occur if code has jumped
// through a NULL pointer -- we want to be able to unwind past that frame
// to help find the bug.
if (ABISP abi_sp = m_thread.GetProcess()->GetABI())
pc = abi_sp->FixCodeAddress(pc);
return !(m_all_registers_available == false &&
above_trap_handler == false && (pc == 0 || pc == 1));
} else {
return false;
}
}
void RegisterContextUnwind::UnwindLogMsg(const char *fmt, ...) {
Log *log = GetLog(LLDBLog::Unwind);
if (!log)
return;
va_list args;
va_start(args, fmt);
llvm::SmallString<0> logmsg;
if (VASprintf(logmsg, fmt, args)) {
LLDB_LOGF(log, "%*sth%d/fr%u %s",
m_frame_number < 100 ? m_frame_number : 100, "",
m_thread.GetIndexID(), m_frame_number, logmsg.c_str());
}
va_end(args);
}
void RegisterContextUnwind::UnwindLogMsgVerbose(const char *fmt, ...) {
Log *log = GetLog(LLDBLog::Unwind);
if (!log || !log->GetVerbose())
return;
va_list args;
va_start(args, fmt);
llvm::SmallString<0> logmsg;
if (VASprintf(logmsg, fmt, args)) {
LLDB_LOGF(log, "%*sth%d/fr%u %s",
m_frame_number < 100 ? m_frame_number : 100, "",
m_thread.GetIndexID(), m_frame_number, logmsg.c_str());
}
va_end(args);
}