Files
clang-p2996/llvm/test/Transforms/LoopVectorize/RISCV/riscv-vector-reverse.ll
Philip Reames 7cc6b80d9a [RISCV][CostModel] Model vrgather.vv as being quadradic in LMUL
vrgather.vv across multiple vector registers (i.e. LMUL > 1) requires all to all data movement. This includes two conceptual sets of changes:

    For permutes, we were modeling these as being linear in LMUL.
    For reverse, we were modeling them as being fixed cost in LMUL.

Both were wrong, and have been adjusted to O(LMUL^2).  Noticed via code inspection while looking at something else.

Its worth asking whether we should be lowering reverse to something other than a vrgather at high LMULs. That shuffle is quite expensive.  (Future work)

Differential Revision: https://reviews.llvm.org/D152019
2023-07-18 11:52:34 -07:00

289 lines
18 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py
; This is the loop in c++ being vectorize in this file with
;experimental.vector.reverse
; #pragma clang loop vectorize_width(4, scalable)
; for (int i = N-1; i >= 0; --i)
; a[i] = b[i] + 1.0;
; REQUIRES: asserts
; RUN: opt -passes=loop-vectorize,dce,instcombine -mtriple riscv64-linux-gnu \
; RUN: -mattr=+v -debug-only=loop-vectorize -scalable-vectorization=on \
; RUN: -riscv-v-vector-bits-min=128 -disable-output < %s 2>&1 | FileCheck %s
define void @vector_reverse_i64(ptr nocapture noundef writeonly %A, ptr nocapture noundef readonly %B, i32 noundef signext %n) {
; CHECK-LABEL: 'vector_reverse_i64'
; CHECK-NEXT: LV: Loop hints: force=enabled width=vscale x 4 interleave=0
; CHECK-NEXT: LV: Found a loop: for.body
; CHECK-NEXT: LV: Found an induction variable.
; CHECK-NEXT: LV: Found an induction variable.
; CHECK-NEXT: LV: Did not find one integer induction var.
; CHECK-NEXT: LV: We can vectorize this loop (with a runtime bound check)!
; CHECK-NEXT: LV: Found trip count: 0
; CHECK-NEXT: LV: Scalable vectorization is available
; CHECK-NEXT: LV: The max safe fixed VF is: 67108864.
; CHECK-NEXT: LV: The max safe scalable VF is: vscale x 4294967295.
; CHECK-NEXT: LV: Found uniform instruction: %cmp = icmp ugt i64 %indvars.iv, 1
; CHECK-NEXT: LV: Found uniform instruction: %arrayidx = getelementptr inbounds i32, ptr %B, i64 %idxprom
; CHECK-NEXT: LV: Found uniform instruction: %arrayidx3 = getelementptr inbounds i32, ptr %A, i64 %idxprom
; CHECK-NEXT: LV: Found uniform instruction: %idxprom = zext i32 %i.0 to i64
; CHECK-NEXT: LV: Found uniform instruction: %idxprom = zext i32 %i.0 to i64
; CHECK-NEXT: LV: Found uniform instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
; CHECK-NEXT: LV: Found uniform instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1
; CHECK-NEXT: LV: Found uniform instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
; CHECK-NEXT: LV: Found uniform instruction: %i.0 = add nsw i32 %i.0.in8, -1
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0 = add nsw i32 %i.0.in8, -1
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %idxprom = zext i32 %i.0 to i64
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx = getelementptr inbounds i32, ptr %B, i64 %idxprom
; CHECK-NEXT: LV: Found an estimated cost of 11 for VF vscale x 4 For instruction: %1 = load i32, ptr %arrayidx, align 4
; CHECK-NEXT: LV: Found an estimated cost of 2 for VF vscale x 4 For instruction: %add9 = add i32 %1, 1
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx3 = getelementptr inbounds i32, ptr %A, i64 %idxprom
; CHECK-NEXT: LV: Found an estimated cost of 11 for VF vscale x 4 For instruction: store i32 %add9, ptr %arrayidx3, align 4
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %cmp = icmp ugt i64 %indvars.iv, 1
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit, !llvm.loop !0
; CHECK-NEXT: LV: Using user VF vscale x 4.
; CHECK-NEXT: LV: Scalarizing: %i.0 = add nsw i32 %i.0.in8, -1
; CHECK-NEXT: LV: Scalarizing: %idxprom = zext i32 %i.0 to i64
; CHECK-NEXT: LV: Scalarizing: %arrayidx = getelementptr inbounds i32, ptr %B, i64 %idxprom
; CHECK-NEXT: LV: Scalarizing: %arrayidx3 = getelementptr inbounds i32, ptr %A, i64 %idxprom
; CHECK-NEXT: LV: Scalarizing: %cmp = icmp ugt i64 %indvars.iv, 1
; CHECK-NEXT: LV: Scalarizing: %indvars.iv.next = add nsw i64 %indvars.iv, -1
; CHECK-NEXT: VPlan 'Initial VPlan for VF={vscale x 4},UF>=1' {
; CHECK-NEXT: Live-in vp<%0> = vector-trip-count
; CHECK-NEXT: vp<%1> = original trip-count
; CHECK: ph:
; CHECK-NEXT: EMIT vp<%1> = EXPAND SCEV (zext i32 %n to i64)
; CHECK-NEXT: No successors
; CHECK: vector.ph:
; CHECK-NEXT: Successor(s): vector loop
; CHECK: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<%2> = CANONICAL-INDUCTION
; CHECK-NEXT: vp<%3> = DERIVED-IV ir<%n> + vp<%2> * ir<-1>
; CHECK-NEXT: vp<%4> = SCALAR-STEPS vp<%3>, ir<-1>
; CHECK-NEXT: CLONE ir<%i.0> = add nsw vp<%4>, ir<-1>
; CHECK-NEXT: CLONE ir<%idxprom> = zext ir<%i.0>
; CHECK-NEXT: CLONE ir<%arrayidx> = getelementptr inbounds ir<%B>, ir<%idxprom>
; CHECK-NEXT: WIDEN ir<%1> = load ir<%arrayidx>
; CHECK-NEXT: WIDEN ir<%add9> = add ir<%1>, ir<1>
; CHECK-NEXT: CLONE ir<%arrayidx3> = getelementptr inbounds ir<%A>, ir<%idxprom>
; CHECK-NEXT: WIDEN store ir<%arrayidx3>, ir<%add9>
; CHECK-NEXT: EMIT vp<%11> = VF * UF +(nuw) vp<%2>
; CHECK-NEXT: EMIT branch-on-count vp<%11> vp<%0>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK: middle.block:
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0 = add nsw i32 %i.0.in8, -1
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %idxprom = zext i32 %i.0 to i64
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx = getelementptr inbounds i32, ptr %B, i64 %idxprom
; CHECK-NEXT: LV: Found an estimated cost of 11 for VF vscale x 4 For instruction: %1 = load i32, ptr %arrayidx, align 4
; CHECK-NEXT: LV: Found an estimated cost of 2 for VF vscale x 4 For instruction: %add9 = add i32 %1, 1
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx3 = getelementptr inbounds i32, ptr %A, i64 %idxprom
; CHECK-NEXT: LV: Found an estimated cost of 11 for VF vscale x 4 For instruction: store i32 %add9, ptr %arrayidx3, align 4
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %cmp = icmp ugt i64 %indvars.iv, 1
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit, !llvm.loop !0
; CHECK-NEXT: LV(REG): Calculating max register usage:
; CHECK-NEXT: LV(REG): At #0 Interval # 0
; CHECK-NEXT: LV(REG): At #1 Interval # 1
; CHECK-NEXT: LV(REG): At #2 Interval # 2
; CHECK-NEXT: LV(REG): At #3 Interval # 2
; CHECK-NEXT: LV(REG): At #4 Interval # 2
; CHECK-NEXT: LV(REG): At #5 Interval # 3
; CHECK-NEXT: LV(REG): At #6 Interval # 3
; CHECK-NEXT: LV(REG): At #7 Interval # 3
; CHECK-NEXT: LV(REG): At #9 Interval # 1
; CHECK-NEXT: LV(REG): At #10 Interval # 2
; CHECK-NEXT: LV(REG): VF = vscale x 4
; CHECK-NEXT: LV(REG): Found max usage: 2 item
; CHECK-NEXT: LV(REG): RegisterClass: RISCV::GPRRC, 3 registers
; CHECK-NEXT: LV(REG): RegisterClass: RISCV::VRRC, 2 registers
; CHECK-NEXT: LV(REG): Found invariant usage: 1 item
; CHECK-NEXT: LV(REG): RegisterClass: RISCV::GPRRC, 1 registers
; CHECK-NEXT: LV: The target has 31 registers of RISCV::GPRRC register class
; CHECK-NEXT: LV: The target has 32 registers of RISCV::VRRC register class
; CHECK-NEXT: LV: Loop cost is 31
; CHECK-NEXT: LV: IC is 1
; CHECK-NEXT: LV: VF is vscale x 4
; CHECK-NEXT: LV: Not Interleaving.
; CHECK-NEXT: LV: Interleaving is not beneficial.
; CHECK-NEXT: LV: Found a vectorizable loop (vscale x 4) in <stdin>
; CHECK-NEXT: LEV: Epilogue vectorization is not profitable for this loop
; CHECK-NEXT: Executing best plan with VF=vscale x 4, UF=1
; CHECK-NEXT: LV: Interleaving disabled by the pass manager
;
entry:
%cmp7 = icmp sgt i32 %n, 0
br i1 %cmp7, label %for.body.preheader, label %for.cond.cleanup
for.body.preheader: ; preds = %entry
%0 = zext i32 %n to i64
br label %for.body
for.cond.cleanup: ; preds = %for.body, %entry
ret void
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
%i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
%i.0 = add nsw i32 %i.0.in8, -1
%idxprom = zext i32 %i.0 to i64
%arrayidx = getelementptr inbounds i32, ptr %B, i64 %idxprom
%1 = load i32, ptr %arrayidx, align 4
%add9 = add i32 %1, 1
%arrayidx3 = getelementptr inbounds i32, ptr %A, i64 %idxprom
store i32 %add9, ptr %arrayidx3, align 4
%cmp = icmp ugt i64 %indvars.iv, 1
%indvars.iv.next = add nsw i64 %indvars.iv, -1
br i1 %cmp, label %for.body, label %for.cond.cleanup, !llvm.loop !0
}
define void @vector_reverse_f32(ptr nocapture noundef writeonly %A, ptr nocapture noundef readonly %B, i32 noundef signext %n) {
; CHECK-LABEL: 'vector_reverse_f32'
; CHECK-NEXT: LV: Loop hints: force=enabled width=vscale x 4 interleave=0
; CHECK-NEXT: LV: Found a loop: for.body
; CHECK-NEXT: LV: Found an induction variable.
; CHECK-NEXT: LV: Found an induction variable.
; CHECK-NEXT: LV: Found FP op with unsafe algebra.
; CHECK-NEXT: LV: Did not find one integer induction var.
; CHECK-NEXT: LV: We can vectorize this loop (with a runtime bound check)!
; CHECK-NEXT: LV: Found trip count: 0
; CHECK-NEXT: LV: Scalable vectorization is available
; CHECK-NEXT: LV: The max safe fixed VF is: 67108864.
; CHECK-NEXT: LV: The max safe scalable VF is: vscale x 4294967295.
; CHECK-NEXT: LV: Found uniform instruction: %cmp = icmp ugt i64 %indvars.iv, 1
; CHECK-NEXT: LV: Found uniform instruction: %arrayidx = getelementptr inbounds float, ptr %B, i64 %idxprom
; CHECK-NEXT: LV: Found uniform instruction: %arrayidx3 = getelementptr inbounds float, ptr %A, i64 %idxprom
; CHECK-NEXT: LV: Found uniform instruction: %idxprom = zext i32 %i.0 to i64
; CHECK-NEXT: LV: Found uniform instruction: %idxprom = zext i32 %i.0 to i64
; CHECK-NEXT: LV: Found uniform instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
; CHECK-NEXT: LV: Found uniform instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1
; CHECK-NEXT: LV: Found uniform instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
; CHECK-NEXT: LV: Found uniform instruction: %i.0 = add nsw i32 %i.0.in8, -1
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0 = add nsw i32 %i.0.in8, -1
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %idxprom = zext i32 %i.0 to i64
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx = getelementptr inbounds float, ptr %B, i64 %idxprom
; CHECK-NEXT: LV: Found an estimated cost of 11 for VF vscale x 4 For instruction: %1 = load float, ptr %arrayidx, align 4
; CHECK-NEXT: LV: Found an estimated cost of 2 for VF vscale x 4 For instruction: %conv1 = fadd float %1, 1.000000e+00
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx3 = getelementptr inbounds float, ptr %A, i64 %idxprom
; CHECK-NEXT: LV: Found an estimated cost of 11 for VF vscale x 4 For instruction: store float %conv1, ptr %arrayidx3, align 4
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %cmp = icmp ugt i64 %indvars.iv, 1
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit, !llvm.loop !0
; CHECK-NEXT: LV: Using user VF vscale x 4.
; CHECK-NEXT: LV: Scalarizing: %i.0 = add nsw i32 %i.0.in8, -1
; CHECK-NEXT: LV: Scalarizing: %idxprom = zext i32 %i.0 to i64
; CHECK-NEXT: LV: Scalarizing: %arrayidx = getelementptr inbounds float, ptr %B, i64 %idxprom
; CHECK-NEXT: LV: Scalarizing: %arrayidx3 = getelementptr inbounds float, ptr %A, i64 %idxprom
; CHECK-NEXT: LV: Scalarizing: %cmp = icmp ugt i64 %indvars.iv, 1
; CHECK-NEXT: LV: Scalarizing: %indvars.iv.next = add nsw i64 %indvars.iv, -1
; CHECK-NEXT: VPlan 'Initial VPlan for VF={vscale x 4},UF>=1' {
; CHECK-NEXT: Live-in vp<%0> = vector-trip-count
; CHECK-NEXT: vp<%1> = original trip-count
; CHECK: ph:
; CHECK-NEXT: EMIT vp<%1> = EXPAND SCEV (zext i32 %n to i64)
; CHECK-NEXT: No successors
; CHECK: vector.ph:
; CHECK-NEXT: Successor(s): vector loop
; CHECK: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<%2> = CANONICAL-INDUCTION
; CHECK-NEXT: vp<%3> = DERIVED-IV ir<%n> + vp<%2> * ir<-1>
; CHECK-NEXT: vp<%4> = SCALAR-STEPS vp<%3>, ir<-1>
; CHECK-NEXT: CLONE ir<%i.0> = add nsw vp<%4>, ir<-1>
; CHECK-NEXT: CLONE ir<%idxprom> = zext ir<%i.0>
; CHECK-NEXT: CLONE ir<%arrayidx> = getelementptr inbounds ir<%B>, ir<%idxprom>
; CHECK-NEXT: WIDEN ir<%1> = load ir<%arrayidx>
; CHECK-NEXT: WIDEN ir<%conv1> = fadd ir<%1>, ir<1.000000e+00>
; CHECK-NEXT: CLONE ir<%arrayidx3> = getelementptr inbounds ir<%A>, ir<%idxprom>
; CHECK-NEXT: WIDEN store ir<%arrayidx3>, ir<%conv1>
; CHECK-NEXT: EMIT vp<%11> = VF * UF +(nuw) vp<%2>
; CHECK-NEXT: EMIT branch-on-count vp<%11> vp<%0>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK: middle.block:
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0 = add nsw i32 %i.0.in8, -1
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %idxprom = zext i32 %i.0 to i64
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx = getelementptr inbounds float, ptr %B, i64 %idxprom
; CHECK-NEXT: LV: Found an estimated cost of 11 for VF vscale x 4 For instruction: %1 = load float, ptr %arrayidx, align 4
; CHECK-NEXT: LV: Found an estimated cost of 2 for VF vscale x 4 For instruction: %conv1 = fadd float %1, 1.000000e+00
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx3 = getelementptr inbounds float, ptr %A, i64 %idxprom
; CHECK-NEXT: LV: Found an estimated cost of 11 for VF vscale x 4 For instruction: store float %conv1, ptr %arrayidx3, align 4
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %cmp = icmp ugt i64 %indvars.iv, 1
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit, !llvm.loop !0
; CHECK-NEXT: LV(REG): Calculating max register usage:
; CHECK-NEXT: LV(REG): At #0 Interval # 0
; CHECK-NEXT: LV(REG): At #1 Interval # 1
; CHECK-NEXT: LV(REG): At #2 Interval # 2
; CHECK-NEXT: LV(REG): At #3 Interval # 2
; CHECK-NEXT: LV(REG): At #4 Interval # 2
; CHECK-NEXT: LV(REG): At #5 Interval # 3
; CHECK-NEXT: LV(REG): At #6 Interval # 3
; CHECK-NEXT: LV(REG): At #7 Interval # 3
; CHECK-NEXT: LV(REG): At #9 Interval # 1
; CHECK-NEXT: LV(REG): At #10 Interval # 2
; CHECK-NEXT: LV(REG): VF = vscale x 4
; CHECK-NEXT: LV(REG): Found max usage: 2 item
; CHECK-NEXT: LV(REG): RegisterClass: RISCV::GPRRC, 3 registers
; CHECK-NEXT: LV(REG): RegisterClass: RISCV::VRRC, 2 registers
; CHECK-NEXT: LV(REG): Found invariant usage: 1 item
; CHECK-NEXT: LV(REG): RegisterClass: RISCV::GPRRC, 1 registers
; CHECK-NEXT: LV: The target has 31 registers of RISCV::GPRRC register class
; CHECK-NEXT: LV: The target has 32 registers of RISCV::VRRC register class
; CHECK-NEXT: LV: Loop cost is 31
; CHECK-NEXT: LV: IC is 1
; CHECK-NEXT: LV: VF is vscale x 4
; CHECK-NEXT: LV: Not Interleaving.
; CHECK-NEXT: LV: Interleaving is not beneficial.
; CHECK-NEXT: LV: Found a vectorizable loop (vscale x 4) in <stdin>
; CHECK-NEXT: LEV: Epilogue vectorization is not profitable for this loop
; CHECK-NEXT: Executing best plan with VF=vscale x 4, UF=1
; CHECK-NEXT: LV: Interleaving disabled by the pass manager
;
entry:
%cmp7 = icmp sgt i32 %n, 0
br i1 %cmp7, label %for.body.preheader, label %for.cond.cleanup
for.body.preheader: ; preds = %entry
%0 = zext i32 %n to i64
br label %for.body
for.cond.cleanup: ; preds = %for.body, %entry
ret void
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
%i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
%i.0 = add nsw i32 %i.0.in8, -1
%idxprom = zext i32 %i.0 to i64
%arrayidx = getelementptr inbounds float, ptr %B, i64 %idxprom
%1 = load float, ptr %arrayidx, align 4
%conv1 = fadd float %1, 1.000000e+00
%arrayidx3 = getelementptr inbounds float, ptr %A, i64 %idxprom
store float %conv1, ptr %arrayidx3, align 4
%cmp = icmp ugt i64 %indvars.iv, 1
%indvars.iv.next = add nsw i64 %indvars.iv, -1
br i1 %cmp, label %for.body, label %for.cond.cleanup, !llvm.loop !0
}
!0 = distinct !{!0, !1, !2, !3, !4}
!1 = !{!"llvm.loop.mustprogress"}
!2 = !{!"llvm.loop.vectorize.width", i32 4}
!3 = !{!"llvm.loop.vectorize.scalable.enable", i1 true}
!4 = !{!"llvm.loop.vectorize.enable", i1 true}