Files
clang-p2996/mlir/lib/Analysis/DataFlow/LivenessAnalysis.cpp
Srishti Srivastava a9ab845cb1 [MLIR][analysis] Fix error in the sparse backward dataflow analysis
Earlier, in the sparse backward dataflow analysis, data from the results
of an op implementing `RegionBranchOpInterface` was considered to flow
into the operands of every op that did not implement the
`RegionBranchTerminatorOpInterface` but was return-like and present
in a region of the former. It was thus also expected that the number of
results of the former be equal to the number of operands in the latter.

This understanding of dataflow is incorrect and thus this expectation is
also not justified. This commit fixes this incorrect understanding.

This commit ensures that these return-like ops are handled just like the
ops implementing the `RegionBranchTerminatorOpInterface`, which means
that, if this op has a region `A` whose successors are regions `B`, `C`,
and `D`, then data flows from the arguments (successor inputs) of `B`,
`C`, and `D` to the corresponding successor operands of this op.

This fix is also propagated to liveness analysis that earlier relied on
this incorrect implementation of the sparse backward dataflow analysis
framework and corrects some incorrect assumptions made in it.

Also cleaned up some unnecessary comments from the test file.

Issue: https://github.com/llvm/llvm-project/issues/64139.

Signed-off-by: Srishti Srivastava <srishtisrivastava.ai@gmail.com>

Reviewed By: jcai19, matthiaskramm, Mogball

Differential Revision: https://reviews.llvm.org/D156376
2023-07-29 06:31:24 +00:00

198 lines
7.9 KiB
C++

//===- LivenessAnalysis.cpp - Liveness analysis ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <mlir/Analysis/DataFlow/LivenessAnalysis.h>
#include <mlir/Analysis/DataFlow/ConstantPropagationAnalysis.h>
#include <mlir/Analysis/DataFlow/DeadCodeAnalysis.h>
#include <mlir/Analysis/DataFlow/SparseAnalysis.h>
#include <mlir/Analysis/DataFlowFramework.h>
#include <mlir/IR/Operation.h>
#include <mlir/IR/Value.h>
#include <mlir/Interfaces/SideEffectInterfaces.h>
#include <mlir/Support/LLVM.h>
using namespace mlir;
using namespace mlir::dataflow;
//===----------------------------------------------------------------------===//
// Liveness
//===----------------------------------------------------------------------===//
void Liveness::print(raw_ostream &os) const {
os << (isLive ? "live" : "not live");
}
ChangeResult Liveness::markLive() {
bool wasLive = isLive;
isLive = true;
return wasLive ? ChangeResult::NoChange : ChangeResult::Change;
}
ChangeResult Liveness::meet(const AbstractSparseLattice &other) {
const auto *otherLiveness = reinterpret_cast<const Liveness *>(&other);
return otherLiveness->isLive ? markLive() : ChangeResult::NoChange;
}
//===----------------------------------------------------------------------===//
// LivenessAnalysis
//===----------------------------------------------------------------------===//
/// For every value, liveness analysis determines whether or not it is "live".
///
/// A value is considered "live" iff it:
/// (1) has memory effects OR
/// (2) is returned by a public function OR
/// (3) is used to compute a value of type (1) or (2).
/// It is also to be noted that a value could be of multiple types (1/2/3) at
/// the same time.
///
/// A value "has memory effects" iff it:
/// (1.a) is an operand of an op with memory effects OR
/// (1.b) is a non-forwarded branch operand and a block where its op could
/// take the control has an op with memory effects.
///
/// A value `A` is said to be "used to compute" value `B` iff `B` cannot be
/// computed in the absence of `A`. Thus, in this implementation, we say that
/// value `A` is used to compute value `B` iff:
/// (3.a) `B` is a result of an op with operand `A` OR
/// (3.b) `A` is used to compute some value `C` and `C` is used to compute
/// `B`.
void LivenessAnalysis::visitOperation(Operation *op,
ArrayRef<Liveness *> operands,
ArrayRef<const Liveness *> results) {
// This marks values of type (1.a) liveness as "live".
if (!isMemoryEffectFree(op)) {
for (auto *operand : operands)
propagateIfChanged(operand, operand->markLive());
}
// This marks values of type (3) liveness as "live".
bool foundLiveResult = false;
for (const Liveness *r : results) {
if (r->isLive && !foundLiveResult) {
// It is assumed that each operand is used to compute each result of an
// op. Thus, if at least one result is live, each operand is live.
for (Liveness *operand : operands)
meet(operand, *r);
foundLiveResult = true;
}
addDependency(const_cast<Liveness *>(r), op);
}
}
void LivenessAnalysis::visitBranchOperand(OpOperand &operand) {
// We know (at the moment) and assume (for the future) that `operand` is a
// non-forwarded branch operand of a `RegionBranchOpInterface`,
// `BranchOpInterface`, `RegionBranchTerminatorOpInterface` or return-like op.
Operation *op = operand.getOwner();
assert((isa<RegionBranchOpInterface>(op) || isa<BranchOpInterface>(op) ||
isa<RegionBranchTerminatorOpInterface>(op) ||
op->hasTrait<OpTrait::ReturnLike>()) &&
"expected the op to be `RegionBranchOpInterface`, "
"`BranchOpInterface`, `RegionBranchTerminatorOpInterface`, or "
"return-like");
// The lattices of the non-forwarded branch operands don't get updated like
// the forwarded branch operands or the non-branch operands. Thus they need
// to be handled separately. This is where we handle them.
// This marks values of type (1.b) liveness as "live". A non-forwarded
// branch operand will be live if a block where its op could take the control
// has an op with memory effects.
// Populating such blocks in `blocks`.
SmallVector<Block *, 4> blocks;
if (isa<RegionBranchOpInterface>(op)) {
// When the op is a `RegionBranchOpInterface`, like an `scf.for` or an
// `scf.index_switch` op, its branch operand controls the flow into this
// op's regions.
for (Region &region : op->getRegions()) {
for (Block &block : region)
blocks.push_back(&block);
}
} else if (isa<BranchOpInterface>(op)) {
// When the op is a `BranchOpInterface`, like a `cf.cond_br` or a
// `cf.switch` op, its branch operand controls the flow into this op's
// successors.
blocks = op->getSuccessors();
} else {
// When the op is a `RegionBranchTerminatorOpInterface`, like an
// `scf.condition` op or return-like, like an `scf.yield` op, its branch
// operand controls the flow into this op's parent's (which is a
// `RegionBranchOpInterface`'s) regions.
Operation *parentOp = op->getParentOp();
assert(isa<RegionBranchOpInterface>(parentOp) &&
"expected parent op to implement `RegionBranchOpInterface`");
for (Region &region : parentOp->getRegions()) {
for (Block &block : region)
blocks.push_back(&block);
}
}
bool foundMemoryEffectingOp = false;
for (Block *block : blocks) {
if (foundMemoryEffectingOp)
break;
for (Operation &nestedOp : *block) {
if (!isMemoryEffectFree(&nestedOp)) {
Liveness *operandLiveness = getLatticeElement(operand.get());
propagateIfChanged(operandLiveness, operandLiveness->markLive());
foundMemoryEffectingOp = true;
break;
}
}
}
// Now that we have checked for memory-effecting ops in the blocks of concern,
// we will simply visit the op with this non-forwarded operand to potentially
// mark it "live" due to type (1.a/3) liveness.
if (operand.getOperandNumber() > 0)
return;
SmallVector<Liveness *, 4> operandLiveness;
operandLiveness.push_back(getLatticeElement(operand.get()));
SmallVector<const Liveness *, 4> resultsLiveness;
for (const Value result : op->getResults())
resultsLiveness.push_back(getLatticeElement(result));
visitOperation(op, operandLiveness, resultsLiveness);
// We also visit the parent op with the parent's results and this operand if
// `op` is a `RegionBranchTerminatorOpInterface` or return-like because its
// non-forwarded operand depends on not only its memory effects/results but
// also on those of its parent's.
if (!isa<RegionBranchTerminatorOpInterface>(op) &&
!op->hasTrait<OpTrait::ReturnLike>())
return;
Operation *parentOp = op->getParentOp();
SmallVector<const Liveness *, 4> parentResultsLiveness;
for (const Value parentResult : parentOp->getResults())
parentResultsLiveness.push_back(getLatticeElement(parentResult));
visitOperation(parentOp, operandLiveness, parentResultsLiveness);
}
void LivenessAnalysis::setToExitState(Liveness *lattice) {
// This marks values of type (2) liveness as "live".
lattice->markLive();
}
//===----------------------------------------------------------------------===//
// RunLivenessAnalysis
//===----------------------------------------------------------------------===//
RunLivenessAnalysis::RunLivenessAnalysis(Operation *op) {
SymbolTableCollection symbolTable;
solver.load<DeadCodeAnalysis>();
solver.load<SparseConstantPropagation>();
solver.load<LivenessAnalysis>(symbolTable);
(void)solver.initializeAndRun(op);
}
const Liveness *RunLivenessAnalysis::getLiveness(Value val) {
return solver.lookupState<Liveness>(val);
}