The HFP instructions `MAY` and `MAYR`, unlike any other floating point instructions, allow the specification of a 128bit register pair by either the lower-numbered or the higher-numbered component register. In order to support this, but change as little about codegen as possible, the existing `MAY(R)?` definition is made `CodeGenOnly`, while a copy is provided for the assembler and disassembler, which simply accepts a 64bit floating point register in place of the 128bit one. This copy is stripped of its pattern to prevent codegen from using it. The corresponding assembly tests that checked the register specification rule that this commit removes from `MAY(R)?` have also been removed.
250 lines
10 KiB
TableGen
250 lines
10 KiB
TableGen
//==- SystemZInstrHFP.td - Floating-point SystemZ instructions -*- tblgen-*-==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The instructions in this file implement SystemZ hexadecimal floating-point
|
|
// arithmetic. Since this format is not mapped to any source-language data
|
|
// type, these instructions are not used for code generation, but are provided
|
|
// for use with the assembler and disassembler only.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Move instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Load and test.
|
|
let Defs = [CC] in {
|
|
def LTER : UnaryRR <"lter", 0x32, null_frag, FP32, FP32>;
|
|
def LTDR : UnaryRR <"ltdr", 0x22, null_frag, FP64, FP64>;
|
|
def LTXR : UnaryRRE<"ltxr", 0xB362, null_frag, FP128, FP128>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Conversion instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Convert floating-point values to narrower representations.
|
|
def LEDR : UnaryRR <"ledr", 0x35, null_frag, FP32, FP64>;
|
|
def LEXR : UnaryRRE<"lexr", 0xB366, null_frag, FP32, FP128>;
|
|
def LDXR : UnaryRR <"ldxr", 0x25, null_frag, FP64, FP128>;
|
|
let isAsmParserOnly = 1 in {
|
|
def LRER : UnaryRR <"lrer", 0x35, null_frag, FP32, FP64>;
|
|
def LRDR : UnaryRR <"lrdr", 0x25, null_frag, FP64, FP128>;
|
|
}
|
|
|
|
// Extend floating-point values to wider representations.
|
|
def LDER : UnaryRRE<"lder", 0xB324, null_frag, FP64, FP32>;
|
|
def LXER : UnaryRRE<"lxer", 0xB326, null_frag, FP128, FP32>;
|
|
def LXDR : UnaryRRE<"lxdr", 0xB325, null_frag, FP128, FP64>;
|
|
|
|
def LDE : UnaryRXE<"lde", 0xED24, null_frag, FP64, 4>;
|
|
def LXE : UnaryRXE<"lxe", 0xED26, null_frag, FP128, 4>;
|
|
def LXD : UnaryRXE<"lxd", 0xED25, null_frag, FP128, 8>;
|
|
|
|
// Convert a signed integer register value to a floating-point one.
|
|
def CEFR : UnaryRRE<"cefr", 0xB3B4, null_frag, FP32, GR32>;
|
|
def CDFR : UnaryRRE<"cdfr", 0xB3B5, null_frag, FP64, GR32>;
|
|
def CXFR : UnaryRRE<"cxfr", 0xB3B6, null_frag, FP128, GR32>;
|
|
|
|
def CEGR : UnaryRRE<"cegr", 0xB3C4, null_frag, FP32, GR64>;
|
|
def CDGR : UnaryRRE<"cdgr", 0xB3C5, null_frag, FP64, GR64>;
|
|
def CXGR : UnaryRRE<"cxgr", 0xB3C6, null_frag, FP128, GR64>;
|
|
|
|
// Convert a floating-point register value to a signed integer value,
|
|
// with the second operand (modifier M3) specifying the rounding mode.
|
|
let Defs = [CC] in {
|
|
def CFER : BinaryRRFe<"cfer", 0xB3B8, GR32, FP32>;
|
|
def CFDR : BinaryRRFe<"cfdr", 0xB3B9, GR32, FP64>;
|
|
def CFXR : BinaryRRFe<"cfxr", 0xB3BA, GR32, FP128>;
|
|
|
|
def CGER : BinaryRRFe<"cger", 0xB3C8, GR64, FP32>;
|
|
def CGDR : BinaryRRFe<"cgdr", 0xB3C9, GR64, FP64>;
|
|
def CGXR : BinaryRRFe<"cgxr", 0xB3CA, GR64, FP128>;
|
|
}
|
|
|
|
// Convert BFP to HFP.
|
|
let Defs = [CC] in {
|
|
def THDER : UnaryRRE<"thder", 0xB358, null_frag, FP64, FP32>;
|
|
def THDR : UnaryRRE<"thdr", 0xB359, null_frag, FP64, FP64>;
|
|
}
|
|
|
|
// Convert HFP to BFP.
|
|
let Defs = [CC] in {
|
|
def TBEDR : BinaryRRFe<"tbedr", 0xB350, FP32, FP64>;
|
|
def TBDR : BinaryRRFe<"tbdr", 0xB351, FP64, FP64>;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Unary arithmetic
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Negation (Load Complement).
|
|
let Defs = [CC] in {
|
|
def LCER : UnaryRR <"lcer", 0x33, null_frag, FP32, FP32>;
|
|
def LCDR : UnaryRR <"lcdr", 0x23, null_frag, FP64, FP64>;
|
|
def LCXR : UnaryRRE<"lcxr", 0xB363, null_frag, FP128, FP128>;
|
|
}
|
|
|
|
// Absolute value (Load Positive).
|
|
let Defs = [CC] in {
|
|
def LPER : UnaryRR <"lper", 0x30, null_frag, FP32, FP32>;
|
|
def LPDR : UnaryRR <"lpdr", 0x20, null_frag, FP64, FP64>;
|
|
def LPXR : UnaryRRE<"lpxr", 0xB360, null_frag, FP128, FP128>;
|
|
}
|
|
|
|
// Negative absolute value (Load Negative).
|
|
let Defs = [CC] in {
|
|
def LNER : UnaryRR <"lner", 0x31, null_frag, FP32, FP32>;
|
|
def LNDR : UnaryRR <"lndr", 0x21, null_frag, FP64, FP64>;
|
|
def LNXR : UnaryRRE<"lnxr", 0xB361, null_frag, FP128, FP128>;
|
|
}
|
|
|
|
// Halve.
|
|
def HER : UnaryRR <"her", 0x34, null_frag, FP32, FP32>;
|
|
def HDR : UnaryRR <"hdr", 0x24, null_frag, FP64, FP64>;
|
|
|
|
// Square root.
|
|
def SQER : UnaryRRE<"sqer", 0xB245, null_frag, FP32, FP32>;
|
|
def SQDR : UnaryRRE<"sqdr", 0xB244, null_frag, FP64, FP64>;
|
|
def SQXR : UnaryRRE<"sqxr", 0xB336, null_frag, FP128, FP128>;
|
|
|
|
def SQE : UnaryRXE<"sqe", 0xED34, null_frag, FP32, 4>;
|
|
def SQD : UnaryRXE<"sqd", 0xED35, null_frag, FP64, 8>;
|
|
|
|
// Round to an integer (rounding towards zero).
|
|
def FIER : UnaryRRE<"fier", 0xB377, null_frag, FP32, FP32>;
|
|
def FIDR : UnaryRRE<"fidr", 0xB37F, null_frag, FP64, FP64>;
|
|
def FIXR : UnaryRRE<"fixr", 0xB367, null_frag, FP128, FP128>;
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Binary arithmetic
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Addition.
|
|
let Defs = [CC] in {
|
|
let isCommutable = 1 in {
|
|
def AER : BinaryRR<"aer", 0x3A, null_frag, FP32, FP32>;
|
|
def ADR : BinaryRR<"adr", 0x2A, null_frag, FP64, FP64>;
|
|
def AXR : BinaryRR<"axr", 0x36, null_frag, FP128, FP128>;
|
|
}
|
|
def AE : BinaryRX<"ae", 0x7A, null_frag, FP32, z_load, 4>;
|
|
def AD : BinaryRX<"ad", 0x6A, null_frag, FP64, z_load, 8>;
|
|
}
|
|
|
|
// Addition (unnormalized).
|
|
let Defs = [CC] in {
|
|
let isCommutable = 1 in {
|
|
def AUR : BinaryRR<"aur", 0x3E, null_frag, FP32, FP32>;
|
|
def AWR : BinaryRR<"awr", 0x2E, null_frag, FP64, FP64>;
|
|
}
|
|
def AU : BinaryRX<"au", 0x7E, null_frag, FP32, z_load, 4>;
|
|
def AW : BinaryRX<"aw", 0x6E, null_frag, FP64, z_load, 8>;
|
|
}
|
|
|
|
// Subtraction.
|
|
let Defs = [CC] in {
|
|
def SER : BinaryRR<"ser", 0x3B, null_frag, FP32, FP32>;
|
|
def SDR : BinaryRR<"sdr", 0x2B, null_frag, FP64, FP64>;
|
|
def SXR : BinaryRR<"sxr", 0x37, null_frag, FP128, FP128>;
|
|
|
|
def SE : BinaryRX<"se", 0x7B, null_frag, FP32, z_load, 4>;
|
|
def SD : BinaryRX<"sd", 0x6B, null_frag, FP64, z_load, 8>;
|
|
}
|
|
|
|
// Subtraction (unnormalized).
|
|
let Defs = [CC] in {
|
|
def SUR : BinaryRR<"sur", 0x3F, null_frag, FP32, FP32>;
|
|
def SWR : BinaryRR<"swr", 0x2F, null_frag, FP64, FP64>;
|
|
|
|
def SU : BinaryRX<"su", 0x7F, null_frag, FP32, z_load, 4>;
|
|
def SW : BinaryRX<"sw", 0x6F, null_frag, FP64, z_load, 8>;
|
|
}
|
|
|
|
// Multiplication.
|
|
let isCommutable = 1 in {
|
|
def MEER : BinaryRRE<"meer", 0xB337, null_frag, FP32, FP32>;
|
|
def MDR : BinaryRR <"mdr", 0x2C, null_frag, FP64, FP64>;
|
|
def MXR : BinaryRR <"mxr", 0x26, null_frag, FP128, FP128>;
|
|
}
|
|
def MEE : BinaryRXE<"mee", 0xED37, null_frag, FP32, z_load, 4>;
|
|
def MD : BinaryRX <"md", 0x6C, null_frag, FP64, z_load, 8>;
|
|
|
|
// Extending multiplication (f32 x f32 -> f64).
|
|
def MDER : BinaryRR<"mder", 0x3C, null_frag, FP64, FP32>;
|
|
def MDE : BinaryRX<"mde", 0x7C, null_frag, FP64, z_load, 4>;
|
|
let isAsmParserOnly = 1 in {
|
|
def MER : BinaryRR<"mer", 0x3C, null_frag, FP64, FP32>;
|
|
def ME : BinaryRX<"me", 0x7C, null_frag, FP64, z_load, 4>;
|
|
}
|
|
|
|
// Extending multiplication (f64 x f64 -> f128).
|
|
def MXDR : BinaryRR<"mxdr", 0x27, null_frag, FP128, FP64>;
|
|
def MXD : BinaryRX<"mxd", 0x67, null_frag, FP128, z_load, 8>;
|
|
|
|
// Fused multiply-add.
|
|
def MAER : TernaryRRD<"maer", 0xB32E, null_frag, FP32, FP32>;
|
|
def MADR : TernaryRRD<"madr", 0xB33E, null_frag, FP64, FP64>;
|
|
def MAE : TernaryRXF<"mae", 0xED2E, null_frag, FP32, FP32, z_load, 4>;
|
|
def MAD : TernaryRXF<"mad", 0xED3E, null_frag, FP64, FP64, z_load, 8>;
|
|
|
|
// Fused multiply-subtract.
|
|
def MSER : TernaryRRD<"mser", 0xB32F, null_frag, FP32, FP32>;
|
|
def MSDR : TernaryRRD<"msdr", 0xB33F, null_frag, FP64, FP64>;
|
|
def MSE : TernaryRXF<"mse", 0xED2F, null_frag, FP32, FP32, z_load, 4>;
|
|
def MSD : TernaryRXF<"msd", 0xED3F, null_frag, FP64, FP64, z_load, 8>;
|
|
|
|
// Multiplication (unnormalized).
|
|
def MYR : BinaryRRD<"myr", 0xB33B, null_frag, FP128, FP64>;
|
|
def MYHR : BinaryRRD<"myhr", 0xB33D, null_frag, FP64, FP64>;
|
|
def MYLR : BinaryRRD<"mylr", 0xB339, null_frag, FP64, FP64>;
|
|
def MY : BinaryRXF<"my", 0xED3B, null_frag, FP128, FP64, z_load, 8>;
|
|
def MYH : BinaryRXF<"myh", 0xED3D, null_frag, FP64, FP64, z_load, 8>;
|
|
def MYL : BinaryRXF<"myl", 0xED39, null_frag, FP64, FP64, z_load, 8>;
|
|
|
|
// Fused multiply-add (unnormalized).
|
|
def MAYHR : TernaryRRD<"mayhr", 0xB33C, null_frag, FP64, FP64>;
|
|
def MAYLR : TernaryRRD<"maylr", 0xB338, null_frag, FP64, FP64>;
|
|
def MAYH : TernaryRXF<"mayh", 0xED3C, null_frag, FP64, FP64, z_load, 8>;
|
|
def MAYL : TernaryRXF<"mayl", 0xED38, null_frag, FP64, FP64, z_load, 8>;
|
|
|
|
// MAY and MAYR allow the user to specify the floating point register pair
|
|
// making up the FP128 register by either the lower-numbered register or the
|
|
// higher-numbered register, in contrast to all other floating point
|
|
// instructions.
|
|
// For this reason, the defs below accept `FP64,FP64` instead of `FP128,FP64`.
|
|
// This is ok since these instructions are not used in code generation.
|
|
// If and when code generation is enabled, the code gen variants should be
|
|
// split out from this and use the proper register classes, while these should
|
|
// remain for the Assembler and Disassembler to remain compliant with the POP.
|
|
def MAY : TernaryRXF<"may", 0xED3A, null_frag, FP64, FP64, z_load, 8>;
|
|
def MAYR : TernaryRRD<"mayr", 0xB33A, null_frag, FP64, FP64>;
|
|
|
|
// Division.
|
|
def DER : BinaryRR <"der", 0x3D, null_frag, FP32, FP32>;
|
|
def DDR : BinaryRR <"ddr", 0x2D, null_frag, FP64, FP64>;
|
|
def DXR : BinaryRRE<"dxr", 0xB22D, null_frag, FP128, FP128>;
|
|
def DE : BinaryRX <"de", 0x7D, null_frag, FP32, z_load, 4>;
|
|
def DD : BinaryRX <"dd", 0x6D, null_frag, FP64, z_load, 8>;
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Comparisons
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let Defs = [CC] in {
|
|
def CER : CompareRR <"cer", 0x39, null_frag, FP32, FP32>;
|
|
def CDR : CompareRR <"cdr", 0x29, null_frag, FP64, FP64>;
|
|
def CXR : CompareRRE<"cxr", 0xB369, null_frag, FP128, FP128>;
|
|
|
|
def CE : CompareRX<"ce", 0x79, null_frag, FP32, z_load, 4>;
|
|
def CD : CompareRX<"cd", 0x69, null_frag, FP64, z_load, 8>;
|
|
}
|
|
|