Files
clang-p2996/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorConversion.cpp
Aart Bik a3610359b5 [mlir][sparse] change memref argument to proper SSA components
The indices for insert/compress were previously provided as
a memref<?xindex> with proper rank, since that matched the
argument for the runtime support libary better. However, with
proper codegen coming, providing the indices as SSA values
is much cleaner. This also brings the sparse_tensor.insert
closer to unification with tensor.insert, planned in the
longer run.

Reviewed By: Peiming

Differential Revision: https://reviews.llvm.org/D134404
2022-09-27 16:37:37 -07:00

1466 lines
63 KiB
C++

//===- SparseTensorConversion.cpp - Sparse tensor primitives conversion ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A pass that converts sparse tensor primitives into calls into a runtime
// support library. Sparse tensor types are converted into opaque pointers
// to the underlying sparse storage schemes. The use of opaque pointers
// together with runtime support library keeps the conversion relatively
// simple, but at the expense of IR opacity, which obscures opportunities
// for subsequent optimization of the IR. An alternative is provided by
// the SparseTensorCodegen pass.
//
//===----------------------------------------------------------------------===//
#include "CodegenUtils.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/ExecutionEngine/SparseTensorUtils.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
/// Shorthand aliases for the `emitCInterface` argument to `getFunc()`,
/// `createFuncCall()`, and `replaceOpWithFuncCall()`.
enum class EmitCInterface : bool { Off = false, On = true };
//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//
/// Returns the equivalent of `void*` for opaque arguments to the
/// execution engine.
static Type getOpaquePointerType(OpBuilder &builder) {
return LLVM::LLVMPointerType::get(builder.getI8Type());
}
/// Maps each sparse tensor type to an opaque pointer.
static Optional<Type> convertSparseTensorTypes(Type type) {
if (getSparseTensorEncoding(type) != nullptr)
return LLVM::LLVMPointerType::get(IntegerType::get(type.getContext(), 8));
return llvm::None;
}
/// Returns a function reference (first hit also inserts into module). Sets
/// the "_emit_c_interface" on the function declaration when requested,
/// so that LLVM lowering generates a wrapper function that takes care
/// of ABI complications with passing in and returning MemRefs to C functions.
static FlatSymbolRefAttr getFunc(ModuleOp module, StringRef name,
TypeRange resultType, ValueRange operands,
EmitCInterface emitCInterface) {
MLIRContext *context = module.getContext();
auto result = SymbolRefAttr::get(context, name);
auto func = module.lookupSymbol<func::FuncOp>(result.getAttr());
if (!func) {
OpBuilder moduleBuilder(module.getBodyRegion());
func = moduleBuilder.create<func::FuncOp>(
module.getLoc(), name,
FunctionType::get(context, operands.getTypes(), resultType));
func.setPrivate();
if (static_cast<bool>(emitCInterface))
func->setAttr(LLVM::LLVMDialect::getEmitCWrapperAttrName(),
UnitAttr::get(context));
}
return result;
}
/// Creates a `CallOp` to the function reference returned by `getFunc()` in
/// the builder's module.
static func::CallOp createFuncCall(OpBuilder &builder, Location loc,
StringRef name, TypeRange resultType,
ValueRange operands,
EmitCInterface emitCInterface) {
auto module = builder.getBlock()->getParentOp()->getParentOfType<ModuleOp>();
auto fn = getFunc(module, name, resultType, operands, emitCInterface);
return builder.create<func::CallOp>(loc, resultType, fn, operands);
}
/// Replaces the `op` with a `CallOp` to the function reference returned
/// by `getFunc()`.
static func::CallOp replaceOpWithFuncCall(RewriterBase &rewriter, Operation *op,
StringRef name, TypeRange resultType,
ValueRange operands,
EmitCInterface emitCInterface) {
auto fn = getFunc(op->getParentOfType<ModuleOp>(), name, resultType, operands,
emitCInterface);
return rewriter.replaceOpWithNewOp<func::CallOp>(op, resultType, fn,
operands);
}
/// Generates dimension size call.
static Value genDimSizeCall(OpBuilder &builder, Location loc,
SparseTensorEncodingAttr &enc, Value src,
int64_t idx) {
// Permute the index according to an optional dimension ordering.
if (AffineMap p = enc.getDimOrdering())
idx = p.getPermutedPosition(idx);
// Generate the call.
StringRef name = "sparseDimSize";
SmallVector<Value, 2> params{src, constantIndex(builder, loc, idx)};
Type iTp = builder.getIndexType();
return createFuncCall(builder, loc, name, iTp, params, EmitCInterface::Off)
.getResult(0);
}
/// Generates a call into the "swiss army knife" method of the sparse runtime
/// support library for materializing sparse tensors into the computation.
static Value genNewCall(OpBuilder &builder, Location loc,
ArrayRef<Value> params) {
StringRef name = "newSparseTensor";
Type pTp = getOpaquePointerType(builder);
return createFuncCall(builder, loc, name, pTp, params, EmitCInterface::On)
.getResult(0);
}
/// Compute the size from type (for static sizes) or from an already-converted
/// opaque pointer source (for dynamic sizes) at the given dimension.
static Value sizeFromPtrAtDim(OpBuilder &builder, Location loc,
SparseTensorEncodingAttr &enc, ShapedType stp,
Value src, unsigned dim) {
auto shape = stp.getShape();
if (shape[dim] == ShapedType::kDynamicSize)
return genDimSizeCall(builder, loc, enc, src, dim);
return constantIndex(builder, loc, shape[dim]);
}
/// Populates given sizes array from type (for static sizes) and from
/// an already-converted opaque pointer source (for dynamic sizes).
static void sizesFromPtr(OpBuilder &builder, SmallVector<Value, 4> &sizes,
Location loc, SparseTensorEncodingAttr &enc,
ShapedType stp, Value src) {
for (unsigned i = 0, rank = stp.getRank(); i < rank; i++)
sizes.push_back(sizeFromPtrAtDim(builder, loc, enc, stp, src, i));
}
/// Populates given sizes array from type.
static void sizesFromType(OpBuilder &builder, SmallVector<Value, 4> &sizes,
Location loc, ShapedType stp) {
auto shape = stp.getShape();
for (unsigned i = 0, rank = stp.getRank(); i < rank; i++) {
uint64_t s = shape[i] == ShapedType::kDynamicSize ? 0 : shape[i];
sizes.push_back(constantIndex(builder, loc, s));
}
}
/// Populates given sizes array from source.
static void sizesFromSrc(OpBuilder &builder, SmallVector<Value, 4> &sizes,
Location loc, Value src) {
unsigned rank = src.getType().cast<ShapedType>().getRank();
for (unsigned i = 0; i < rank; i++)
sizes.push_back(linalg::createOrFoldDimOp(builder, loc, src, i));
}
/// Populates the given sizes array for concatenation from type (for static
/// sizes) and from an already-converted opaque pointer source (for dynamic
/// sizes).
static void concatSizesFromInputs(OpBuilder &builder,
SmallVector<Value, 4> &sizes, Location loc,
ShapedType dstTp, ValueRange srcs,
unsigned dim) {
auto dstShape = dstTp.getShape();
auto srcTp = srcs[0].getType().cast<ShapedType>();
auto srcEnc = getSparseTensorEncoding(srcTp);
// We first fills the sizes from an input tensor, and then
// compute the size of the concatenation dimension if necessary.
if (srcEnc)
// Reuses sizes from an arbitrary input tensor is fine.
sizesFromPtr(builder, sizes, loc, srcEnc, srcTp, srcs[0]);
else
sizesFromSrc(builder, sizes, loc, srcs[0]);
// Sum up on the `dim` if the dimension is dynamic.
if (dstShape[dim] != ShapedType::kDynamicSize) {
// Faithfully take the static size.
sizes[dim] = constantIndex(builder, loc, dstShape[dim]);
} else {
// Else, compute the shape dynamically.
for (size_t i = 1, sz = srcs.size(); i < sz; i++) {
auto srcTp = srcs[i].getType().cast<ShapedType>();
auto encSrc = getSparseTensorEncoding(srcTp);
Value srcSz =
encSrc ? sizeFromPtrAtDim(builder, loc, encSrc, srcTp, srcs[i], dim)
: linalg::createOrFoldDimOp(builder, loc, srcs[i], dim);
// Sum up all the sizes.
sizes[dim] = builder.create<arith::AddIOp>(loc, sizes[dim], srcSz);
}
}
}
/// Generates an uninitialized temporary buffer of the given size and
/// type, but returns it as type `memref<? x $tp>` (rather than as type
/// `memref<$sz x $tp>`).
static Value genAlloca(OpBuilder &builder, Location loc, Value sz, Type tp) {
auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
return builder.create<memref::AllocaOp>(loc, memTp, ValueRange{sz});
}
/// Generates an uninitialized buffer of the given size and type,
/// but returns it as type `memref<? x $tp>` (rather than as type
/// `memref<$sz x $tp>`). Unlike temporary buffers on the stack,
/// this buffer must be explicitly deallocated by client.
static Value genAlloc(RewriterBase &rewriter, Location loc, Value sz, Type tp) {
auto memTp = MemRefType::get({ShapedType::kDynamicSize}, tp);
return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{sz});
}
/// Generates an uninitialized temporary buffer of the given size and
/// type, but returns it as type `memref<? x $tp>` (rather than as type
/// `memref<$sz x $tp>`).
static Value genAlloca(OpBuilder &builder, Location loc, unsigned sz, Type tp) {
return genAlloca(builder, loc, constantIndex(builder, loc, sz), tp);
}
/// Generates an uninitialized temporary buffer with room for one value
/// of the given type, and returns the `memref<$tp>`.
static Value genAllocaScalar(OpBuilder &builder, Location loc, Type tp) {
return builder.create<memref::AllocaOp>(loc, MemRefType::get({}, tp));
}
/// Generates a temporary buffer of the given type and given contents.
static Value genBuffer(OpBuilder &builder, Location loc, ValueRange values) {
unsigned sz = values.size();
assert(sz >= 1);
Value buffer = genAlloca(builder, loc, sz, values[0].getType());
for (unsigned i = 0; i < sz; i++) {
Value idx = constantIndex(builder, loc, i);
builder.create<memref::StoreOp>(loc, values[i], buffer, idx);
}
return buffer;
}
/// Populates parameters required to call the "swiss army knife" method of the
/// sparse runtime support library for materializing sparse tensors into the
/// computation.
static void newParams(OpBuilder &builder, SmallVector<Value, 8> &params,
Location loc, ShapedType stp,
SparseTensorEncodingAttr &enc, Action action,
ValueRange szs, Value ptr = Value()) {
ArrayRef<SparseTensorEncodingAttr::DimLevelType> dlt = enc.getDimLevelType();
unsigned sz = dlt.size();
// Sparsity annotations.
SmallVector<Value, 4> attrs;
for (unsigned i = 0; i < sz; i++)
attrs.push_back(constantDimLevelTypeEncoding(builder, loc, dlt[i]));
params.push_back(genBuffer(builder, loc, attrs));
// Dimension sizes array of the enveloping tensor. Useful for either
// verification of external data, or for construction of internal data.
params.push_back(genBuffer(builder, loc, szs));
// Dimension order permutation array. This is the "identity" permutation by
// default, or otherwise the "reverse" permutation of a given ordering, so
// that indices can be mapped quickly to the right position.
SmallVector<Value, 4> rev(sz);
if (AffineMap p = enc.getDimOrdering()) {
for (unsigned i = 0; i < sz; i++)
rev[p.getDimPosition(i)] = constantIndex(builder, loc, i);
} else {
for (unsigned i = 0; i < sz; i++)
rev[i] = constantIndex(builder, loc, i);
}
params.push_back(genBuffer(builder, loc, rev));
// Secondary and primary types encoding.
Type elemTp = stp.getElementType();
params.push_back(constantPointerTypeEncoding(builder, loc, enc));
params.push_back(constantIndexTypeEncoding(builder, loc, enc));
params.push_back(constantPrimaryTypeEncoding(builder, loc, elemTp));
// User action.
params.push_back(constantAction(builder, loc, action));
// Payload pointer.
if (!ptr)
ptr = builder.create<LLVM::NullOp>(loc, getOpaquePointerType(builder));
params.push_back(ptr);
}
/// Generates the code to read the value from tensor[ivs].The generated code
/// looks like the following and the insertion point after this routine is
/// inside the if-then branch behind the assignment to ind.
/// if (tensor[ivs] != 0)
/// insert_point
static Value genValueForDense(OpBuilder &builder, Location loc, Value tensor,
ValueRange ivs) {
Value val = builder.create<tensor::ExtractOp>(loc, tensor, ivs);
Value cond = genIsNonzero(builder, loc, val);
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, cond, /*else*/ false);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
return val;
}
/// Generates the code to read the value from tensor[ivs], and conditionally
/// stores the indices ivs to the memory in ind. The generated code looks like
/// the following and the insertion point after this routine is inside the
/// if-then branch behind the assignment to ind. This is to ensure that the
/// addEltX call generated after is inside the if-then branch.
/// if (tensor[ivs] != 0)
/// ind = ivs
static Value genIndexAndValueForDense(OpBuilder &builder, Location loc,
Value tensor, Value ind, ValueRange ivs) {
Value val = genValueForDense(builder, loc, tensor, ivs);
unsigned i = 0;
for (auto iv : ivs) {
Value idx = constantIndex(builder, loc, i++);
builder.create<memref::StoreOp>(loc, iv, ind, idx);
}
return val;
}
/// Generates a call to release/delete a `SparseTensorCOO`.
static void genDelCOOCall(OpBuilder &builder, Location loc, Type elemTp,
Value coo) {
SmallString<21> name{"delSparseTensorCOO", primaryTypeFunctionSuffix(elemTp)};
createFuncCall(builder, loc, name, {}, coo, EmitCInterface::Off);
}
/// Generates a call that adds one element to a coordinate scheme.
/// In particular, this generates code like the following:
/// val = a[i1,..,ik];
/// if val != 0
/// t->add(&val, [i1,..,ik], [p1,..,pk]);
static void genAddEltCall(OpBuilder &builder, Location loc, Type eltType,
Value ptr, Value valPtr, Value ind, Value perm) {
SmallString<9> name{"addElt", primaryTypeFunctionSuffix(eltType)};
SmallVector<Value, 4> params{ptr, valPtr, ind, perm};
Type pTp = getOpaquePointerType(builder);
createFuncCall(builder, loc, name, pTp, params, EmitCInterface::On);
}
/// Generates a call to `iter->getNext()`. If there is a next element,
/// then it is copied into the out-parameters `ind` and `elemPtr`,
/// and the return value is true. If there isn't a next element, then
/// the memory for `iter` is freed and the return value is false.
static Value genGetNextCall(OpBuilder &builder, Location loc, Value iter,
Value ind, Value elemPtr) {
Type elemTp = elemPtr.getType().cast<ShapedType>().getElementType();
SmallString<10> name{"getNext", primaryTypeFunctionSuffix(elemTp)};
SmallVector<Value, 3> params{iter, ind, elemPtr};
Type i1 = builder.getI1Type();
return createFuncCall(builder, loc, name, i1, params, EmitCInterface::On)
.getResult(0);
}
/// If the tensor is a sparse constant, generates and returns the pair of
/// the constants for the indices and the values.
static Optional<std::pair<Value, Value>>
genSplitSparseConstant(OpBuilder &builder, Location loc, Value tensor) {
if (auto constOp = tensor.getDefiningOp<arith::ConstantOp>()) {
if (auto attr = constOp.getValue().dyn_cast<SparseElementsAttr>()) {
DenseElementsAttr indicesAttr = attr.getIndices();
Value indices = builder.create<arith::ConstantOp>(loc, indicesAttr);
DenseElementsAttr valuesAttr = attr.getValues();
Value values = builder.create<arith::ConstantOp>(loc, valuesAttr);
return std::make_pair(indices, values);
}
}
return {};
}
/// Generates the code to copy the index at indices[ivs] to ind, and return
/// the value at value[ivs].
static Value genIndexAndValueForSparse(OpBuilder &builder, Location loc,
Value indices, Value values, Value ind,
ValueRange ivs, unsigned rank) {
for (unsigned i = 0; i < rank; i++) {
Value idx = constantIndex(builder, loc, i);
Value val = builder.create<tensor::ExtractOp>(loc, indices,
ValueRange{ivs[0], idx});
val = builder.create<arith::IndexCastOp>(loc, builder.getIndexType(), val);
builder.create<memref::StoreOp>(loc, val, ind, idx);
}
return builder.create<tensor::ExtractOp>(loc, values, ivs[0]);
}
/// Generates code to allocate a buffer of the given type, and zero
/// initialize it. If the buffer type has any dynamic sizes, then the
/// `sizes` parameter should be as filled by sizesFromPtr(); that way
/// we can reuse the genDimSizeCall() results generated by sizesFromPtr().
static Value allocDenseTensor(OpBuilder &builder, Location loc,
RankedTensorType tensorTp, ValueRange sizes) {
Type elemTp = tensorTp.getElementType();
auto shape = tensorTp.getShape();
auto memTp = MemRefType::get(shape, elemTp);
SmallVector<Value> dynamicSizes;
for (unsigned i = 0, rank = tensorTp.getRank(); i < rank; i++) {
if (shape[i] == ShapedType::kDynamicSize)
dynamicSizes.push_back(sizes[i]);
}
Value mem = builder.create<memref::AllocOp>(loc, memTp, dynamicSizes);
Value zero = constantZero(builder, loc, elemTp);
builder.create<linalg::FillOp>(loc, ValueRange{zero}, ValueRange{mem});
return mem;
}
/// Generates code to deallocate a dense buffer.
static void deallocDenseTensor(OpBuilder &builder, Location loc, Value buffer) {
builder.create<memref::DeallocOp>(loc, buffer);
}
/// Converts a pointer to COO (from calls to iter->next()) into a vector of
/// indices, apply (optional) `offset` on `offsetDim`.
static SmallVector<Value, 4> loadIndices(OpBuilder &builder, Location loc,
unsigned rank, Value ind,
unsigned offsetDim = 0,
Value offset = Value()) {
SmallVector<Value, 4> ivs;
ivs.reserve(rank);
for (unsigned i = 0; i < rank; i++) {
Value idx = constantIndex(builder, loc, i);
idx = builder.create<memref::LoadOp>(loc, ind, idx);
if (offsetDim == i && offset)
idx = builder.create<arith::AddIOp>(loc, idx, offset);
ivs.push_back(idx);
}
return ivs;
}
/// Converts the vector indices and store it into the memory pointed by
/// `ind`, apply (optional) `offset` on `offsetDim`.
static void storeIndices(OpBuilder &builder, Location loc, unsigned rank,
Value ind, ValueRange ivs, unsigned offsetDim = 0,
Value offset = Value()) {
for (unsigned i = 0; i < rank; i++) {
Value idx = ivs[i];
if (offsetDim == i && offset)
idx = builder.create<arith::AddIOp>(loc, idx, offset);
builder.create<memref::StoreOp>(loc, idx, ind,
constantIndex(builder, loc, i));
}
}
/// Inserts a value stored in `elemPtr` into a dense tensor created by
/// allocDenseTensor().
static void insertScalarIntoDenseTensor(OpBuilder &builder, Location loc,
Value elemPtr, Value tensor,
ValueRange ivs) {
Value elemV = builder.create<memref::LoadOp>(loc, elemPtr);
builder.create<memref::StoreOp>(loc, elemV, tensor, ivs);
}
/// Determine if the runtime library supports direct conversion to the
/// given target `dimTypes`.
static bool canUseDirectConversion(
ArrayRef<SparseTensorEncodingAttr::DimLevelType> dimTypes) {
bool alreadyCompressed = false;
for (uint64_t rank = dimTypes.size(), r = 0; r < rank; r++) {
switch (dimTypes[r]) {
case SparseTensorEncodingAttr::DimLevelType::Compressed:
if (alreadyCompressed)
return false; // Multiple compressed dimensions not yet supported.
alreadyCompressed = true;
break;
case SparseTensorEncodingAttr::DimLevelType::Dense:
if (alreadyCompressed)
return false; // Dense after Compressed not yet supported.
break;
default: // TODO: investigate
return false;
}
}
return true;
}
/// Helper method to translate indices during a reshaping operation.
/// TODO: provide as general utility to MLIR at large?
static void translateIndices(Location loc, ConversionPatternRewriter &rewriter,
ArrayRef<ReassociationIndices> reassociation,
TensorType dstTp, TensorType srcTp, Value dstIdx,
Value srcIdx) {
unsigned dstRank = dstTp.getRank();
unsigned srcRank = srcTp.getRank();
unsigned start = 0;
unsigned i = 0;
bool isExpand = srcRank > dstRank;
ArrayRef<int64_t> shape = isExpand ? srcTp.getShape() : dstTp.getShape();
// Iterate over reassociation map.
for (const auto &map : llvm::enumerate(reassociation)) {
// Prepare strides information in dimension slice.
uint64_t linear = 1;
for (unsigned j = start, end = start + map.value().size(); j < end; j++) {
assert(!ShapedType::isDynamic(shape[j]));
linear *= shape[j];
}
// Start collapse.
Value idx = constantIndex(rewriter, loc, i++);
Value val;
if (!isExpand)
val = rewriter.create<memref::LoadOp>(loc, srcIdx, idx);
// Iterate over dimension slice.
for (unsigned j = start, end = start + map.value().size(); j < end; j++) {
linear /= shape[j];
Value stride = constantIndex(rewriter, loc, linear);
Value jdx = constantIndex(rewriter, loc, j);
if (isExpand) {
Value old = rewriter.create<memref::LoadOp>(loc, srcIdx, jdx);
Value mul = linear == 1
? old
: rewriter.create<arith::MulIOp>(loc, old, stride);
val = val ? rewriter.create<arith::AddIOp>(loc, val, mul) : mul;
} else {
Value old = val;
if (linear != 1)
val = rewriter.create<arith::DivUIOp>(loc, val, stride);
rewriter.create<memref::StoreOp>(loc, val, dstIdx, jdx);
if (linear != 1)
val = rewriter.create<arith::RemUIOp>(loc, old, stride);
}
}
// Finalize expansion.
if (isExpand)
rewriter.create<memref::StoreOp>(loc, val, dstIdx, idx);
start += map.value().size();
}
// Sanity.
assert((isExpand && i == dstRank) || (!isExpand && i == srcRank));
}
/// Generate code for a general sparse to sparse reshaping operation.
/// Note that unlike dense reshaping (which can be done with a "cheap"
/// change of view), sparse reshaping is currently done with actual
/// data shuffling.
///
/// TODO: proportional to nnz, but still a lot of data movement
/// https://github.com/llvm/llvm-project/issues/56477
///
/// iter = src->toCOO();
/// coo = newSparseCOO()
/// while (elem = iter->getNext()) {
/// coo->add(reshape(elem.indices), elem.value)
/// }
/// s = newSparseTensor(coo)
template <typename ReshapeOp>
static LogicalResult
genSparse2SparseReshape(ReshapeOp op, typename ReshapeOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) {
Location loc = op.getLoc();
auto srcTp = op.getSrc().getType().template cast<RankedTensorType>();
auto dstTp = op.getResult().getType().template cast<RankedTensorType>();
auto encSrc = getSparseTensorEncoding(srcTp);
auto encDst = getSparseTensorEncoding(dstTp);
if (!encDst || !encSrc)
return failure();
unsigned srcRank = srcTp.getRank();
unsigned dstRank = dstTp.getRank();
Type elemTp = srcTp.getElementType();
assert(elemTp == dstTp.getElementType() &&
"reshape should not change element type");
// Start an iterator over the source tensor (in original index order).
auto noPerm = SparseTensorEncodingAttr::get(
op->getContext(), encSrc.getDimLevelType(), AffineMap(),
encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
SmallVector<Value, 4> sizes;
SmallVector<Value, 8> params;
sizesFromPtr(rewriter, sizes, loc, encSrc, srcTp, adaptor.getSrc());
newParams(rewriter, params, loc, srcTp, noPerm, Action::kToIterator, sizes,
adaptor.getSrc());
Value iter = genNewCall(rewriter, loc, params);
// Start a new COO for the destination tensor.
sizes.clear();
params.clear();
// Fills sizes array using the sizes from destination type.
assert(dstTp.hasStaticShape());
sizesFromType(rewriter, sizes, loc, dstTp);
newParams(rewriter, params, loc, dstTp, encDst, Action::kEmptyCOO, sizes);
Value coo = genNewCall(rewriter, loc, params);
Value dstPerm = params[2];
// Construct a while loop over the iterator.
Value srcIdx = genAlloca(rewriter, loc, srcRank, rewriter.getIndexType());
Value dstIdx = genAlloca(rewriter, loc, dstRank, rewriter.getIndexType());
Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
SmallVector<Value> noArgs;
SmallVector<Type> noTypes;
auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
rewriter.setInsertionPointToEnd(before);
Value cond = genGetNextCall(rewriter, loc, iter, srcIdx, elemPtr);
rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
// Translate indices from source to target and insert. Note that we do
// not need to store the value in elemPtr, as the value is still there.
Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
rewriter.setInsertionPointToStart(after);
translateIndices(loc, rewriter, op.getReassociationIndices(), dstTp, srcTp,
dstIdx, srcIdx);
genAddEltCall(rewriter, loc, elemTp, coo, elemPtr, dstIdx, dstPerm);
rewriter.create<scf::YieldOp>(loc);
// Final call to construct sparse tensor storage and free temporary resources.
rewriter.setInsertionPointAfter(whileOp);
params[6] = constantAction(rewriter, loc, Action::kFromCOO);
params[7] = coo;
Value dst = genNewCall(rewriter, loc, params);
genDelCOOCall(rewriter, loc, elemTp, coo);
genDelCOOCall(rewriter, loc, elemTp, iter);
rewriter.replaceOp(op, dst);
return success();
}
// Generates a while loop that iterates over the COO list extracted
// from `t`, using `bodyBuilder` to build the loop body.
// while (elem = coo->getNext()) {
// bodyBuilder
// }
// TODO: It can be used by other operators (ReshapeOp, ConvertOP) conversion to
// reduce code repetition!
static void genSparseCOOIterationLoop(
ConversionPatternRewriter &rewriter, Location loc, Value t,
RankedTensorType tensorTp,
function_ref<void(OpBuilder &, Location, Value, Value)> bodyBuilder) {
auto enc = getSparseTensorEncoding(tensorTp);
assert(enc && "Generating Sparse Tensor COO Loop on a Dense Tensor!");
unsigned rank = tensorTp.getRank();
Type elemTp = tensorTp.getElementType();
// Start an iterator over the tensor (in original index order).
auto noPerm = SparseTensorEncodingAttr::get(
rewriter.getContext(), enc.getDimLevelType(), AffineMap(),
enc.getPointerBitWidth(), enc.getIndexBitWidth());
SmallVector<Value, 4> sizes;
SmallVector<Value, 8> params;
sizesFromPtr(rewriter, sizes, loc, noPerm, tensorTp, t);
newParams(rewriter, params, loc, tensorTp, noPerm, Action::kToIterator, sizes,
t);
Value iter = genNewCall(rewriter, loc, params);
// Construct a while loop over the iterator.
Value srcIdx = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
SmallVector<Value> noArgs;
SmallVector<Type> noTypes;
auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
rewriter.setInsertionPointToEnd(before);
Value cond = genGetNextCall(rewriter, loc, iter, srcIdx, elemPtr);
rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
rewriter.setInsertionPointToStart(after);
// Callback here to build loop body.
bodyBuilder(rewriter, loc, srcIdx, elemPtr);
rewriter.create<scf::YieldOp>(loc);
// Finish generating loop.
rewriter.setInsertionPointAfter(whileOp);
// Free memory for iterator.
genDelCOOCall(rewriter, loc, elemTp, iter);
}
// Generate loop that iterates over a dense tensor.
// for i1 in dim1
// ..
// for ik in dimk
// val = a[i1,..,ik]
// if val != 0
// bodyBuilder(v, [i1, ..., ik])
// TODO: It can be used by other operators (ReshapeOp, ConvertOP) conversion to
// reduce code repetition!
static void genDenseTensorIterationLoop(
ConversionPatternRewriter &rewriter, Location loc, Value t,
RankedTensorType tensorTp,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) {
assert(!getSparseTensorEncoding(tensorTp) &&
"Generating Dense Tensor Loop on a Sparse Tensor!");
unsigned rank = tensorTp.getRank();
Value zero = constantIndex(rewriter, loc, 0);
Value one = constantIndex(rewriter, loc, 1);
SmallVector<Value> lo;
SmallVector<Value> hi;
SmallVector<Value> st;
// Fill out loop iteration information.
for (unsigned i = 0; i < rank; i++) {
lo.push_back(zero);
hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, t, i));
st.push_back(one);
}
scf::buildLoopNest(rewriter, loc, lo, hi, st, {},
[&](OpBuilder &builder, Location loc, ValueRange ivs,
ValueRange args) -> scf::ValueVector {
// Invoke callback to build the body of the loop.
bodyBuilder(builder, loc, ivs);
return {};
});
}
//===----------------------------------------------------------------------===//
// Conversion rules.
//===----------------------------------------------------------------------===//
/// Sparse conversion rule for returns.
class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<func::ReturnOp>(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for dimension accesses.
class SparseTensorToDimSizeConverter
: public OpConversionPattern<tensor::DimOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only rewrite annotated DimOp with constant index.
auto enc = getSparseTensorEncoding(op.getSource().getType());
if (!enc)
return failure();
Optional<int64_t> index = op.getConstantIndex();
if (!index)
return failure();
// Generate the call.
Value src = adaptor.getOperands()[0];
int64_t idx = *index;
rewriter.replaceOp(op,
genDimSizeCall(rewriter, op->getLoc(), enc, src, idx));
return success();
}
};
/// Sparse conversion rule for trivial tensor casts.
class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only rewrite identically annotated source/dest.
auto encDst = getSparseTensorEncoding(op.getType());
auto encSrc = getSparseTensorEncoding(op.getSource().getType());
if (!encDst || encDst != encSrc)
return failure();
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for a reshape operator.
template <typename ReshapeOp>
class SparseReshapeConverter : public OpConversionPattern<ReshapeOp> {
public:
using OpAdaptor = typename OpConversionPattern<ReshapeOp>::OpAdaptor;
using OpConversionPattern<ReshapeOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(ReshapeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
return genSparse2SparseReshape(op, adaptor, rewriter);
}
};
/// Sparse conversion rule for the new operator.
class SparseTensorNewConverter : public OpConversionPattern<NewOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(NewOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Type resType = op.getType();
auto enc = getSparseTensorEncoding(resType);
if (!enc)
return failure();
// Generate the call to construct tensor from ptr. The sizes are
// inferred from the result type of the new operator.
SmallVector<Value, 4> sizes;
SmallVector<Value, 8> params;
ShapedType stp = resType.cast<ShapedType>();
sizesFromType(rewriter, sizes, loc, stp);
Value ptr = adaptor.getOperands()[0];
newParams(rewriter, params, loc, stp, enc, Action::kFromFile, sizes, ptr);
rewriter.replaceOp(op, genNewCall(rewriter, loc, params));
return success();
}
};
/// Sparse conversion rule for the alloc operator.
class SparseTensorAllocConverter
: public OpConversionPattern<bufferization::AllocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::AllocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (op.getCopy())
return rewriter.notifyMatchFailure(op,
"sparse tensor copy not implemented");
Location loc = op.getLoc();
RankedTensorType resType = op.getType();
auto enc = getSparseTensorEncoding(resType);
if (!enc)
return failure();
// Gather all dimension sizes as SSA values.
SmallVector<Value> sizes;
unsigned int operandCtr = 0;
for (int64_t i = 0; i < resType.getRank(); ++i) {
if (resType.isDynamicDim(i)) {
sizes.push_back(adaptor.getOperands()[operandCtr++]);
} else {
sizes.push_back(
rewriter.create<arith::ConstantIndexOp>(loc, op.getStaticSize(i)));
}
}
// Generate the call to construct empty tensor. The sizes are
// explicitly defined by the arguments to the alloc operator.
SmallVector<Value, 8> params;
ShapedType stp = resType.cast<ShapedType>();
newParams(rewriter, params, loc, stp, enc, Action::kEmpty, sizes);
rewriter.replaceOp(op, genNewCall(rewriter, loc, params));
return success();
}
};
/// Sparse conversion rule for the convert operator.
class SparseTensorConvertConverter : public OpConversionPattern<ConvertOp> {
public:
using OpConversionPattern::OpConversionPattern;
SparseTensorConvertConverter(MLIRContext *context,
SparseTensorConversionOptions o)
: OpConversionPattern<ConvertOp>(context), options(o) {}
SparseTensorConvertConverter(TypeConverter &typeConv, MLIRContext *context,
SparseTensorConversionOptions o)
: OpConversionPattern<ConvertOp>(typeConv, context), options(o) {}
LogicalResult
matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
Type resType = op.getType();
Type srcType = op.getSource().getType();
auto encDst = getSparseTensorEncoding(resType);
auto encSrc = getSparseTensorEncoding(srcType);
Value src = adaptor.getOperands()[0];
if (encDst && encSrc) {
// This is a sparse => sparse conversion, which is handled as follows:
// t = src->toCOO(); ; src to COO in dst order
// dst = newSparseTensor(t)
// Using the coordinate scheme as an intermediate does not always
// yield the fastest conversion but avoids the need for a full
// O(N^2) conversion matrix.
if (encDst == encSrc) {
rewriter.replaceOp(op, adaptor.getOperands()); // hidden nop cast
return success();
}
SmallVector<Value, 4> sizes;
SmallVector<Value, 8> params;
ShapedType stp = srcType.cast<ShapedType>();
sizesFromPtr(rewriter, sizes, loc, encSrc, stp, src);
bool useDirectConversion;
switch (options.sparseToSparseStrategy) {
case SparseToSparseConversionStrategy::kViaCOO:
useDirectConversion = false;
break;
case SparseToSparseConversionStrategy::kDirect:
useDirectConversion = true;
assert(canUseDirectConversion(encDst.getDimLevelType()) &&
"Unsupported target for direct sparse-to-sparse conversion");
break;
case SparseToSparseConversionStrategy::kAuto:
useDirectConversion = canUseDirectConversion(encDst.getDimLevelType());
break;
}
if (useDirectConversion) {
newParams(rewriter, params, loc, stp, encDst, Action::kSparseToSparse,
sizes, src);
rewriter.replaceOp(op, genNewCall(rewriter, loc, params));
} else { // use via-COO conversion.
// Set up encoding with right mix of src and dst so that the two
// method calls can share most parameters, while still providing
// the correct sparsity information to either of them.
auto enc = SparseTensorEncodingAttr::get(
op->getContext(), encDst.getDimLevelType(), encDst.getDimOrdering(),
encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
newParams(rewriter, params, loc, stp, enc, Action::kToCOO, sizes, src);
Value coo = genNewCall(rewriter, loc, params);
params[3] = constantPointerTypeEncoding(rewriter, loc, encDst);
params[4] = constantIndexTypeEncoding(rewriter, loc, encDst);
params[6] = constantAction(rewriter, loc, Action::kFromCOO);
params[7] = coo;
Value dst = genNewCall(rewriter, loc, params);
genDelCOOCall(rewriter, loc, stp.getElementType(), coo);
rewriter.replaceOp(op, dst);
}
return success();
}
if (!encDst && encSrc) {
// This is sparse => dense conversion, which is handled as follows:
// dst = new Tensor(0);
// iter = src->toCOO();
// iter->startIterator();
// while (elem = iter->getNext()) {
// dst[elem.indices] = elem.value;
// }
RankedTensorType dstTensorTp = resType.cast<RankedTensorType>();
RankedTensorType srcTensorTp = srcType.cast<RankedTensorType>();
unsigned rank = dstTensorTp.getRank();
Type elemTp = dstTensorTp.getElementType();
// Fabricate a no-permutation encoding for newParams().
// The pointer/index types must be those of `src`.
// The dimLevelTypes aren't actually used by Action::kToIterator.
encDst = SparseTensorEncodingAttr::get(
op->getContext(),
SmallVector<SparseTensorEncodingAttr::DimLevelType>(
rank, SparseTensorEncodingAttr::DimLevelType::Dense),
AffineMap(), encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
SmallVector<Value, 4> sizes;
SmallVector<Value, 8> params;
sizesFromPtr(rewriter, sizes, loc, encSrc, srcTensorTp, src);
newParams(rewriter, params, loc, dstTensorTp, encDst, Action::kToIterator,
sizes, src);
Value iter = genNewCall(rewriter, loc, params);
Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
Value elemPtr = genAllocaScalar(rewriter, loc, elemTp);
Block *insertionBlock = rewriter.getInsertionBlock();
// TODO: Dense buffers should be allocated/deallocated via the callback
// in BufferizationOptions.
Value dst = allocDenseTensor(rewriter, loc, dstTensorTp, sizes);
SmallVector<Value> noArgs;
SmallVector<Type> noTypes;
auto whileOp = rewriter.create<scf::WhileOp>(loc, noTypes, noArgs);
Block *before = rewriter.createBlock(&whileOp.getBefore(), {}, noTypes);
rewriter.setInsertionPointToEnd(before);
Value cond = genGetNextCall(rewriter, loc, iter, ind, elemPtr);
rewriter.create<scf::ConditionOp>(loc, cond, before->getArguments());
Block *after = rewriter.createBlock(&whileOp.getAfter(), {}, noTypes);
rewriter.setInsertionPointToStart(after);
SmallVector<Value, 4> ivs = loadIndices(rewriter, loc, rank, ind);
insertScalarIntoDenseTensor(rewriter, loc, elemPtr, dst, ivs);
rewriter.create<scf::YieldOp>(loc);
rewriter.setInsertionPointAfter(whileOp);
genDelCOOCall(rewriter, loc, elemTp, iter);
rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, dst);
// Deallocate the buffer.
if (bufferization::allocationDoesNotEscape(op->getOpResult(0))) {
rewriter.setInsertionPoint(insertionBlock->getTerminator());
deallocDenseTensor(rewriter, loc, dst);
}
return success();
}
if (!encDst && !encSrc) {
// dense => dense
return failure();
}
// This is a dense => sparse conversion or a sparse constant in COO =>
// sparse conversion, which is handled as follows:
// t = newSparseCOO()
// ...code to fill the COO tensor t...
// s = newSparseTensor(t)
//
// To fill the COO tensor from a dense tensor:
// for i1 in dim1
// ..
// for ik in dimk
// val = a[i1,..,ik]
// if val != 0
// t->add(val, [i1,..,ik], [p1,..,pk])
//
// To fill the COO tensor from a sparse constant in COO format:
// for i in range(NNZ)
// val = values[i]
// [i1,..,ik] = indices[i]
// t->add(val, [i1,..,ik], [p1,..,pk])
//
// Note that the dense tensor traversal code is actually implemented
// using MLIR IR to avoid having to expose too much low-level
// memref traversal details to the runtime support library.
// Also note that the code below only generates the "new" ops and
// the loop-nest per se; whereas the entire body of the innermost
// loop is generated by genAddElt().
ShapedType stp = resType.cast<ShapedType>();
unsigned rank = stp.getRank();
SmallVector<Value, 4> sizes;
SmallVector<Value, 8> params;
sizesFromSrc(rewriter, sizes, loc, src);
newParams(rewriter, params, loc, stp, encDst, Action::kEmptyCOO, sizes);
Value coo = genNewCall(rewriter, loc, params);
Value ind = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
Value perm = params[2];
SmallVector<Value> lo;
SmallVector<Value> hi;
SmallVector<Value> st;
Value zero = constantIndex(rewriter, loc, 0);
Value one = constantIndex(rewriter, loc, 1);
auto indicesValues = genSplitSparseConstant(rewriter, loc, src);
bool isCOOConstant = indicesValues.has_value();
Value indices;
Value values;
if (isCOOConstant) {
indices = indicesValues->first;
values = indicesValues->second;
lo.push_back(zero);
hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, values, 0));
st.push_back(one);
} else {
for (unsigned i = 0; i < rank; i++) {
lo.push_back(zero);
hi.push_back(linalg::createOrFoldDimOp(rewriter, loc, src, i));
st.push_back(one);
}
}
Type eltType = stp.getElementType();
Value elemPtr = genAllocaScalar(rewriter, loc, eltType);
scf::buildLoopNest(
rewriter, op.getLoc(), lo, hi, st, {},
[&](OpBuilder &builder, Location loc, ValueRange ivs,
ValueRange args) -> scf::ValueVector {
Value val;
if (isCOOConstant)
val = genIndexAndValueForSparse(rewriter, loc, indices, values, ind,
ivs, rank);
else
val = genIndexAndValueForDense(rewriter, loc, src, ind, ivs);
builder.create<memref::StoreOp>(loc, val, elemPtr);
genAddEltCall(rewriter, loc, eltType, coo, elemPtr, ind, perm);
return {};
});
// Final call to construct sparse tensor storage.
params[6] = constantAction(rewriter, loc, Action::kFromCOO);
params[7] = coo;
Value dst = genNewCall(rewriter, loc, params);
genDelCOOCall(rewriter, loc, eltType, coo);
rewriter.replaceOp(op, dst);
return success();
}
private:
/// Options to control sparse code generation.
SparseTensorConversionOptions options;
};
/// Sparse conversion rule for the dealloc operator.
class SparseTensorDeallocConverter
: public OpConversionPattern<bufferization::DeallocTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::DeallocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto enc = getSparseTensorEncoding(op.getTensor().getType());
if (!enc)
return failure();
StringRef name = "delSparseTensor";
createFuncCall(rewriter, op->getLoc(), name, {}, adaptor.getOperands(),
EmitCInterface::Off);
rewriter.eraseOp(op);
return success();
}
};
/// Sparse conversion rule for pointer accesses.
class SparseTensorToPointersConverter
: public OpConversionPattern<ToPointersOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type resType = op.getType();
Type ptrType = resType.cast<ShapedType>().getElementType();
SmallString<16> name{"sparsePointers", overheadTypeFunctionSuffix(ptrType)};
Value dim =
constantIndex(rewriter, op->getLoc(), op.getDimension().getZExtValue());
replaceOpWithFuncCall(rewriter, op, name, resType,
{adaptor.getTensor(), dim}, EmitCInterface::On);
return success();
}
};
/// Sparse conversion rule for index accesses.
class SparseTensorToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type resType = op.getType();
Type indType = resType.cast<ShapedType>().getElementType();
SmallString<15> name{"sparseIndices", overheadTypeFunctionSuffix(indType)};
Value dim =
constantIndex(rewriter, op->getLoc(), op.getDimension().getZExtValue());
replaceOpWithFuncCall(rewriter, op, name, resType,
{adaptor.getTensor(), dim}, EmitCInterface::On);
return success();
}
};
/// Sparse conversion rule for value accesses.
class SparseTensorToValuesConverter : public OpConversionPattern<ToValuesOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type resType = op.getType();
Type eltType = resType.cast<ShapedType>().getElementType();
SmallString<15> name{"sparseValues", primaryTypeFunctionSuffix(eltType)};
replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(),
EmitCInterface::On);
return success();
}
};
/// Sparse conversion rule for tensor rematerialization.
class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(LoadOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (op.getHasInserts()) {
// Finalize any pending insertions.
StringRef name = "endInsert";
createFuncCall(rewriter, op->getLoc(), name, {}, adaptor.getOperands(),
EmitCInterface::Off);
}
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
/// Sparse conversion rule for the insertion operator.
class SparseTensorInsertConverter : public OpConversionPattern<InsertOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(InsertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Note that the current regime only allows for strict lexicographic
// index order. All values are passed by reference through stack
// allocated memrefs.
Location loc = op->getLoc();
auto tp = op.getTensor().getType().cast<RankedTensorType>();
auto elemTp = tp.getElementType();
unsigned rank = tp.getRank();
auto mref = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
auto vref = genAllocaScalar(rewriter, loc, elemTp);
for (unsigned i = 0; i < rank; i++)
rewriter.create<memref::StoreOp>(loc, adaptor.getIndices()[i], mref,
constantIndex(rewriter, loc, i));
rewriter.create<memref::StoreOp>(loc, adaptor.getValue(), vref);
SmallString<12> name{"lexInsert", primaryTypeFunctionSuffix(elemTp)};
replaceOpWithFuncCall(rewriter, op, name, {},
{adaptor.getTensor(), mref, vref},
EmitCInterface::On);
return success();
}
};
/// Sparse conversion rule for the expand operator.
class SparseTensorExpandConverter : public OpConversionPattern<ExpandOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
ShapedType srcType = op.getTensor().getType().cast<ShapedType>();
Type eltType = srcType.getElementType();
Type boolType = rewriter.getIntegerType(1);
Type idxType = rewriter.getIndexType();
// All initialization should be done on entry of the loop nest.
rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp());
// Determine the size for access expansion (always the innermost stored
// dimension size, translated back to original dimension).
auto enc = getSparseTensorEncoding(srcType);
unsigned innerDim = srcType.getRank() - 1;
if (AffineMap p = enc.getDimOrdering())
innerDim = p.getDimPosition(innerDim);
auto sz = sizeFromPtrAtDim(rewriter, loc, enc, srcType, adaptor.getTensor(),
innerDim);
// Allocate temporary buffers for values, filled-switch, and indices.
// We do not use stack buffers for this, since the expanded size may
// be rather large (as it envelops a single expanded dense dimension).
Value values = genAlloc(rewriter, loc, sz, eltType);
Value filled = genAlloc(rewriter, loc, sz, boolType);
Value indices = genAlloc(rewriter, loc, sz, idxType);
Value zero = constantZero(rewriter, loc, idxType);
// Reset the values/filled-switch to all-zero/false. Note that this
// introduces an O(N) operation into the computation, but this reset
// operation is amortized over the innermost loops for the access
// pattern expansion. As noted in the operation doc, we would like
// to amortize this setup cost even between kernels.
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, eltType)},
ValueRange{values});
rewriter.create<linalg::FillOp>(
loc, ValueRange{constantZero(rewriter, loc, boolType)},
ValueRange{filled});
// Replace expansion op with these buffers and initial index.
assert(op.getNumResults() == 4);
rewriter.replaceOp(op, {values, filled, indices, zero});
return success();
}
};
/// Sparse conversion rule for the compress operator.
class SparseTensorCompressConverter : public OpConversionPattern<CompressOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(CompressOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
// Note that this method call resets the values/filled-switch back to
// all-zero/false by only iterating over the set elements, so the
// complexity remains proportional to the sparsity of the expanded
// access pattern.
Value values = adaptor.getValues();
Value filled = adaptor.getFilled();
Value added = adaptor.getAdded();
Value count = adaptor.getCount();
Value tensor = adaptor.getTensor();
auto tp = op.getTensor().getType().cast<RankedTensorType>();
Type elemTp = tp.getElementType();
unsigned rank = tp.getRank();
auto mref = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
for (unsigned i = 0; i < rank - 1; i++)
rewriter.create<memref::StoreOp>(loc, adaptor.getIndices()[i], mref,
constantIndex(rewriter, loc, i));
SmallString<12> name{"expInsert", primaryTypeFunctionSuffix(elemTp)};
replaceOpWithFuncCall(rewriter, op, name, {},
{tensor, mref, values, filled, added, count},
EmitCInterface::On);
// Deallocate the buffers on exit of the loop nest.
Operation *parent = op;
for (; isa<scf::ForOp>(parent->getParentOp()) ||
isa<scf::WhileOp>(parent->getParentOp()) ||
isa<scf::ParallelOp>(parent->getParentOp()) ||
isa<scf::IfOp>(parent->getParentOp());
parent = parent->getParentOp())
;
rewriter.setInsertionPointAfter(parent);
rewriter.create<memref::DeallocOp>(loc, values);
rewriter.create<memref::DeallocOp>(loc, filled);
rewriter.create<memref::DeallocOp>(loc, added);
return success();
}
};
/// Sparse conversion rule for the concatenate operator.
class SparseTensorConcatConverter : public OpConversionPattern<ConcatenateOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ConcatenateOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// The conversion works as follow:
// (1). When output is sparse, and mix of inputs:
// a_sparse = concat (b_dense, c_sparse, ....)
// =>
// coo_for_a = newSparseCOO(shapeOf(a))
// for i, j, k // dense input
// coo->add(adjustForOffset(i,j,k), b[i,j,k])
//
// for elem in sparse_input
// coo->add(adjustForOffset(elem.indices), elem.value)
// ...
// a = newSparseTensor(coo_for_a)
// return a
//
// (2). When output is dense, and mix of inputs:
// a_dense = concat (b_dense, c_sparse, ....)
// =>
// a = malloc(shapeOf(a))
// for i, j, k // dense input
// a[ adjustForOffset(i,j,k) ] = b[i,j,k]
//
// for elem in sparse_input
// a[ adjustForOffset(elem.indices) ] = elem.value
// return a
Location loc = op.getLoc();
auto dstTp = op.getType().cast<RankedTensorType>();
auto encDst = getSparseTensorEncoding(dstTp);
Type elemTp = dstTp.getElementType();
uint64_t concatDim = op.getDimension().getZExtValue();
unsigned rank = dstTp.getRank();
Value dst; // destination tensor
Value dstPerm; // destination tensor permutation (if sparse out)
// A pointer to the value being inserted (if dense => sparse)
Value elemPtr;
// Memory that holds the COO for destination tensor (if sparse out)
Value dstIdx;
// The offset applied to the dimenstion to be concated (starting from 0)
Value offset = constantIndex(rewriter, loc, 0);
SmallVector<Value, 4> sizes;
SmallVector<Value, 8> params;
concatSizesFromInputs(rewriter, sizes, loc, dstTp, op.getInputs(),
concatDim);
if (encDst) {
// Start a new COO for the destination tensor.
newParams(rewriter, params, loc, dstTp, encDst, Action::kEmptyCOO, sizes);
dst = genNewCall(rewriter, loc, params);
dstPerm = params[2];
elemPtr = genAllocaScalar(rewriter, loc, elemTp);
dstIdx = genAlloca(rewriter, loc, rank, rewriter.getIndexType());
} else {
// TODO: Dense buffers should be allocated/deallocated via the callback
// in BufferizationOptions.
dst = allocDenseTensor(rewriter, loc, dstTp, sizes);
}
for (auto it : llvm::zip(op.getInputs(), adaptor.getInputs())) {
Value orignalOp = std::get<0>(it); // Input (with encoding) from Op
Value adaptedOp = std::get<1>(it); // Input (type converted) from adaptor
RankedTensorType srcTp = orignalOp.getType().cast<RankedTensorType>();
auto encSrc = getSparseTensorEncoding(srcTp);
if (encSrc) {
genSparseCOOIterationLoop(
rewriter, loc, adaptedOp, srcTp,
[&](OpBuilder &builder, Location loc, Value idx,
Value elemPtr) -> void {
auto indVec =
loadIndices(builder, loc, rank, idx, concatDim, offset);
if (encDst) {
// Case: sparse => sparse
storeIndices(builder, loc, rank, dstIdx, indVec);
genAddEltCall(builder, loc, elemTp, dst, elemPtr, dstIdx,
dstPerm);
} else {
// Case: sparse => dense
insertScalarIntoDenseTensor(builder, loc, elemPtr, dst, indVec);
}
});
} else {
genDenseTensorIterationLoop(
rewriter, loc, adaptedOp, srcTp,
[&](OpBuilder &builder, Location loc, ValueRange idx) -> void {
if (encDst) {
// Case: dense => sparse
storeIndices(builder, loc, rank, dstIdx, idx, concatDim,
offset);
Value val = genValueForDense(builder, loc, adaptedOp, idx);
builder.create<memref::StoreOp>(loc, val, elemPtr);
genAddEltCall(builder, loc, elemTp, dst, elemPtr, dstIdx,
dstPerm);
} else {
// Case: dense => dense
Value val = genValueForDense(builder, loc, adaptedOp, idx);
SmallVector<Value, 4> indVec(idx);
// Apply offset.
indVec[concatDim] = builder.create<arith::AddIOp>(
loc, indVec[concatDim], offset);
builder.create<memref::StoreOp>(loc, val, dst, indVec);
}
});
}
// Accumulate offset.
// TODO: avoid calling sparseDimSize multiple times by caching the result!
Value curDim = encSrc ? sizeFromPtrAtDim(rewriter, loc, encSrc, srcTp,
adaptedOp, concatDim)
: linalg::createOrFoldDimOp(rewriter, loc,
adaptedOp, concatDim);
offset = rewriter.create<arith::AddIOp>(loc, offset, curDim);
}
if (encDst) {
params[6] = constantAction(rewriter, loc, Action::kFromCOO);
// In sparse output case, the destination holds the COO.
Value coo = dst;
params[7] = coo;
dst = genNewCall(rewriter, loc, params);
// Release resources.
genDelCOOCall(rewriter, loc, elemTp, coo);
rewriter.replaceOp(op, dst);
} else {
rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, dstTp, dst);
}
return success();
}
};
/// Sparse conversion rule for the output operator.
class SparseTensorOutConverter : public OpConversionPattern<OutOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(OutOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
ShapedType srcType = op.getTensor().getType().cast<ShapedType>();
// Convert to default permuted COO.
Value src = adaptor.getOperands()[0];
auto encSrc = getSparseTensorEncoding(srcType);
SmallVector<Value, 4> sizes;
SmallVector<Value, 8> params;
sizesFromPtr(rewriter, sizes, loc, encSrc, srcType, src);
auto enc = SparseTensorEncodingAttr::get(
op->getContext(), encSrc.getDimLevelType(), AffineMap(),
encSrc.getPointerBitWidth(), encSrc.getIndexBitWidth());
newParams(rewriter, params, loc, srcType, enc, Action::kToCOO, sizes, src);
Value coo = genNewCall(rewriter, loc, params);
// Then output the tensor to external file with indices in the externally
// visible lexicographic index order. A sort is required if the source was
// not in that order yet (note that the sort can be dropped altogether if
// external format does not care about the order at all, but here we assume
// it does).
bool sort =
encSrc.getDimOrdering() && !encSrc.getDimOrdering().isIdentity();
params.clear();
params.push_back(coo);
params.push_back(adaptor.getOperands()[1]);
params.push_back(constantI1(rewriter, loc, sort));
Type eltType = srcType.getElementType();
SmallString<18> name{"outSparseTensor", primaryTypeFunctionSuffix(eltType)};
createFuncCall(rewriter, loc, name, {}, params, EmitCInterface::Off);
genDelCOOCall(rewriter, loc, eltType, coo);
rewriter.eraseOp(op);
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Sparse tensor type conversion into opaque pointer.
//===----------------------------------------------------------------------===//
mlir::SparseTensorTypeToPtrConverter::SparseTensorTypeToPtrConverter() {
addConversion([](Type type) { return type; });
addConversion(convertSparseTensorTypes);
}
//===----------------------------------------------------------------------===//
// Public method for populating conversion rules.
//===----------------------------------------------------------------------===//
/// Populates the given patterns list with conversion rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparseTensorConversionPatterns(
TypeConverter &typeConverter, RewritePatternSet &patterns,
const SparseTensorConversionOptions &options) {
patterns.add<SparseReturnConverter, SparseTensorToDimSizeConverter,
SparseCastConverter, SparseTensorNewConverter,
SparseReshapeConverter<tensor::ExpandShapeOp>,
SparseReshapeConverter<tensor::CollapseShapeOp>,
SparseTensorConcatConverter, SparseTensorAllocConverter,
SparseTensorDeallocConverter, SparseTensorToPointersConverter,
SparseTensorToIndicesConverter, SparseTensorToValuesConverter,
SparseTensorLoadConverter, SparseTensorInsertConverter,
SparseTensorExpandConverter, SparseTensorCompressConverter,
SparseTensorOutConverter>(typeConverter, patterns.getContext());
patterns.add<SparseTensorConvertConverter>(typeConverter,
patterns.getContext(), options);
}